Generalizations of Opial’s theorem and the common fixed point problems

Andrzej Cegielski (University of Zielona Góra, Poland)

Let a sequence \(\{x^k\}_{k=0}^{\infty} \subset \mathcal{H} \) be generated by a recurrence \(x^{k+1} = T_k x^k \), where \(x^0 \in \mathcal{H} \) and \(\{T_k\}_{k=0}^{\infty} \) is a sequence of operators defined on a Hilbert space \(\mathcal{H} \). The Opial theorem says that if \(T_k = T \) for all \(k \geq 0 \) and \(T \) is nonexpansive and asymptotically regular, then \(x^k \) converge weakly to a point \(x^* \in \text{Fix} T \). We present a generalization of this Theorem to the case where each iteration can employ different operators \(T_k \) having a common fixed point, which are not supposed to be nonexpansive. We also present several applications of this Theorem to the common fixed point problem.