FACULTY OF MATHEMATICS  
COMPUTER SCIENCE AND ECONOMETRICS  

Przejdź do strony głównej UZ

Research

 

Przejdź

Main page

Prof. Dr. Andrzej Cegielski

Mailing Address:

Andrzej Cegielski,

Faculty of Mathematics,

Computer Science and Econometrics,

University of Zielona Góra,

ul. Szafrana 4a, 65-516 Zielona Góra, Poland

 

Phone: +48 68 328 2857

Fax: +48 68 328 2801
Office: Room 521, Building A-29

Email: a.cegielski@wmie.uz.zgora.pl

 

Google Scholar Citations

CV (pdf)

Mathematical genealogy (pdf)

List of publications (pdf)

Bibligraphy on the Kaczmarz metod (pdf)

 

Research interest in convex optimization:

·        iterative methods for variational inequalities,

·        iterative methods for fixed point problems,

·        quasi nonexpansive operators satisfying the demi-closedness principle,

·        Kaczmarz method and applications,

·        relaxed alternating projection methods,

·        Opial-type theorems for quasi-nonexpansive operators,

·        surrogate constraints methods for linear feasibility problems,

·        projection methods for large scale convex optimization problems,

·        properties of nonsingular Gram matrices with nonnegative inverse,

·        properties of obtuse cones and applications to convex nondifferentiable minimization.

 

Conferences  

·       The 6th Asian Conference on Nonlinear Analysis and Optimization, Onna-son, Okinawa, Japan, November 6-9, 2018

·       10th Asian Conference on Fixed Point Theory and Optimization, Chiang Mai, Thailand, July 16-18, 2018

·       Third Central European Set-Valued and Variational Analysis Meeting, TU Chemnitz, November 25, 2017

·       German–Israeli Research Workshop on Optimization, Haifa (Israel),  October 16-19, 2017

·       Splitting Algorithms, Modern Operator Theory, and Applications, Oaxaca (Mexico), September 17-22, 2017

·       Symposium on Functional Analysis and Optimization Stefan Rolewicz in memoriam, Banach Center, Warsaw, September 2nd, 2016

·       Conference on Mathematics and its Applications, Kuwait, November 14-17, 2014

·       5th Minisymposium on Fixed Point Theory and Applications, Baia Mare (Romania), June 1-7, 2014

·       Projection Methods: Theory and Practice, Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern (Germany), June 19 – 20, 2013,

·       10th International Conference on Fixed Point Theory and its Applications, Cluj-Napoca (Romania), June, 9-15, 2012, Abstract

·       Infinite Products of Operators and Their Applications, Haifa (Israel), May, 21-24, 2012, Abstract

·       5th German-Polish Conference on Optimization, Kraków (Poland), November, 9-13, 2011, Abstract

·       Israeli-Polish Mathematical Meeting, Łódź (Poland), September, 11-15, 2011, Abstract

·       Optimization Theory and Related Topics, Haifa (Israel), January, 11-14, 2010, Abstract

·       Interdisciplinary Workshop on Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Banff (Canada), November, 1-6, 2009, Abstract

·       MAT-TRIAD 2009, Będlewo (Poland), March, 23-27, 2009, Abstract

·       4th German-Polish Conference on Optimization. Methods and Applications, Moritzburg (Germany), March, 14-18, 2009, Abstract

·       Conference on Nonlinear Analysis and Optimization, Haifa (Israel), June, 18-24, 2008, Abstract

·       23rd IFIP TC 7 Conference on System Modeling and Optimization, Kraków (Poland), July, 23-27, 2007, Abstract

·       Functional Analysis and Optimization Conference dedicated to Professor Stefan Rolewicz on his 75 birthday, September, 17-22,  2007, Będlewo (Poland), Abstract

·       3rd German-Polish Conference on Optimization - Methods and Applications, Będlewo (Poland), November, 10-13, 2005

·       Workshop on Optimization in Medicine, Coimbra (Portugal), July, 20-22, 2005

·        MAT-TRIAD 2005, Będlewo (Poland), March, 3-5, 2005

·       EUCCO 2004, Dresden (Germany), March, 29-31, 2004

·       IV Brazilian Workshop on Continuous Optimization, Rio de Janeiro (Brasil), July, 15-18, 2002

·       French-German-Polish Conference on Optimization, Cottbus (Germany), September, 9-13, 2002

 

Some recent publications (all available on request)

·        A. Cegielski, N. Nimana, Extrapolated cyclic subgradient projection methods for the convex feasibility problems and their numerical behaviour, Optimization, 68 (2018) 145-161.

