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Preface

This book provides an up-to-date (2018) presentation of the shallow water

problem according to a theory which goes beyond the Korteweg-de Vries equa-

tion. When we began studying nonlinear partial differential equations in 2012,

we were struck by the high number of seemingly miraculous results obtained

within the KdV theory. Yet, realizing that this marvelous theory had been de-

rived from more general laws of hydrodynamics serving solely as a first order

perturbative approximation with respect to some small parameters, we were

curious about the consequences of an extension of the perturbative approach

to the next (second) order.

The direct extension of KdV to the second order has been known since

1990 as the extended KdV equation. For short we call it KdV2. This equation

is derived under the same assumptions as KdV and applies to the flat-bottom

case.

As beginners in the field, we asked whether it was possible to derive an

extended KdV type equation for an uneven bottom according to the same

perturbative approach. It was evident that this could not be done in the

first order regime. The boundary condition at the non-flat bottom required

at least a second order perturbation approach. So, in 2014, we derived the

KdV2 equation for an uneven bottom, called by us KdV2B, in this regime

and showed that such a derivation in higher orders could not be done for

a general form of the bottom function. In this derivation, some unorthodox

(unconventional) steps were necessary to obtain the final result. Unfortunately,

the KdV2 for the case of an uneven bottom could not be, in general, solved

analytically. Then we found many exciting features in numerical simulations of

wave motion according to this equation, while studying it for different initial
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conditions and different bottom functions. These results were obtained using

the finite difference method (FDM). Only as recently as in 2017 did we find

approximate analytic solitonic solutions to this equation.

In 2014, we found an analytic single soliton solution for the KdV2 equa-

tion. This solution, quite unexpectedly, has the same functional form as the

single soliton solution to KdV, but with slightly different coefficients. Then

we conjectured that the same property could occur for other types of KdV

and KdV2 solutions, that is, periodic solutions (known as cnoidal waves) and

so-called superposition (composed) solutions. This was proved in subsequent

years. The analytic solutions to KdV2 (periodic type or superposition type)

have the same functional form as corresponding KdV solutions, but with mod-

ified coefficients. Moreover, the KdV2 equation imposes one more condition

on these coefficients than the KdV, putting more restrictions on ranges of

these coefficients than KdV.

In the meantime, we have discussed conservation laws and invariants for

the KdV equation and KdV2 equations with a flat bottom and with an un-

even one. For KdV2 we found only one exact invariant related to mass (vol-

ume) conservation. For the KdV2 equation with the flat bottom, we found

adiabatic (approximate) invariants related to momentum and energy con-

servation. Through the numerical approach, we extended the finite element

method (FEM) used for solving the KdV problem numerically to KdV2 both

in deterministic and some stochastic cases.

We would like to express our gratitude to Eryk Infeld and George Rowlands

for their contributions in six published papers, as well as through numerous

essential discussions and exchange of ideas. The influence of their in-depth

knowledge and experience in the field of nonlinear physics cannot be overes-

timated, particularly in the early stage of our engagement in the subject of

nonlinear waves.

Anna Karczewska and Piotr Rozmej

Zielona Góra, July 2018
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1

Introduction and general outline

The physics of nonlinear waves belongs to the fields of science which experi-

enced explosive growth during the last half-century. In this time hundreds of

monographs and many thousands of papers have been published. Applications

have appeared in many fields, such as hydrodynamics, plasma physics, quan-

tum optics, electric systems, biology, medicine, and neuroscience. In many

cases, linear equations and theories provide a good description of the con-

sidered phenomena. However, in many other cases, nonlinear wave equations

emerge even in first order approximations to more general sets of fundamental

equations describing the dynamics of a given system.

In this book, we focus on the shallow water problem, in particular on

solutions to equations which go beyond the Korteweg-de Vries equation.

1.1 Historical remarks

The history of scientific research which has brought the scientific community to

its present stage of understanding of nonlinear waves is by itself a fascinating

subject. Much information of this kind can be found, for instance, in the

review paper by Craik [30] and in Chapter 1 of the Osborne book [123].

The first person who attempted to create a theory of water waves was

Isaac Newton. In Book II, Prop. XLV of Principia (1687) he correctly deduced

that the frequency of deep-water waves must be inversely proportional to the

square root of “breadth of the wave”. Newton derived his conclusion from

the analogy with oscillations in a U-tube and was aware that this result was

approximate.
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In the middle of the eighteen century (1757, 1761) Leonhard Euler derived

equations for hydrodynamics. Soon after that Pierre-Simon Laplace (1776)

reexamined wave motion. His work was disregarded despite the considerable

progress obtained. At almost the same time, perhaps independently, Louis

Lagrange (1781, 1786) derived linearised governing equations for small ampli-

tude waves. Lagrange obtained the solution for the limiting case of long plane

waves in shallow water. In M echanique Analitique (1788) he wrote “the speed

of propagation of waves will be that which a heavy body would acquire falling

from the height of the water in the canal”, that is,
√
gh, where h is the fluid

depth, and g is gravitational acceleration.

Substantial progress in wave theory was achieved in the 1820s by Augustin-

Louis Cauchy and Siméon D. Poisson. Their works, however, did not receive

their worthy full attention because of mathematical sophistication and results

seeming contrary to intuition.

The first observations of a solitary wave by John Scott Russel in 1834 [131]

and his next experiments made a significant impact on the progress in research

on wave theory. Russel observed a solitary wave on a channel of constant depth

and followed its motion on his horse for several miles. He described several

specific properties of the propagation of new waves, called by him “waves of

translation”. He wrote “The observed waves are stable, and they may travel

long distances without change of shape. The wave velocity depends on its

height, and the width depends on the water depth. If the crest of the created

wave is too high concerning the depth of the fluid, then the wave divides into

two smaller waves of different amplitudes”.

Observations of unusual wave properties by Russel became a great chal-

lenge for wave theory. Although only a few years later (1847) Stokes pointed

out that waves described by nonlinear models can be periodic [135], it took

more than one hundred years for such solutions to be derived. Almost forty

years passed from Russel’s observations before Joseph Valentin Boussinesq

(1871) [20] and John William Strutt (Lord Rayleigh) (1876) [136] found proper

mathematical approach. The next important step was performed by Diederik

Korteweg and Gustav de Vries (1985) [96]. For shallow water gravity waves,

they derived a nonlinear wave equation, nowadays commonly known as the

Korteweg-de Vries equation (KdV for short), and its analytic solution

which describes properties of solitary waves.

New impulses in the development of theories of nonlinear waves did not

appear until the 1960s. Significant progress in computational methods allowed
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scientists a deeper understanding of nonlinear phenomena. The paper by N.J.

Zabusky and M.D. Kruskal (1965) [150] initiated an “explosion” of research in

this field. Zabusky and Kruskal, while doing a numerical study of the propa-

gation of nonlinear waves in plasma, noticed that impulses (solitary waves) of

different amplitudes and therefore different velocities conserve their properties

after collisions with each other. Since this kind of behavior resembles particle

properties, they introduced the term soliton for such waves. Two years later,

in 1967, Zabusky [149] observed in a numerical experiment the emergence of

a train of solitons of decreasing amplitudes from an initial cosine wave, evolv-

ing according to the KdV equation. This observation gave rise to intensive

research in which multi-soliton solutions for several kinds of nonlinear wave

equations were discovered and a general method for the construction of such

solutions, called Inverse Scattering Transform method (IST for short), was

established [48, 98, 110–113, 125]. Soon after that subsequent studies showed

that the nonlinear KdV-type wave equations appear in many fields as first

order approximations (in the sense of the perturbation approach with respect

to some small parameter(s)) of some more fundamental equations governing

the system. It turned out that soliton solutions appear much more often than

had been expected earlier. Scientists and engineers understood that stable

localized nonlinear waves could have significant applications in many fields,

such as nonlinear optics [104,121], hydrodynamics [1,13,16,123,144], plasma

physics [71,75], electric circuits [127,145] and many others. In particular, such

waves can be used in the transmission of signals.

At present soliton solutions appear in electrodynamics, magnetohydrody-

namics and field theory, where, among others, nonlinear Schödinger equations

have been introduced. Work in these fields has led to descriptions of “bions”,

that is, bounded states of solitons in Born-Infeld theory, and their oscillations

called “breathers”. A great area of applications appeared in fiber optics, where

“dark solitons” and “vector solitons” have been discovered. Solitons appear in

contemporary biology, in the collective motion of proteins and DNA molecules

and the propagation of impulses in neuron networks. In some equations for

water waves, which are of a different type than KdV, e.g., Camassa-Holm and

Fornberg-Whitham equations, there appear “peacon” solitons, which have a

discontinuous first derivative at the crest.

The KdV equation and soliton theory have been described in many mono-

graphs, see, e.g., [1–3, 5, 10, 33, 36, 40, 60, 66, 72, 117, 121, 123, 127, 144] and

countless scientific papers. An extension of KdV for two dimensions is the
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Kadomtsev-Petviashvili equation [73, 76] (KP equation for short). Models

with equations of higher order (in the sense of higher order space deriva-

tives) have been studied as well, [27], [105], [88], [107], [139], [23], [97],

[24], [62], [61], [152] (citation in chronological order). In parallel with ana-

lytic studies broad research using numerical methods has been undertaken,

e.g., [31, 32, 49, 74, 133, 138, 141, 147, 148] and many others. Besides soliton

solutions the periodic (cnoidal) ones have been studied [18, 100, 110], as well

as the stability of solutions [67–69, 71] and conservation laws [31, 102, 106].

For almost twenty years there have been appearing research papers studying

stochastic nonlinear equations of KdV-type, e.g., [19, 32,84–86,119,120].

Derivations of nonlinear wave equations, such as KdV, KP and their modi-

fications, are based on the assumption that the bottom of the fluid is flat. How-

ever, one of the most important aims of the water wave theory is to understand

changes in wave amplitudes and velocities when waves approach shallower re-

gions (among other problems, understanding the creation of tsunamis). Many

different theoretical models have been created for these purposes, see, e.g., [11,

15,33,41,50–52,55,56,58,59,77,89,106,111,115,116,118,124,126,134,140,151].

None of them, however, have led to a wave equation which directly incorpo-

rates bottom fluctuations. Only recently has such a wave equation been de-

rived by our co-workers and us in [78, 79]. The derivation, however, requires

a second order perturbation approach and a special trick (see, sect. 4.2.2).

