Generalized relaxations of nonexpansive operators with applications to convex optimization problems

Andrzej Cegielski
Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra, Poland
e-mail: a.cegielski@wmie.uz.zgora.pl

Abstract

Let \(X \subseteq H \) be a nonempty, closed and convex subset of a real Hilbert space \(H \) and let \(T : X \to X \) be a nonexpansive operator with nonempty subset of fixed points. We introduce a generalized relaxation \(T_{\sigma,\lambda} : X \to X \) of \(T \) in the form
\[
T_{\sigma,\lambda}(x) = x + \lambda \sigma(x)(Tx - x),
\]
where the relaxation parameter \(\lambda \in [0, 2] \) and the step size function \(\sigma : X \to (0, +\infty) \). We propose some conditions on which the sequence \((x_k)\) defined by the recurrence \(x_{k+1} = T_{\lambda_k,\sigma}(x_k) \) converges weakly to a fixed point of \(T \) for arbitrary starting point \(x_0 \in X \). We also present applications of the results to convex optimization problems.