·        A. Cegielski, S. Reich, R. Zalas, Regular sequences of quasi-nonexpansive operators and their applications, SIAM Journal on Optimization, 28 (2018) 1508-1532.

·        A. Cegielski, F. Al-Musallam, Superiorization with level control, Inverse Problems, 33 (2017) 044009 (17pp).

·        A. Cegielski, F. Al-Musallam, Strong convergence of a hybrid steepest descent method for the split common fixed point problem, Optimization 65 (2016) 1463-1476.

·        A. Cegielski, Landweber-type operator and its properties, Contemporary Mathematics, 658 (2016) 139-148.

·        A. Cegielski, Application of quasi-nonexpansive operators to an iterative method for variational inequality, SIAM Journal on Optimization, 25 (2015), 2165-2181.

·        A. Cegielski, General method for solving the split common fixed point problem, Journal of Optimization Theory and Applications, 165 (2015) 385-404.

·        Y. Censor, A. Cegielski, Projection methods: an annotated bibliography of books and reviews, Optimization, 64 (2015) 2343-2358.

·        A. Cegielski, Extrapolated simultaneous subgradient projection method for variational inequality over the intersection of convex subsets, Journal of Nonlinear and Convex Analysis, 15 (2014) 211-218.

·        A. Cegielski, R. Zalas, Properties of a class of approximately shrinking operators and their applications, Fixed Point Theory, 15 (2014) 399-426.

·        F. Al-Musallam, A. Cegielski and Ch. Grossmann, Contraction behavior of iteration-discretization based on gradient type projections, Optimization, 64 (2014) 25-39.

·         F. Al-Musallam, A. Cegielski and Ch. Grossmann, Simultaneous control of regularization, discretization and projected gradient steps for variational inequality problems, Journal of Nonlinear and Convex Analysis, 2014 (accepted for publication).

·        A. Cegielski, A. Gibali, S. Reich, R. Zalas, An algorithm for solving the variational inequality problem over the fixed point set of a quasi-nonexpansive operator in Euclidean space, Numer. Funct. Anal. Optimiz., 34 (2013) 1067-1096.

·        A. Cegielski, Ch. Grossmann, Iteration-Discretization Methods for Variational Inequalities over Fixed Point Sets, Nonlinear Analysis: Theory, Methods & Applications,  85 (2013) 31-42.

·        A. Cegielski, R. Zalas, Methods for variational inequality problem over the intersection of fixed point sets of quasi-nonexpansive operators, Numer. Funct. Anal. Optimiz., 34 (2013) 255-283.

·        A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Springer, Heidelberg, 2012.

·        A. Cegielski and Y. Censor, Extrapolation and local acceleration of an iterative process for common fixed point problems, J. Math. Anal. Appl., 394 (2012) 809-818.

·        A. Cegielski and Y. Censor, Opial-type theorems and the common fixed point problem, in: H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke and H. Wolkowicz (Editors), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications 49, New York, NY, USA, 2011, pp. 155-183.

·        A. Cegielski, Generalized relaxations of nonexpansive operators and convex feasibility problems, Contemporary Mathematics, 513 (2010) 111-123.

·        A. Cegielski, R. Dylewski, Variable target value relaxed alternating projection method, Computational Optimization and Applications, 47 (2010) 455-476.

·        A. Cegielski, A. Suchocka, Relaxed alternating projection methods, SIAM Journal on Optimization, 19 (2008) 1093-1106.

·        A. Cegielski, A. Suchocka, Incomplete alternating projection method for large inconsistent linear systems, Linear Algebra and Applications, 428 (2008) 1313-1324.

·        A. Cegielski, Projection methods for the linear split feasibility problems, Optimization, 57 (2008) 491-504.

·        A. Cegielski, Convergence of the projected surrogate constraints method for the linear split feasibility problems, Journal of Convex Analysis, 14 (2007) 169-183.

·        A. Cegielski, A generalization of the Opial's Theorem, Control and Cybernetics, 36 (2007) 601-610.

·        A. Cegielski, R. Dylewski, Residual selection in a projection method for convex minimization problems, Optimization, 52 (2003) 211-220.

·        A. Cegielski, Obtuse cones and Gram matrices with nonnegative inverse, Linear Algebra and Applications, 335 (2001) 167-181.

·        A. Cegielski, A method of projection onto an acute cone with level control in convex minimization, Mathematical Programming, 85 (1999) 469-490.

 

 

 

 

 

main page | top of page