1.2 Outline of Book

The book is organized as follows. In Chapter 2 we discuss the hydrodynamic

model of an incompressible, inviscid fluid and its irrotational motion governed

by gravitational forces. The model allows us to derive the set of four partial

differential equations describing the movement of the liquid. This set consists

of the Laplace equation for velocity potential, kinematic boundary conditions

at the bottom and the (unknown) surface, and the dynamic boundary condi-

tion at the surface.

In Chapter 3 dimensionless variables are introduced which allow us to

apply perturbation expansion with respect to some parameters assumed to

be small. These parameters are: α = a
H - the ratio of the wave amplitude

to the fluid depth, and β = (HL )2 - square of the ratio of the fluid depth to

the wavelength. Limiting perturbative approach to first order with respect to

small parameters results in the derivation of the Korteweg-de Vries equation
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for the long surface waves of small amplitudes. Also, several types of analytic

solutions are discussed, that is, single soliton solutions, periodic solutions and

multi-soliton solutions to KdV.

The main body of the book is based on the original research performed

by our co-workers and us. The results of these studies have been published in

the following papers [70,78–84,128–130].

Chapter 4 is devoted to the derivation of the extended KdV equations.

First, the second order perturbation approach is recalled for the case of a flat

bottom. This derivation results in the extended KdV equation which we call

KdV2. This equation is sometimes named the fifth-order KdV equation since

it contains the fifth space derivative of the wave function as the highest one.

Next, the case with an uneven bottom is considered. For this case another

small parameter is defined, δ = ah
H - the ratio of the amplitude of bottom

changes to the average fluid depth. Then the derivation of the equation for

surface waves in the presence of an uneven bottom, called by us the KdV2B

equation, is shown. For this point we use derivations presented in [78,79].

In Chapter 5 we present an algebraic approach to the KdV2 equation.

Assuming the same functional forms for solutions to KdV2 as forms of solu-

tions to KdV we derive the coefficients of single soliton solutions and peri-

odic cnoidal solutions. It is stressed that physically relevant solutions have to

fulfill the volume conservation condition, often neglected in papers studying

mathematical properties of KdV-type equations. This chapter is based on our

papers [70,79].

Chapter 6 deals with analytic solutions to KdV and KdV2 in forms of

superpositions “dn2±
√
m cn dn”. These periodic solutions were found for KdV

not until 2013 [90]. They are slightly different from the usual cnoidal solutions

known earlier. In this chapter, we first focus on mathematical aspects of these

solutions in order to compare them to the KdV solutions obtained in [90].

Next, we discuss physical constraints on these solutions imposed by the volume

conservation condition. In this chapter we follow the approach presented in

[129] and [130].

In Chapter 7 we derive the approximate analytic solution to KdV2B (the

case with the uneven bottom) and observe its qualitative agreement with

the “exact” numerical evolution. This analytic solution approximates well the

changes of the soliton’s amplitude and velocity but is not able to reproduce

subtle second order details of the evolution. Here we use the results of the

paper [128].



6 1 Introduction and general outline

Chapter 8 contains a comprehensive discussion of conservation laws for

KdV and KdV2 equations. A variational approach to KdV type equations is

reviewed. Invariants of KdV equations are recalled. It is shown that despite the

presence of the infinite number of invariants, the energy of the wave, fulfilling

the KdV in the fixed reference frame, is not exactly conserved. Quantitative

deviations from exact energy conservation are illustrated by numerical calcu-

lations. Moreover, it is shown that for the KdV2 and KdV2B equations there

exist only one exact invariant corresponding to volume (mass) conservation

of the fluid. This chapter is based on [80].

The problems related to invariants of the extended KdV equations (KdV2)

are discussed in detail in Chapter 9. Since the higher exact invariants do not

exist, adiabatic ones, that is, expressed in the same order as the order of

the equation, are helpful. Several forms of adiabatic invariants of KdV2 are

constructed, and their small deviations from constant values are presented in

numerical tests. Particular attention is drawn to the momentum and energy

of the fluid. The content of this chapter extends substantialy results obtained

in [82].

In Chapter 10 we first describe the FDM (finite difference method) al-

gorithm which has been used by us for most of the calculations of the time

evolution of surface waves according to KdV, KdV2 and KdV2B (extended

KdV for the uneven bottom) equations presented in previous chapters. Next,

we analyze the time evolution of several initially different waves encountering

different bottom profiles in accordance with the KdV2B equation. Some of

these examples were taken from [79].

Chapter 11 contains description and tests of another useful numerical

method, FEM (finite element method). We have extended the FEM intro-

duced for the KdV in [32] to KdV2 and KdV2B, both in deterministic and

stochastic cases. Then we present several examples of the time evolution of

some soliton and cnoidal waves according to this numerical scheme. It has

been shown that the FEM approach could reproduce details of the evolution

known from FDM calculations. It requires, however, larger computing times.

Next, we show a study of the wave motion according to KdV2 and KdV2B

equations when the surface is exposed to white noise simulating the influence

of atmospheric pressure fluctuations, which we were first to perform. This

study shows that both solitonic and periodic solutions to KdV and KdV2 are

very robust for such weak random impulses. The content of this chapter is

based on articles [83,84].



2

Hydrodynamic model

The general problem of fluid motion in arbitrary boundary conditions leads

to a set of Navier-Stokes equations. In most cases attempts to solve these

equations lead to extremely difficult problems. Therefore in many cases some

simplified models are introduced. For shallow water problem physicists use

the ideal fluid model. This means that fluid is assumed to be incompressible

and inviscid with additional assumption that the fluid motion is irrotational.

Since in normal conditions water viscosity and compressibility are very small

the model should reproduce the fluid motion with reasonable accuracy, until

waves on the surface do not break.

In this chapter a standard derivation of the Euler equations for this model

is presented. In this derivation we follow arguments and reasoning presented

in several textbooks, see, e.g., [1, 99, 127, 144]. An important role is played

by conservation laws. The continuity equation results from mass or (due to

fluid’s incompressibility) volume conservation. The assumption of irrotational

motion supplies the Laplace equation for velocity potential. The kinematic and

dynamic boundary conditions supplement the final set of the Euler equations.

2.1 Mass invariance

Let us cosider an arbitrary volume V of the fluid bounded by a closed sur-

face S, see figure 2.1 . When the fluid density is denoted by %, the mass M of

fluid contained in V is given by

M =

∫
V

% dV. (2.1)
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Fig. 2.1. Volume element of fluid V contained in a closed surface S. v(x, y, z, t) is

a velocity of a fluid particle and n is the normal to the surface.

The change of mass in the volume V per unit of time results from flow of

the fluid with flux density %v through surface S. Then

∂M

∂t
= −

∫
S

%v · dS = −
∫
S

%(v · n)dS, (2.2)

where v = v(x, y, z, t) is the velocity of a particle of fluid and n denotes the

normal to the surface element dS. On the other hand from (2.1)

∂M

∂t
=

∫
V

∂%

∂t
dV. (2.3)

Then ∫
V

∂%

∂t
dV = −

∫
S

%(v · n)dS. (2.4)

Transforming surface integral to volume integral by Green’s theorem yields∫
V

(
∂%

∂t
+∇ · (%v)

)
dV = 0. (2.5)

The equation (2.5) holds for arbitrary volume V . It implies a fundamental

continuity equation
∂%

∂t
+∇ · (%v) = 0. (2.6)
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2.2 Momentum conservation

Assume for a while that the only force acting on the fluid is due to pressure

p = p(x, y, z, t). Then the total force acting on element V is equal to the

integral of the pressure over the surface S. Once more we transform the surface

integral into the volume one, yielding

F = −
∫
S

pn dS = −
∫
V

(∇p) dV. (2.7)

Equation (2.7) shows that any element of fluid exerts a force dF = −(∇p)dV .

Now we can write down the equation of motion of a volume element in the

fluid by equating the force −∇p to the product of the mass per unit volume

(%) and the acceleration dv
dt . Then Newton’s second law of Mechanics for the

motion of fluid element is

%
dv

dt
= −∇p. (2.8)

The velocity of a fluid particle is a function of space coordinates and time.

The derivative dv
dt which appears in (2.8) does not denote the rate of change

of the fluid velocity at a fixed point in space, but the rate of change of the

velocity of a given fluid particle as it moves about in space. This derivative

has to be expressed in terms of quantities referring to points fixed in space.

Then the change of velocity dv can be written as

dv =
∂v

∂t
dt+

∂v

∂x
dx+

∂v

∂y
dy +

∂v

∂z
dz =

∂v

∂t
dt+ (dr · ∇)v. (2.9)

In (2.9), the derivative ∂v
∂t is taken at a constant point in space, i.e. for x, y, z

constant. Dividing by dt results in

dv

dt
=
∂v

∂t
+ (v · ∇)v. (2.10)

Substitution (2.10) into (2.8) gives

∂v

∂t
+ (v · ∇)v = −1

%
∇p. (2.11)

Equation (2.11) is known in fluid mechanics as the Euler equation of motion,

first derived by L. Euler in 1755. It can be generalized by taking into account

an external force %f other than that due to the pressure p. That force has to

be added to the right-hand side of the (2.8). The generalized Euler equation

takes the following form
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∂v

∂t
+ (v · ∇)v = −1

%
∇p+ f . (2.12)

From standard vector analysis we have

1

2
∇v2 = v × (∇× v) + (v · ∇)v.

Using the above identity one can write (2.12) as

∂v

∂t
+

1

2
∇v2 + ω × v = −1

%
∇p+ f , (2.13)

where ω = ∇× v is defied as vorticity.

2.3 Irrotational flow of incompressible fluid

In many cases fluid can be consider as incompressible. In particular, com-

pressibility of water under gravity can be safely neglected for shallow water

problems. In such cases % = const and continuity equation (2.6) simplifies to

∇·v ≡ ux + vy + wz = 0, (2.14)

where u = dx
dt , v = dy

dt , w = dz
dt . In the following we will use low indexes for

denoting partial derivatives, for instance ux ≡ ∂u
∂x , φ2xt ≡ ∂3φ

∂x2 ∂t and so on.

In many problems (particularly when velocities of fluid particles are rel-

atively small) flow of fluid is irrotational, ω = 0. In such cases the Euler

equation (2.13) takes a simpler form

∂v

∂t
+

1

2
∇v2 = −1

%
∇p+ f . (2.15)

When any vector field has its curl equals zero then it can be expressed as a

gradient of a scalar function called its potential. For irrotational flow velocity

can be written as a gradient of the velocity potential φ(x, y, z, t)

v = ∇φ = exφx + eyφy + ezφz, (2.16)

where ex, ey, ez are unit vectors in x, y, z directions, respectively. Insertion of

(2.16) into the continuity equation (2.6) yields the Laplace equation for the

velocity potential

∆φ = φ2x + φ2y + φ2z = 0, (2.17)

which holds for the whole volume of the fluid.
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Inserting (2.16) into (2.15) one obtains

∇
(
φt +

1

2
(∇φ)2 +

p

%

)
= f . (2.18)

If there are no other volume forces different than gravity (f = g), then

(2.18) becomes

∇
(
φt +

1

2
(∇φ)2 +

p

%
+ gz

)
= 0. (2.19)

Integration of (2.19) over space variables gives

φt +
1

2
(∇φ)2 +

p− p0

%
+ gz = C(t). (2.20)

Since the velocity is the space derivative of the potential φ, it is invariant

with respect to a gauge transformation of the velocity potential consisting

of an addition to φ an arbitrary function of time. The replacement of φ by

φ+
∫

(C(t) + p0
% )dt allows us to remove term −p0/% from (2.20) yielding

φt +
1

2
(∇φ)2 +

p

%
+ gz = 0. (2.21)

Equation (2.21) carries the name the Bernoulli equation.

2.4 Boundary conditions

The Laplace equation (2.17) and the Bernoulli equation (2.21) have to be

supplemented by boundary conditions both at a free surface and at the bottom

of the fluid container. The surface is defined by the equation

z = η(x, y, t).

Taking time derivative and expressing velocity through velocity potential one

obtains

φz = ηxφx + ηyφy + ηt for z = η(x, y, t). (2.22)

This is so called kinematic boundary condition at the surface.

In a slimilar way the kinematic boundary condition at the bottom can be

defined for z = h(x, y). Taking time derivative one gets

φz = hxφx + hyφy for z = h(x, y). (2.23)

In particular case, when the bottom is even h(x) = const., the boundary

condition (2.23) reduces to
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φz = 0 for z = h. (2.24)

For shallow water problem the pressure at the surface is the constant

atmospheric pressure pa, then Bernoulli’s equation at the surface z = η(x, y, t)

is

φt +
1

2
(∇φ)2 +

pa
%

+ gz = 0. (2.25)

The constant atmospheric pressure can be eliminated by another gauge trans-

formation of the velocity potential φ→ φ− (pa/%)t. Using (2.16) one obtains

the dynamic boundary condition at the surface

φt +
1

2

(
φ2
x + φ2

y + φ2
z

)
+ gη = 0 for z = η(x, y, t). (2.26)

Finally the motion of the fluid under gravity for shallow water problem

is described by the set of four partial differential equations for two unknown

functions η(x, y, t) and φ(x, y, z, t)

φ2x + φ2y + φ2z = 0 for h(x, y) < z < η(x, y, t), (2.27)

φz − (ηxφx + ηyφy + ηt) = 0 for z = η(x, y, t), (2.28)

φt +
1

2
(φ2
x + φ2

y + φ2
z) + gη = 0 for z = η(x, y, t), (2.29)

φz − (hxφx + hyφy) = 0 for z = h(x, y). (2.30)



3

Approximations: KdV - first order wave

equation

In this chapter, we present the derivation of the famous Korteweg - de Vries

(KdV for short) equation and its solutions. KdV is obtained within perturba-

tion approach as first order approximation with respect to some small param-

eters related to the physical system. Despite the low order of approximation

KdV proved to be a powerful tool for describing nonlinear weakly dispersive

waves on the surface of the shallow water and in many other physical systems.

3.1 Korteweg - de Vries equation

In many cases, like in the first observation of the solitary wave by John Scott

Russel in 1834, the wave exhibits translational invariance with respect to

direction perpendicular to wave propagation. In other words the wave function

does not depend on one of space coordinates (e.g., y). Then the unknown

functions are η = η(x, t) and φ = φ(x, z, t). The system of Euler equations

(2.27)-(2.30) reduces to (2+1) dimensions

φ2x + φ2z = 0 for h(x) < z < η(x, t), (3.1)

φz − (ηxφx + ηt) = 0 for z = η(x, t), (3.2)

φt +
1

2
(φ2
x + φ2

z) + gη = 0 for z = η(x, t), (3.3)

φz − hxφx = 0 for z = h(x). (3.4)

The simplest possible case occures when the bottom is flat, that is, for

h = const. In this case one usually chooses z = 0 at the bottom and the set

(3.1)-(3.2) reads as
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φ2x + φ2z = 0 for 0 < z < h+ η(x, t), (3.5)

φz − (ηxφx + ηt) = 0 for z = η(x, t), (3.6)

φt +
1

2
(φ2
x + φ2

z) + gη = 0 for z = η(x, t), (3.7)

φz = 0 for z = 0. (3.8)

Even for this simplest case, analytic solutions of the above sets of nonlinear

differential equations are not known. [Only numerical approach can give us

some insight, but with many constraints.] Therefore some simplifications or

approximations are needed.

Till now, all equations were written in primary, dimensional variables. In

this form, it is difficult to estimate which terms are more important than the

others and how to obtain a simplified approximate set of equations. Therefore

the next step consists in the transformation to dimensionless variables, see,

e.g., [24, 36, 41, 78, 79, 105]. Denote by a the amplitude of a surface wave, by

L its mean wavelength and by H the depth of the container. Introduction of

the dimensionless variables in the form

φ̃ =
H

La
√
gH

φ, x̃ = x/L, η̃ = η/a, z̃ = z/H, t̃ = t/(L/
√
gH) (3.9)

with notations α = a
H and β = (HL )2 transforms the set of equations (3.5)-

(3.6) into

βφ̃2x + φ̃2z = 0, for 0 < z < 1 + αη̃(x, t), (3.10)

1

β
φ̃z − (αη̃xφ̃x + η̃t) = 0, for z = 1 + αη̃(x, t), (3.11)

φ̃t +
1

2
(αφ̃2

x +
α

β
φ̃2
z) + η̃ = 0, for z = 1 + αη̃(x, t), (3.12)

φ̃z = 0, for z = 0. (3.13)

Next, one assumes that parameters α, β are small and of the same order of

magnitude, α, β � 1, which allows us to apply a perturbation approach. Then

we can expect that the results obtained with perturbation theory will be a

good approximation for long waves with an amplitude much less than the

depth of the water. In the following we will use the dimensionless variables

omitting the sign ˜ .

In standard perturbation approach [36, 144] one looks for dimensionless

velocity potential in the form

φ(x, z, t) =

∞∑
m=0

zm φ(m)(x, t), (3.14)
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where φ(m)(x, t) are yet unknown functions.

Insertion φ(x, y, t) given by (3.14) into the Laplace equation (3.10) allows

us to express the set of functions {φ(m)} by partial derivatives of the first

two of them, that is, by derivatives of φ(0) and φ(1)

φ(2m) = (−β)m

(2m)! φ
(0)
2mx for even terms

φ(2m+1) = (−β)m

(2m)! φ
(1)
2mx for odd terms.

(3.15)

For even bottom the condition (3.13) ensures

φ(1)(x, t) = 0. (3.16)

This condition together with (3.15) causes vanishing of all odd terms in the

series (3.14) which takes the form

φ(x, z, t) = φ(0) − 1

2
βz2φ

(0)
2x +

1

24
β2z4φ

(0)
4x −

1

720
β3z6φ

(0)
6x + ... (3.17)

Now, insertion of the velocity potential in the form (3.17) into kinematic

(3.11) and dynamic (3.12) boundary conditions at the surface yields the set of

the Boussinesq equations for two unknown functions η(x, t) and w(x, t) ≡ φ(0)
x .

Since α, β � 1 perturbation solutions can be considered on different order of

approximation.

When the Boussinesq equations are limited to first order in α, β they take

the following form

ηt + wx + α(ηw)x − β
1

6
w3x = 0, (3.18)

ηx + wt + αwwx − β
1

2
w2xt = 0. (3.19)

It is possible to eliminate the function w from this set and obtain a single

wave equation for surface elevation function η. In order to do this one begins

with zeroth (with respect to α, β) approximation of (3.18)-(3.19), that is, with

linear equations

ηt + wx = 0, ηx + wt = 0. (3.20)

Equations (3.20) imply

w = η, ηt = −ηx and wt = −wx. (3.21)

Now, one assumes that in the first order equations (3.18)-(3.19)

w = η + αQ(α) + βQ(β) , (3.22)
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where Q(α) and Q(β) are functions of η and its derivatives with respect to x.

Insertion of (3.22) into (3.18) and (3.19) and neglection of terms with

powers of α, β greater than 1 yields

α
(
Q(α)
x + 2ηηx

)
+ β

(
Q(β)
x − 1

6
η3x

)
= 0, (3.23)

α
(
Q

(α)
t + ηηx

)
+ β

(
Q

(β)
t +

1

2
η3x

)
= 0. (3.24)

Since the corrections Q(α) i Q(β) enter already in first order, that is with

small factors, then the relations between their x and t partial derivatives can

be chosen the same as corresponding relations in zeroth order (3.21), that is,

Q
(α)
t = −Q(α)

x , Q
(β)
t = −Q(β)

x . (3.25)

(The opposite assumption, e.g., Q
(α)
t = −Q(α)

x + αF1 + βF2 and Q
(β)
t =

−Q(β)
x + αG1 + βG2 do not change the further results since after insertion

into (3.23) i (3.24) terms of the order higher than the first in α and β have to

be rejected.)

Substraction (3.24) and (3.23) with the use of (3.25) and setting to zero

terms at the coefficients α and β separately (α and β may be arbitary within

some intervals) results in

Q(α)
x = −1

2
ηηx, Q(β)

x =
1

3
η3x. (3.26)

Integration yields

Q(α) = −1

4
η2, Q(β) =

1

3
η2x. (3.27)

So, equations (3.22) and (3.24) take the following forms

w = η − 1

4
αη2 +

1

3
βη2x, (3.28)

ηt + ηx +
3

2
αηηx +

1

6
βη3x = 0. (3.29)

The equation (3.29) is the famous KdV equation in fixed reference frame.

Remember that it is expressed in dimensionless quantities.

We stress this point since we use this reference frame across the whole

book.
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3.1.1 Other forms of KdV equation

Consider transformation of variables to a moving reference frame

x̂ = (x− t) and t̂ = t. (3.30)

Application of (3.30) to (3.29) gets rid of ηx and yields the KdV equation in

moving reference frame

ηt̂ +
3

2
αηηx̂ +

1

6
βη3x̂ = 0. (3.31)

It is worth to note that this reference frame moves with respect to the fixed

frame with velocity equal to one (in dimensionless variables). In dimension

variables this velocity corresponds to
√
gH.

In the case α = β one can use another transformation of variables

x̂ =

√
3

2
(x− t) and t̂ =

1

4

√
3

2
αt , (3.32)

which converts the equation (3.29) to so called standard KdV form

ηt̂ + 6ηηx̂ + η3x̂ = 0. (3.33)

With slightly different variables KdV can be written as

ηt̂ + ηηx̂ + η3x̂ = 0. (3.34)

The forms (3.33) or (3.34) of KdV are preferred in mathematical papers,

see, e.g., [87, 101].

It is worth to note that the variable transformation of the type (3.32) but

with different coefficients allows us to obtain coefficients of equation (3.34)

arbitrary. Therefore, in some papers one can encounter equations (3.33) or

(3.34) with some signs changed.

Transformation to non-dimensional variables makes studying of mathe-

matical aspects of KdV equation simpler. Sometimes, however, it is worth to

present the KdV in original dimensional variables. Then the KdV equations

are

ηt + cηx +
3

2

c

H
ηηx +

cH2

6
ηxxx = 0, (3.35)

in a fixed frame of reference and

ηt +
3

2

c

H
ηηx +

cH2

6
ηxxx = 0, (3.36)

in a moving frame. In both, c =
√
gH, and (3.36) is obtained from (3.35) by

setting x′ = x − ct and dropping the prime sign. One has to remember that

using equations (3.35) or (3.36) makes sense only when the appropriate ratios

of the wave amplitude, length and water depth are small.
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3.2 Analytic solutions - standard methods

KdV equation for the fixed reference frame, written in dimensionless variables

is given by (3.29). There exist three types of analytic solutions of this equation:

single solitonic, periodic and multi-solitonic ones. The standard approach to

solve the equation (3.29) is described in several monographs, see, e.g., [33,36,

144].

3.2.1 Single soliton solutions

Looking for solution of unidirectional wave with permanent shape one intro-

duces new variable ξ = x−ct, where c = 1+αc1. Then dividing KdV equation

by α one obtains an ODE equation

−c1ηξ +
3

2
ηηξ +

1

6

β

α
η3ξ = 0. (3.37)

Integration gives (r is an integration constant)

−c1η +
3

4
η2 +

1

6

β

α
η2ξ =

1

4
r. (3.38)

Then multiplication by ηξ and next integration yields

1

3

β

α
(ηξ)

2
= −η3 + 2c1η

2 + rη + s =: f (η) , (3.39)

where s is another integration constant.

Now, consider the solitonic case, that is, solutions are such that η(ξ)→ 0

when ξ → ±∞. Then from (3.38) and (3.39) r = s = 0. So, in this case

f(η) = η2(2c1 − η) and

1

3

β

α
(ηξ)

2
= η2(2c1 − η). (3.40)

The right hand side is real when η ≤ 2c1. Denote q =
√

2c1
η . Then (3.40)

becomes
2

3c1

β

α
q2
ξ = q2 − 1. (3.41)

Integration of (3.41) gives

±
√

3c1 α

2β
ξ =

∫ q(ξ)

q(0)

dq̂√
q̂2 − 1

= arc cosh (q). (3.42)

Then
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Fig. 3.1. Example of single soliton solution (3.45) for α = β = 0.1.

q =

√
2c1
η

= cosh

(√
3c1 α

2β
ξ

)
(3.43)

and

η(ξ) = 2c1sech2

(√
3c1 α

2β
ξ

)
. (3.44)

Denote the amplitude 2c1 = A. Then finally the single soliton solution of KdV

takes, in dimensionless variables x, t, the following form

η(x, t) = A sech2

[√
3α

4β
A
(
x− t

(
1 +

α

2

))]
. (3.45)

Waves represented by such solutions move with the fixed shape and con-

stant velocity v = 1 + α
2 as illustrated in figure 3.1.

3.2.2 Periodic solutions

The path to obtaining exact periodic solutions is much more involved. The

most detailed discussion of this problem is contained in [33]. Below, we remind



20 3 Approximations: KdV - first order wave equation

only a few essential steps and formulas. In general, integration constants can

be nonzero. Then, assuming that η1 < η2 < η3 are roots of polynomial f(η),

the polynomial can be written as

f(η) = −(η − y1)(η − y2)(η − y3). (3.46)

By comparison of equations (3.39) and (3.46) one sees that the roots yk have

to fulfil the following relations

y1 + y2 + y3 = 2c1,

y1y2 + y2y3 + y3y1 = −r, (3.47)

y1y2y3 = s > 0.

The datail discussion (see, e.g., [33]) reveals that the bounded solutions exist

only when two roots are negative and one is positive. Denote

y1 = η1 > 0, y2 = −η2, y3 = −η3 with η3 > η2 > 0.

The quantities η2, η2, η3 now replace the three unknowns 2c1, r and s.

For dη/dξ to be real and bounded it is necessary that −η2 ≤ η ≤ η1. This

condition means that η1 is the amplitude of the wave crest (with respect to

undisturbed water level) and η2 is the amplitude of the wave trough.

Then solution of (3.39) can be found in the form

η(ξ) = η1 cos2 χ(ξ)− η2 sin2 χ(ξ). (3.48)

With (3.48) equation (3.39) takes form

4β

3α
χξ

2 = (η1 + η3)− (η1 + η2)sin2χ. (3.49)

Denoting m = η1+η2
η1+η3

∈ [0, 1] and ∆2 = 4β
3α(η1+η3) one obtains from (3.39)

∆2χ2
ξ = 1−msin2χ. (3.50)

Integration yields

1

∆

∫ ξ

0

dξ̂ = ∓
∫ χ

0

dχ̂√
1−msin2χ̂

=⇒ ± ξ

∆
= F (χ|m), (3.51)

where F (χ|m) is the incomplete elliptic integral of the first kind. Since the

inverse functions are

cosχ = cn

(
ξ

∆
|m
)
, sinχ = sn

(
ξ

∆
|m
)

(3.52)



3.2 Analytic solutions - standard methods 21

then from (3.49) solution is obtained in the form

η(ξ) = −η2 + (η1 + η2) cn2

(
ξ

∆
|m
)
. (3.53)

In next steps Dingemans [33] stresses three conditions which allows him to

express η1, η2, η3 through physical quantities. Two of these conditions come

from definitions of dimensionless variables. Since distance x has been made

dimensionless with the wavelength, then dimensionless wavelength should be

equal to 1. Non-dimensionalization of vertical variable has been made with

H so dimensionless amplitude should be equal to 1, as well (this argument

was used already in derivation of soliton solution (3.45)). The third condition

requires that the mean free surface elevation should coincide with still water

surface.

Knowing that KdV possesses analytic solutions expressed by the Jacobi

elliptic functions it is easier to obtain them by algebraic method described in

chapter 5. Then such solutions can be written as

η(x, t) = A cn2[B(x− vt),m] +D, (3.54)

where

B=

√
3α

4β

A

m
, v=1− α

2

A

m

[
3
E(m)

K(m)
+m−2

]
, D=−A

m

[
E(m)

K(m)
+m−1

]
.

(3.55)

In (3.55), E(m), K(m) denote the complete elliptic integral and the complete

elliptic integral of the first kind, respectively. The elliptic parameter m ∈ [0, 1].

An example of periodic solution of KdV (3.29) is displayed in figure 3.2.

It is worth to note that in the limit m→ 1 the distance between the crests

of solution (3.54) tends to infinity and D → 0, giving finally single soliton

solution (3.45). When m→ 0 the solution (3.54) tends to usual cosine wave.

Sometimes cnoidal solutions (3.54) are presented in the form of dn2 func-

tion, that is, as

η(x, t) = A′ dn2[B(x− vt),m] +D′. (3.56)

This formula is equivalent to (3.54) when

A′ =
A

m
, and D′ = D +

A(m− 1)

m
= −A

m

E(m)

K(m).
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Fig. 3.2. Example of periodic solution (3.54). Here m = 0.99999 and α = 0.1.

3.2.3 Multi-soliton solutions

One of the most exciting properties of the KdV equation is the existence

of multi-soliton solutions. The first indication of that property was noticed

by Zabusky and Kruskal [150] in their famous numerical experiment. They

assumed initial wave in the form of the usual cosine function and numerically

evolved it according to KdV equation using periodic boundary conditions.

To authors’ surprise the cosine wave was evolving into a train of solitons

of decreasing amplitudes. The paper [150] inspired intensive studies which

resulted in the development of a general method, by Gardner, Green, Kruskal

and Miura [48], called IST (Inverse Scattering Transform), see, e.g., [2,4,5,40,

123], as well. The IST allows us to construct the whole family of multi-soliton

solutions.

There exist also simpler methods for construction of multi-soliton solutions

to KdV. Some of them use Bäcklund transformations [46] or Lax’s pairs [98].

There is also Hirota’s direct method [64, 66]. Below, following [21], we show

explicit forms of the exact 2- and 3-soliton solutions.
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Fig. 3.3. Example of profiles of 2-soliton solution (3.58) for α = β = 0.1 at time

instants t = −160,−120,−80,−40, 0, respectively. The amplitudes of solitons are

A1 = 0.5 and A2 = 1. For time instants t = 40, 80, 120, 160 the corresponding

profiles are symmetric to the displayed ones with respect to x = 0.

Denote by A2 > A1 the amplitudes of higher and lower solitons, respec-

tively. Set

Θi(x, t) =

√
3α

4β
Ai

[
x− t

(
1 +

α

2
Ai

)]
. (3.57)

Then 2-soliton solution of (3.29) is given by

η(x, t) =
(A2 −A1)

(
A1 sech2 [Θ1(x, t)] +A2 csch2 [Θ2(x, t)]

)(√
A1 tanh [Θ1(x, t)]−

√
A2 coth [Θ2(x, t)]

)2 , (3.58)

but 3-soliton solution (A3 > A2 > A1) has more complicated form. Denote

X1(x, t) = −
2(A1 −A2)

(
A1 sech2 [Θ1(x, t)] +A2 csch2 [Θ2(x, t)]

)(√
2A1 tanh [Θ1(x, t)]−

√
2A2 coth [Θ2(x, t)]

)2 , (3.59)

X2(x, t) =
(−A1 +A3)

(
−A1 sech2 [Θ1(x, t)] +A3 sech2 [Θ3(x, t)]

)(
−
√

2A1 tanh [Θ1(x, t)] +
√

2A3 tanh [Θ3(x, t)]
)2 , (3.60)

X3(x, t) =
2(A1 −A2)

−
√

2A1 tanh [Θ1(x, t)] +
√

2A2 coth [Θ2(x, t)]
, (3.61)

X4(x, t) =
2(−A1 +A3)

−
√

2A1 tanh [Θ1(x, t)] +
√

2A3 tanh [Θ3(x, t)]
. (3.62)
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Fig. 3.4. Example of profiles of 3-soliton solution (3.63) for α = β = 0.1 at time

instants t = −360,−240,−120 and 0, respectively. The amplitudes of solitons are

A1 = 0.5, A2 = 0.7 and A3 = 1. For time instants t = 120, 240, 360 the corresponding

profiles are symmetric to the displayed ones with respect to x = 0.

Then 3-soliton solution is expressed with (3.59)-(3.62) as

η(x, t) = A1 sech2 [Θ1(x, t)]− 2(A2 −A3)
X1(x, t) +X2(x, t)

(X3(x, t)−X4(x, t))
2 . (3.63)

Remember that due to non-dimensionalization, the amplitude of the highest

soliton is equal to 1.

Examples of 2-soliton (3.58) and 3-soliton (3.63) solutions are displayed in

figures 3.3 and 3.4, respectively. Remember that (3.58) and (3.63) are solutions

of KdV equation in fixed reference frame. In order to show more details of

the soliton’s collisions the motion of 2-soliton and 3-soliton solutions are also

displayed in the moving reference frame in the figures 3.5 and 3.6.

Remark 3.1. Single soliton solutions (3.45) and periodic solutions(3.54) move

with constant shapes and constant velocities. The velocity of KdV soliton de-

pends on its amplitude. Therefore the different parts of multi-soliton solutions

move with different velocities and the higher ones overcame the lower. Dur-

ing this ‘collision’ phase they change their shapes. However, when these parts

are separated they move again without changes of their shapes with constant

velocities.
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Fig. 3.5. 2-soliton motion corresponding to that shown in figure 3.3 displayed in a

moving frame.

Fig. 3.6. 3-soliton motion corresponding to that shown in figure 3.4 presented in a

moving frame.





4

Approximations: second order wave equations

4.1 Problem setting

In the standard approach to the shallow water wave problem, the fluid is

assumed to be inviscid and incompressible and the fluid motion to be irrota-

tional. Therefore a velocity potential φ is introduced. It satisfies the Laplace

equation with appropriate boundary conditions. The Laplace equation must

be valid for the whole volume of the fluid, whereas the equations for boundary

conditions are valid at the surface of the fluid and at the impenetrable bot-

tom. The system of equations for the velocity potential φ(x, y, z, t), including

its derivation, can be found in many textbooks, for instance, see [127, Eqs.

(5.2a-d)]. A standard procedure consists in introducing two small parameters

α = a/H and β = (H/L)2, where a is a typical amplitude of a surface wave

η, H is the depth of the container and L is a typical wavelength of the surface

waves. The parameters α, β are the same as the parameters ε, δ2 in [127], re-

spectively. In these notations, we follow the paper [24], where a systematic way

for the derivation of wave equations of different orders is presented. In [78,79]

we introduced a third parameter δ = ah/H, where ah is the amplitude of

bottom variation. With this new parameter, we can consider the motion of

surface waves over a non-flat bottom within the same perturbative approach

as for derivation of KdV or higher-order KdV-like equations. In the following,

we assume that all three parameters α, β, δ are small and of the same order.

In the following we limit our considerations to 2-dimensional flow, φ(x, z, t),

η(x, t), where x is the horizontal coordinate and z is the vertical one (this

means translational symmetry with respect to y axis). The geometry of the

problem is sketched in figure 4.1.
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H

ah

aη(x,t)

h(x)

α=a/H

β=(H/L)
2

δ=ah/H

η(x,t)
undisturbed surface

h(x)
undisturbed bottom

Fig. 4.1. Schematic view of the geometry of the shallow water wave problem for an

uneven bottom.

Up to now, a generally small surface tension term has been neglected, but

it can be taken into account. A third coordinate could also be included [72].

Like in the KdV case non-dimensional variables are introduced. Besides

the standard non-dimensionalization of η, φ, x, z and t in (3.9) the bottom

function has to be non-dimensionalized, as well. Then the non-dimensional

variables are defined as follows

η̃ = η/a, φ̃ = φ/(L
a

H

√
gH), h̃ = h/H,

x̃ = x/L, z̃ = z/H, t̃ = t/(L/
√
gH). (4.1)

In this non-dimensional variables the set of hydrodynamic equations for

2-dimensional flow takes the following form (henceforth all tildes have been

omitted)

βφxx + φzz = 0, (4.2)

ηt + αφxηx −
1

β
φz = 0 for z = 1 + αη, (4.3)

φt +
1

2
αφ2

x +
1

2

α

β
φ2
z + η = 0 for z = 1 + αη, (4.4)

φz − βδ (hx φx) = 0 for z = δh(x). (4.5)

The equations (4.2)-(4.4) are the same as (3.10)-(3.12). For the standard KdV

case, the boundary condition at the bottom is φz = 0. When the bottom varies,
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this condition (in original variables) has to be replaced by φz = hx φx, which

in non-dimensional variables takes the form (4.5). However, in order to ensure

that the perturbative approach makes sense, we assume that the derivatives

of h(x) are nowhere large.

Remark 4.1. We emphasize that the boundary condition for uneven bottom

(4.5) is already second order expression with respect to small parameters.

Therefore it is not possible to derive a wave equation containing terms from

uneven bottom in first order perturbation approach.

4.2 Derivation of KdV2 - the extended KdV equations

The derivation of the nonlinear wave equation for the function η(x, z, t) when

the bottom is given by an arbitrary function h(x) has been presented in [78].

This was done in two steps. In the first step, δ was set to zero and the extended

KdV equation (KdV2) was obtained. The extended KdV equation, which is the

second order equation for the flat bottom case was first derived by Marchant

and Smyth [105] in 1990 from Luke’s Lagrangian [103]. In the second step, we

used relations obtained in the first step to find correction terms responsible

for a variable bottom. Later, in the paper [79] we noticed that all second order

terms, both related to flat and variable bottom can be derived in a single step.

Below we describe this procedure in detail.

As in the standard first order approach, the velocity potential is approxi-

mated in the form of the series (3.14)

φ(x, z, t) =

∞∑
m=0

zm φ(m)(x, t).

In our derivation (as in most) the velocity potential is limited to a polynomial

with m ≤ 6 and in the equations (4.2)-(4.5) only terms up to second order in

small parameters α, β, δ are retained. the Laplace equation (4.2) allows us to

express all φ(2m) functions by the derivatives φ
(0)
2mx and φ(2m+1) functions by

the derivatives φ
(1)
2mx. Insertion of the series (3.14) into the boundary condition

at the bottom (4.5) yields

0 = φ(1) + βδ
(
−hxφ(0)

x − hφ
(0)
2x

)
(4.6)

+ βδ2

(
−hhxφ(1)

x −
1

2
h2φ

(1)
2x

)
+ β2δ3

(
−1

2
h2hxφ

(0)
3x +

1

6
h3φ

(0)
4x

)
+ ...
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The full equation (4.6) gives very complicated relation between φ(1), φ
(0)
x , h

and their x-derivatives. However, limiting the boundary condition at the bot-

tom (4.6) to the second order in small parameters, i.e. to

φ(1)(x, t) = βδ
(
hxφ

(0)
x + hφ

(0)
2x

)
, (4.7)

allows us to express all functions φ(m) by φ(0), h and their derivatives. The

resulting velocity potential is

φ = φ(0) + zβδ
(
hφ(0)

x

)
x
− 1

2
z2β φ

(0)
2x −

1

6
z3β2δ

(
hφ(0)

x

)
3x

+
1

24
z4β2φ

(0)
4x +

1

120
z5β3δ

(
hφ(0)

x

)
5x

+
1

720
z6β3φ

(0)
6x . (4.8)

In the next steps we insert φ(x, z, t) given by (4.8) into (4.3) and (4.4), then we

neglect terms of order higher than second in small parameters α, β, δ. Equa-

tion (4.4) is then differentiated with respect to x and w(x, t) is substituted in

place of φ
(0)
x (x, t) in both equations. In this way a set of two coupled nonlin-

ear differential equations is obtained which, in general, can be considered at

different orders of the approximation.

Keeping only terms up to second order (to be consistent with the order

of approximation used in the bottom boundary condition) one arrives at the

second order Boussinesq’s system

ηt + wx + α(ηw)x −
1

6
βw3x −

1

2
αβ(ηw2x)x +

1

120
β2w5x (4.9)

−δ(hw)x +
1

2
βδ(hw)3x = 0,

wt + ηx + αwwx −
1

2
β w2xt +

1

24
β2 w4xt + βδ (hwt)2x (4.10)

+
1

2
αβ [−2(ηwxt)x + wxw2x − ww3x] = 0.

In (4.9), there are two terms depending on the variable bottom, the first order

term δ(hw)x and the second order term 1
2βδ(hw)3x, whereas (4.10) contains

only the second order term βδ(hwt)2x. However, the bottom boundary con-

dition (4.7), which is the source of these terms, is already second order in

βδ. Therefore we will treat all these terms on the same footing, as second

order ones, i.e. replacing δ (hw)x by βδ (hw)x/b, b 6= 0, during derivations

and substituting b = β in the final formulas. So, we consider equation (4.9) in

a slightly reformulated form
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ηt + wx+α (ηw)x −
1

6
β w3x−

1

2
αβ (ηw2x)x+

1

120
β2 w5x

+
1

2
βδ

(
−2

b
(hw)x + (hw)3x

)
= 0. (4.11)

It is now time to eliminate one of the unknown functions, that is w(x, t), in

order to obtain a single equation for the wave profile η(x, t). Note that keeping

only first order terms one obtains Boussinesq’s system for KdV (3.18)-(3.19).

Burde and Sergyeyev [24] have shown how to proceed with approximations

of higher order, assuming the case of the flat bottom. They showed how to

eliminate sequentially the w(x, t) function and obtain a single equation for

η(x, t) for the higher order perturbative approach. In principle, this method

can be applied up to an arbitrary order and to cases when small parameters

are not necessarily of the same order. It allows us to solve the problem in

several ways. Corrections to the next order can be calculated either one by

one for different small parameters in several steps or in a single step for all of

them. Below we will present both of these cases.

The method consists in applying the known properties of solutions of lower

order equations for w and η in derivations of corrections to equations in the

next order. Therefore looking for wave equations of second order we make use

of the Boussinesq’s equations of first order, that is, eqs. (3.28)-(3.29).

4.2.1 KdV2 - second order equation for even bottom

In [78] we begun with flat bottom case, setting δ = 0 in (4.9)-(4.10). Looking

for consitent solutions of this system we took the second order trial function

w(x, t) in the following form

w(x, t) = η− 1

4
αη2 +

1

3
β η2x +α2 Q(α2)(x, t) +β2 Q(β2)(x, t) +αβQ(αβ)(x, t).

(4.12)

Note that in (4.12) terms up to first order are given by (3.28). Unknown

Q(α2),Q(β2),Q(αβ) are second order corrections, functions of η and its x-

derivatives. Then we insert (4.12) into (4.9)-(4.10) (with δ = 0) and use ηt

from first order solution

ηt = −ηx −
3

2
αηηx −

1

6
β η3x (4.13)

which causes reduction of terms up to first order. What leaves are equations

for the correction functions
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α2

(
Q(α2)
x − 3

4
η2ηx

)
+ β2

(
Q(β2)
x − 17

360
η5x

)
(4.14)

+ αβ

(
Q(αβ)
x +

1

12
ηxη2x −

1

12
ηη3x

)
= 0

and

α2Q
(α2)
t + β2

(
Q

(β2)
t +

11

72
η5x

)
+αβ

(
Q

(αβ)
t +

11

6
ηxη2x+

11

12
ηη3x

)
= 0. (4.15)

Next, we substract these equations. Since parameters α, β are independent

and arbitrary (within some intervals) then coefficients at α2, β2 and αβ have

to vanish simultaneously. This gives us three equations

−Q
(α2)
t + Q(α2)

x − 3

4
η2ηx = 0, (4.16)

−Q
(β2)
t + Q(β2)

x − 1

5
η5x = 0, (4.17)

−Q
(αβ)
t + Q(αβ)

x − 7

4
ηxη2x − ηη3x = 0. (4.18)

For x- and t-derivatives of the second order correction functions we use the

same arguments as for the first order ones (3.25) namely

Q
(α2)
t = −Q(α2)

x , Q
(β2)
t = −Q(β2)

x , Q
(αβ)
t = −Q(αβ)

x . (4.19)

This gives (4.16)-(4.18) in integrable form

Q(α2)
x =

3

8
η2ηx, (4.20)

Q(β2)
x =

1

10
η5x, (4.21)

Q(αβ)
x =

7

8
ηxη2x +

1

2
ηη3x. (4.22)

Integration yields

Q(α2) =
1

8
η3, (4.23)

Q(β2) =
1

10
η4x, (4.24)

Q(αβ) =
3

16
η2
x +

1

2
ηη2x. (4.25)

So, finally we obtain w(x, t) (4.12) as

w(x, t) = η − 1

4
αη2 +

1

3
β η2x +

1

8
α2η3 +

1

10
β2η4x + αβ

(
3

16
η2
x +

1

2
ηη2x

)
.

(4.26)
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Substitution of this form into (4.10) and limitation up to second order terms

gives the extended KdV equation [105] which we call KdV2

ηt + ηx +
3

2
αηηx +

1

6
βη3x (4.27)

+ α2

(
−3

8
η2ηx

)
+ αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+

19

360
β2η5x = 0.

4.2.2 Uneven bottom - KdV2B

Now we can make the next step to derive corrections to KdV2 due to uneven

bottom. Then we postulate the trial funtion w(x, t) for the Boussinesq’s set

(4.10)-(4.11) adding a new correction term proportional to βδ to the solution

(4.26), that is, in the form

w(x, t) = η − 1

4
αη2 +

1

3
β η2x +

1

8
α2η3 +

1

10
β2η4x + αβ

(
3

16
η2
x +

1

2
ηη2x

)
+ βδQ(βδ)(x, t). (4.28)

Insertion of this trial function into (4.10)-(4.11) supplies differential equations

for the correction term. Again, substracting these equations, using the same

relation between x- and t-derivatives, that is, Q
(βδ)
t = −Q(βδ)

x and integrating

one obtains the correction term as

Q(βδ)(x, t) =
(h− bh2x)η

4b
− hxηx −

3

4
hη2x. (4.29)

So, up to second order we have (restoring b = β)

w(x, t) = η − 1

4
αη2 +

1

3
β η2x +

1

8
α2η3 +

1

10
β2η4x + αβ

(
3

16
η2
x +

1

2
ηη2x

)
+ βδ

(
(h− β h2x)η

4β
− hxηx −

3

4
hη2x

)
(4.30)

and

ηt + ηx +
3

2
αηηx +

1

6
βη3x −

3

8
α2η2ηx + αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+

19

360
β2η5x

+ βδ

(
− (hη)x

2β
− 1

4
(hη2x)x +

1

4
(h2xη)x

)
= 0. (4.31)

The equation (4.31) is the first KdV-type equation containing terms directly

originating from the bottom topography in the lowest (second) order. We call
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it KdV2B (B - from bottom). Note that by setting δ = 0, that is, in the

case of an even bottom this equation reduces to KdV2 (4.27). Neglection of

all second order terms simplifies KdV2 and KdV2B to KdV equation.

It is not yet clear whether analytical solutions of (4.31) for some cases of the

bottom function h(x) can be found. On the other hand, numerical solutions

for some particular initial conditions can be obtained relatively simply and

they may inspire analytical studies, as happened in the past for the KdV

case [48,150].

In [79] we noticed that all second order corrections to KdV, including terms

from bottom variation (δ 6= 0) can be calculated in a single step. In order to

obtain second order vave equation related to Boussinesq’s system (4.9)-4.9)

we take the second order trial function w(x, t) in the following form

w(x, t) = η − 1

4
αη2 +

1

3
β η2x + α2 Q(α2)(x, t) + β2 Q(β2)(x, t)

+ αβQ(αβ)(x, t) + βδQ(βδ)(x, t), (4.32)

where Q(α2),Q(β2),Q(αβ),Q(βδ) are unknown functions of η, h and their

derivatives. Insertion of the trial function (4.32) into (4.10) and (4.11), use

of the properties of the first order equation (4.13) and rejection of higher

order terms, yields a set of two equations containing derivatives of unknown

functions. Both of them contain only second order terms, as lower order terms

cancel . Then we substract these equations. Because we can treat small param-

eters as independent of each other, the coefficients in front of α2, β2, αβ, βδ

vanish separately. This procedure gives

−Q
(α2)
t + Q(α2)

x − 3

4
η2ηx = 0, (4.33)

−Q
(β2)
t + Q(β2)

x − 1

5
η5x = 0, (4.34)

−Q
(αβ)
t + Q

(αβ)
t − 7

4
ηxη2x − ηη3x = 0, (4.35)

−Q
(βδ)
t (x, t) + Q(βδ)

x (x, t)− (hη)x
b

+
1

2
h3xη (4.36)

+
5

2
h2xηx +

7

2
hxη2x +

3

2
hη3x = 0. (4.37)

Because the correction functions appear already in the second order, it is

enough to use the zero order relation between their time and space derivatives.

Therefore we use Qt = −Qx (like ηt = −ηx, wt = −wx) in all equations

(4.33)- (4.36), which allows us to integrate these equations and obtain analytic

forms of all correction functions. This derivation of the correction term Q(βδ)
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presented here differs from that in [78], where corrections Q(α2),Q(β2),Q(αβ)

where calculated first and Q(βδ) was obtained in the next step. The final result

is the same since differences only appear in third order.

So, finally we obtain (restoring b = β) the same equations (4.30) and

(4.31).

Remark 4.2. For uneven bottom case, the full boundary condition at the bottom

is given by (4.6). This equation admits expression of φ(1) in terms of φ(0) and

its derivatives when perturbations are taken to the second order only. It is not

possible for the third and higher orders. Therefore it is not possible to apply

third order perturbation approach for the case of uneven bottom consistently.

4.3 Original derivation of KdV2 by Marchant and Smyth

Marchant and Smyth [105], in their derivation of the extended KdV equation,

made use of variational principle for potential flow of incompressible and in-

viscid flows under gravity force. The appropriate variational principle was

formulated by Luke in 1967 [103]. In dimensionless variables the Lagrangian

density reads as

L =

∫ 1+αη

0

[
α

(
1

2

α

β
φ2
z +

1

2
αφ2

x + φt

)
+ z

]
dz. (4.38)

Integration of the last term with respect to z, rejection of the constant term

and division by α gives an equivalent form suitable for next steps

L = η +
1

2
αη2 +

∫ 1+αη

0

(
1

2

α

β
φ2
z +

1

2
αφ2

x + φt

)
dz. (4.39)

Inserting the velocity potential (3.17) into (4.39) and retaining terms up to

third order O(α3, α2β, αβ2) one gets

L = φ
(0)
t + α

(
ηφ

(0)
t +

1

2
η2 +

1

2
φ(0)
x

2
)
− 1

6
βφ

(0)
2xt

+
1

2
α2ηφ(0)

x

2
+

1

120
β2φ

(0)
4xt + αβ

(
−1

2
ηφ

(0)
2xt +

1

6
φ

(0)
2x

2
− 1

6
φ(0)
x φ

(0)
3x

)
+α2β

(
−1

2
η2φ

(0)
2xt +

1

2
ηφ

(0)
2x

2
− 1

2
ηφ(0)

x φ
(0)
3x

)
(4.40)

+αβ2

(
1

24
ηφ

(0)
4xt +

1

40
φ

(0)
3x

2
− 1

30
φ

(0)
2x φ

(0)
4x +

1

120
φ(0)
x φ

(0)
5x

)
.
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This is the equation (2.10) of [105]. The Lagrangian density (4.40) has the form

L
(
η, φ

(0)
t , φ

(0)
x , φ

(0)
2x , φ

(0)
2xt, φ

(0)
3x , φ

(0)
4x , φ

(0)
4xt, φ

(0)
5x

)
. This is a functional depending

on two unknown functions η and φ(0) and derivatives of φ(0) up to the fifth

order. In general, when the Lagrangian is a functional of k unknown functions

f1, f2, . . . , fk of m variables x1, x2, . . . , xm and their fractional derivatives up

to n-th order

I[f1, . . . , fk] =∫
L(x1, . . . , xm; f1, . . . , fk; f1,1, . . . , fk,m; f1,11, . . . , fk,mm; . . . ; fk,m...m)dx,

where

fi,ν =
∂fi
∂xν

, fi,ν1ν2 =
∂2fi

∂xν1∂xν2
, . . . νk = 1, 2, . . . ,m,

then the dynamics of the system is determined by the set of k Euler-Lagrange

equations in the form [29]

∂L

∂fi
+

n∑
j=1

(−1)j
∂j

∂xν1 . . . ∂xνj

(
∂L

∂fi,ν1...νj

)
= 0. (4.41)

For the Lagrangian (4.40) the following set of two Euler-Lagrange equations

results

0 = Lη, (4.42)

0 = Lφ0
− ∂

∂t
L
φ
(0)
t
− ∂

∂x
L
φ
(0)
x

+
∂2

∂x2
L
φ
(0)
2x
− ∂3

∂x2t
L
φ
(0)
2xt
− ∂3

∂x3
L
φ
(0)
3x

+
∂4

∂x4
L
φ
(0)
4x

− ∂5

∂x4t
L
φ
(0)
4xt
− ∂5

∂x5
L
φ
(0)
5x
. (4.43)

The explicit form of these equations is obtained by substituting into (4.42)

and (4.43) the Lagrangian density (4.40) and retaining all terms up to second

order in small parameters. Next we divide equations obtained from (4.42) and

(4.43) by α and differentiate the first of them with respect to x. This yields

the following set
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ηx + φ
(0)
xt −

1

2
βφ

(0)
3xt + αφ(0)

x φ
(0)
2x (4.44)

+ αβ

(
−ηxφ(0)

2xt − ηφ
(0)
3xt +

1

2
φ

(0)
2x φ

(0)
3x −

1

2
φ(0)
x φ

(0)
4x

)
+

1

24
β2φ

(0)
5xt = 0,

ηt + φ
(0)
2x + α

(
ηxφ

(0)
x + ηφ

(0)
2x

)
+ β

(
−1

2
η2xt −

2

3
φ

(0)
4x

)
+ β2

(
1

24
η4xt +

2

15
φ

(0)
6x

)
+αβ

(
−5

2
η2xφ

(0)
2x −

1

2
η3xφ

(0)
x −4ηxφ

(0)
3x −2ηxηxt−ηtη2x−ηη2xt−d2ηφ

(0)
4x

)
= 0.

(4.45)

The above equations are up to first order in α an β identical with equations

(3.18) i (3.19). Then it is possible to look for their solutions in the form

(w = φ
(0)
x )

w(x, t) = η−1

4
αη2+

1

3
β η2x+A1α

2η3+A2β
2η4x+αβ

(
A3η

2
x +A4ηη2x

)
(4.46)

and

ηt = −ηx −
3

2
αηηx −

1

6
βη3x +B1α

2 η2ηx +B2β
2η5x + αβ (B3ηxη2x +B4ηη3x) .

(4.47)

Now equations (4.46) and (4.47) are substituted into (4.44) and (4.45) and

terms of the order higher then the second are neglected. The obtained two

equations for single uknown function η(x, t) should be identical. This leads to

the set of eight linear conditions on unknown constants Ai, Bi, i = 1, . . . , 4,

−3A1 +B1 = 0,
11

72
−A2 +B2 = 0,

11

6
− 2A3 −A4 +B3 = 0,

11

12
−A4 +B4 = 0,

−3

4
+ 3A1 +B1 = 0, − 17

360
+A2 +B2 = 0, (4.48)

1

12
+ 2A3 +A4 +B3 = 0, − 1

12
+A4 +B4 = 0.

The set (4.48) has the following solution

A1 =
1

8
, A2 =

1

10
, A3 =

3

16
, A4 =

1

2
,

B1 =
3

8
, B2 = − 19

360
, B3 =

23

24
, B4 =

5

12
.

This allows us to write (4.46) and (4.47) in the forms (4.26)

w(x, t) = η − 1

4
αη2 +

1

3
β η2x +

1

8
α2η3 +

1

10
β2η4x + αβ

(
3

16
η2
x +

1

2
ηη2x

)
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and (4.27)

ηt =−ηx−
3

2
αηηx−

1

6
βη3x+ α2 3

8
η2ηx− αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
− 19

360
β2η5x.

These equations have been obtained by Marchant and Smyth [105] from Luke’s

Lagrangian. The same equations result from sequential solution of first order

set of Boussinesq’s equations and next solution of second order set according

to Burde and Sergyeyev [24] or to papers by us and our co-workers [78,79].



5

Analytic solitonic and periodic solutions to

KdV2 - algebraic method

In this chapter we will show derivations of two kinds of exact solutions to the

extended KdV equation (KdV2) presented already in Chapter 4 as (4.27).

For reader’s convenience we rewrite this equation below

ηt + ηx +
3

2
αηηx +

1

6
β η3x (5.1)

− 3

8
α2η2ηx + αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+

19

360
β2η5x = 0.

As we already stated, the KdV equation is integrable. This means that

there exist solutions which can be obtained by direct integration, see, e.g., [36,

144] or Sect. 3.2. Integrability is related to the existence of a sufficient number

of invariants (conservation laws) and reflects deep algebraic symmetry [122].

KdV equation has an infinite number of invariants.

Contrary to KdV, the KdV2 equation is not integrable. Therefore, the

existence of analytic solutions was not expected. Not only is KdV2 noninte-

grable, but it also has only one conservation law (volume or mass) [80, 132].

It is, however, possible to construct approximate invariants (called adiabatic

invariants) which deviations from constant values are of the third order in

small parameters. A simple derivation of adiabatically conserved quantities

can be found in [82]. A detail presentation of adiabatic invariants for KdV2

is given in Chapter 9.

Although by some appropriate scaling KdV2 can be written in a simpler

form (e.g., [93, 143]) we consider solutions to the KdV2 in the form (5.1) for

the following reasons. KdV2 is a particular case of a more general equation,

KdV2B (4.31), derived by our co-workers and us in the second order pertur-

bation approach to the Euler equations for the shallow water problem with
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uneven bottom [78, 79]. This equation (see, e.g., equation (35) in [78], equa-

tion (18) in [79] or equation (1) in [128]) contains direct terms from bottom

changes and was derived in the second order perturbation approach with the

assumption that the third small parameter δ is of the same order as α, β.

This parameter is defined as the ratio of bottom function amplitude to the

mean water depth. We prefer to use the KdV2 equation in the form (5.1) since

we use the solutions to KdV2 as initial conditions to calculate the numerical

evolution of waves entering the regions where bottom changes occur.

Many authors, e.g. [37–39, 45], argue that equations like (5.1) can be

transformed to an asymptotically equivalent integrable form. The asymptotic

equivalence means that solutions of these equations converge to the same so-

lution when small parameters tend to zero. This approach was first introduced

with near-identity transformation (NIT) by Kodama [94, 94] and then used

and generalized by many others, e.g. [39,56,63]. However, NIT is an approxi-

mation in which terms of the higher order are neglected. Therefore, for finite

values of small parameters (α, β), solutions of NIT-transformed integrable

equation are not the same as exact solutions.

The KdV equation, despite its success, is not a law of nature. It is only

an approximation of the first order perturbation approach to the set of the

Euler equations. However, many authors seem to forget that applicability of

KdV is limited to α ≈ β � 1 and improperly use it outside this range. Exact

solutions to the KdV2 equation (5.1) are more suitable for larger values of

α, β.

This chapter deals with two kinds of analytic solution to KdV2, single

soliton solutions derived in [79] and periodic (cnoidal) solutions obtained in

[70]. Both types of these solutions have been obtained by an algebraic method

in which one assumes the functional form of the solution and solves the set of

algebraic equations for the coefficients determining the solution. This set of

algebraic equations results from the condition that the assumed form of the

solution fulfills (5.1).

The chapter is organized as follows. In section 5.1 an algebraic approach to

KdV is presented, and solitonic and periodic solutions to KdV are derived. In

section 5.2 the exact soliton solution to KdV2 [79] is recalled. Exact periodic

solutions to KdV2 in the form of cn2 cnoidal functions are derived in sec-

tion 5.3. Quite unexpectedly two branches of solutions are found. Numerical

evolution of several examples of different solutions to KdV2 are presented in

section 5.4.
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5.1 Algebraic approach for KdV

Only as recently as in the last few years, it is known from the theory of

nonlinear differential equations, see, e.g., [6, 7, 90–92], that for some classes

of such equations exact solutions should exist in forms of either hyperbolic

functions or Jacobi elliptic functions. It appears that both KdV and KdV2

equations belong to these classes. Therefore one can directly look for solutions

of these equations assuming a particular form of the solution. Our main goal is

to present exact solutions of KdV2 equation. In order to introduce the reader

to the algebraic approach, we begin with much simpler KdV case.

5.1.1 Single soliton solution

Soliton solution is assumed as

η(x, t) = A sech2[B(x− vt)] = A sech2(By), (5.2)

where y = x− vt. Substitution (5.2) into KdV (see, equation (3.29)) gives

−1

3
AB tanh(By) sech4(By)[G0 +G2 cosh(2By)] = 0. (5.3)

Equation (5.3) is valid for any argument only when simultaneously

G0 = 3− 3v + 9αA− 10βB2 = 0, (5.4)

G2 = 3− 3v + 2βB2 = 0. (5.5)

This gives immediately

B2 =
3α

4β
A, v = 1 +

α

2
A (5.6)

and the solution coincides with (3.45).

Remark 5.1. It is clear from (5.6) that solutions exist for arbitrary parameters

α, β, provided both are small. Since KdV imposes only two constraints on three

coefficients A,B, v, there exists one parameter family of solutions. Usually, the

amplitude A is considered arbitrary, until there is no contradiction with the

condition that α is small.
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5.1.2 Periodic solution

In this case solution is postulated in the form of cnoidal wave

η(x, t) = A cn2[B(x− vt),m] +D. (5.7)

Equivalently, instead of Jacobi elliptic cn function, dn or sn Jacobi elliptic

functions can be used.

Note, that the form (5.7) is identical with (3.53) when A = η1 + η2 and

D = −η2.

Then, substitution of (5.7) into KdV yields equation analogous to (5.3)

1

3
AB cn sn dn

[
G0 +G2 cn

2
]

= 0. (5.8)

So, there must be

G0 = 4βB2 − 8βB2m− 9αD + 6v − 6 = 0, (5.9)

G2 = 12βB2m− 9αA = 0. (5.10)

Equation (5.10) implies

B2 =
3α

4β

A

m
. (5.11)

Volume conservation condition (details will be explained later) determines

D = −A
m

[
E(m)

K(m)
+m− 1

]
. (5.12)

In (5.12), E(m) and K(m) are the complete elliptic integral and the complete

elliptic integral of the first kind, respectively. Then from (5.9) one has

v = 1 +
αA

2m

[
2−m− 3

E(m)

K(m)

]
. (5.13)

Denoting

EK(m) = 2−m− 3
E(m)

K(m)
(5.14)

one obtains

D =
A

3m
[EK(m)− 2m+ 1] , (5.15)

v = 1 +
αA

2m
EK(m). (5.16)

The function EK(m) (see figure 5.1) is equal to zero for
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0.2 0.4 0.6 0.8 1.0
m

-1.0

-0.5

0.5

EK(m)

Fig. 5.1. Plot of the function EK(m) (5.14).

0.2 0.4 0.6 0.8 1.0
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1.2

v

Fig. 5.2. Velocity (5.16) of KdV periodic solution (5.7) as function of m for α =

0.5, 0.3, 0.1 plotted with red, green and blue lines, respectively. Coefficient A = 1.

m = ms ≈ 0.9611494753812

and reaches the value 1 for m = 1.

The limit m→ 1 gives the single soliton solution discussed in the previous

subsection.

It is well known that cnoidal solutions of KdV are not a good approx-

imation for short shallow water waves, see, e.g., [43, 44]. The limit m → 0

preserves finite B (or finite wavelength ∼ 1/B) in (5.11) when the amplitude

A is proportional to m, only, that is, for infinitesimal waves. In reverse, if A
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is finite then for m → 0 or the wavelength tends to zero (since B → ∞). At

the same time velocity (5.16) tends to minus infinity, see figure 10.6.

Jacobi elliptic functions fulfil the following identities

cn2 + sn2 = 1, dn2 +m sn2 = 1.

Then one can express cn2 in terms of sn2 or dn2

cn2 = 1− sn2 or cn2 =
1

m
dn2 + 1− 1

m
.

So, the solution (5.7) can be expressed as

A cn2(By,m) +D = A
(
1− sn2(By,m)

)
+D = Asn sn

2(By,m) +Dsn,

(5.17)

or

A cn2(By,m) +D = A

(
1

m
dn2(By,m)+1− 1

m

)
+D = Adn dn

2(By,m)+Ddn,

(5.18)

where

Asn = −A and Dsn = D +A, (5.19)

Adn =
A

m
and Ddn = D + 1− 1

m
. (5.20)

Therefore the cn2 solutions are equivalent to sn2 or dn2 solutions with the

same coefficients B, v but with A and D altered according to (5.19)-(5.20).

This property applies to both KdV and KdV2 solutions.

Remark 5.2. In the case of cnoidal solutions, KdV with volume conservation

condition supply three constraints on five parameters A,B, v,D,m. Then there

is some freedom in allowable ranges of the coefficients. Usually, the amplitude

A is considered arbitrary, until there is no contradiction with the condition

that α is small. Then, for arbitrary A there exists an interval of permitted

values of the elliptic parameter m.

5.2 Exact single soliton solution for KdV2

In [79] we found exact single solution for KdV2 assuming the same form of the

solution as for KdV, that is (5.2). Below we briefly remind that result. Inser-

tion of (5.2) into (5.1) gives (after some simplifications) equation analogous

to (5.3)
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C0 + C2 sech
2(By) + C4 sech

4(By) = 0, (5.21)

which supplies three conditions on parameters of solution formula

C0 =(1− v) +
2

3
B2β +

38

45
B4β2 = 0, (5.22)

C2 =
3Aα

4
−B2β +

11

4
AαB2β − 19

3
B4β2 = 0, (5.23)

C4 =−
(

1

8

)
(Aα)2 − 43

12
AαB2β +

19

3
B4β2 = 0. (5.24)

From (5.24), denoting z =
βB2

αA
we obtain

19

3
z2 − 43

12
z − 1

8
= 0 (5.25)

with roots

z1 =
43−

√
2305

152
≈ −0.033 < 0

z2 =
43 +

√
2305

152
≈ 0.599 > 0.

(5.26)

Inserting βB2 = αAz into (5.23) we have

A =
z − 3

4

α z( 11
4 −

19
3 z)

. (5.27)

Then

B =

√
α

β
Az =

√
z − 3

4

β( 11
4 −

19
3 z)

. (5.28)

Now, (5.22) gives velocity as

v = 1 + βB2

(
2

3
+

38

45
βB2

)
= 1 +

z − 3
4

( 11
4 −

19
3 z)

(
2

3
+

38

45

z − 3
4

( 11
4 −

19
3 z)

)
.

(5.29)

Case z = z2

Substitution z = z2 into (5.27)-(5.68) yields

A =
z2 − 3

4

α z2( 11
4 −

19
3 z2)

≈ 0.242399

α
> 0, (5.30)

B =

√
α

β
Az2 ≈

√
0.145137

β
, (5.31)

v ≈ 1.11455. (5.32)

These results are the same as in [79, Sec. 4].
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Case z = z1

Substitution z = z1 into (5.27)-(5.68) results in

A =
z1 − 3

4

α z1( 11
4 −

19
3 z1)

≈ 8.02787

α
> 0, (5.33)

B2 =
α

β
Az1 ≈ −

0.264625

β
< 0, (5.34)

v = 0.882717. (5.35)

It is clear, that only the case z = z2 supply physically relevant solutions,

since in the case z = z2 the coefficient B2 < 0.

-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

η(x, 0)

Fig. 5.3. Comparison of the profile of KdV soliton - red dashed line with KdV2

soliton - blue line. Both curves are obtained for the same value of the amplitude

A = 1.

Comparing single soliton solutions for KdV and KdV2 we see the following

differences.

• For KdV, B =

√
3

4

α

β
, for KdV2, B ≈

√
0.6

α

β
. This difference in B

values means that the KdV2 soliton is a little wider than that of KdV (for

the same parameters α, β), see figure 5.3.

• For KdV v = 1 +
α

2
A depends on the amplitude,

for KdV2 v ≈ 1.11455 is fixed.
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• KdV admits a one parameter family of solutions (for instance A can be ar-

bitrary). KdV2 imposes one more condition on coefficients of the solution;

therefore parameters α, β of the equation, determine a single solution with

coefficients given by (5.30)-(5.32). Such kind of fixed soliton solutions are

sometimes called embedded solitons [93, 146].

5.3 Exact periodic solutions for KdV2

We look for periodic nonlinear wave solutions of KdV2 (5.1). Introduce y =

x− vt. Then η(x, t) = η(y), ηt = −vηy and equation (1) takes the form of an

ODE

(1− v)ηy +
3

2
αηηy +

1

6
β η3y −

3

8
α2η2ηy (5.36)

+ αβ

(
23

24
ηyη2y +

5

12
ηη3y

)
+

19

360
β2η5y = 0.

Now assume the periodic solution to be in the same form as corresponding

solution of KdV

η(y) = A cn2(By,m) +D, (5.37)

where A,B,D are yet unknown constants (m is the elliptic parameter). The

constant D must ensure that the volume of water is the same for all m.

Now we calculate all derivatives ηny entering (5.36). Using properties of Ja-

cobi elliptic functions and their derivatives one can express them as functions

of cn2. So

ηy = 2AB cn [− sn dn] = −2B cn sn dn, (5.38)

η2y = 2AB2[1−m+ (4m− 2) cn2 − 3m cn4], (5.39)

η3y = 8AB3 cn dn sn[1− 2m+ 3m cn2], (5.40)

η5y = −16AB5 cn dn sn[(2− 17m+ 17m2) (5.41)

+ (30m− 60m2) cn2 + 45m2 cn4].

Denote (5.36) as

E1 + E2 + E3 + E4 + E5 + E6 + E7 = 0, (5.42)

where (common factor CSD = (−2AB cn sn dn))
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E1 = (1− v)ηy = (1− v) CSD, (5.43)

E2 =
3

2
αηηy =

3

2
α ( cn2 +D) CSD, (5.44)

E3 =
1

6
βη3x = −2

3
β B2[1− 2m+ 3m cn2] CSD, (5.45)

E4 = −3

8
α2η2ηy = −3

8
α2( cn2 +D)2 CSD, (5.46)

E5 =
23

24
αβ ηyη2y (5.47)

=
23

12
αβ B2[1−m+ (4m− 2) cn2 − 3m cn4] CSD,

E6 =
5

12
αβ ηη3y (5.48)

= −5

3
αβ B2( cn2 +D)[1− 2m+ 3m cn2] CSD,

E7 =
19

360
β2η5x =

19

45
β2B4[(2− 17m+ 17m2) (5.49)

+ (30m− 60m2) cn2 + 45m2 cn4] CSD.

Then (5.42) becomes

(−2B cn sn dn)[F0 + F1 cn
2 + F2 cn

4] = 0. (5.50)

Equation (5.50) is valid for arbitrary argument of cn2 when all three coeffi-

cients F0, F1, F2 vanish simultaneously. This gives us a set of three equations

for the coefficients v,B,D

F0 = 690αAβB2(m−1)−(βB2)2(2584m(m−1) + 304)

+ 240βB2(1− 2m)− 60αD
(
10βB2(2m− 1) + 9

)
+ 135(αD)2 + 360(v − 1) = 0, (5.51)

F1 = 90αA
[
22βB2(1− 2m) + 3αD − 6

]
(5.52)

+ 120βB2m
[
38βB2(2m− 1) + 15αD + 6

]
= 0,

F2 = 45
(
3α2A2+86αAβB2m−152β2B4m2

)
= 0. (5.53)

Equations (5.51)-(5.53), supplemented by the volume conservation law, allow

us to find all unknowns as functions of the elliptic parameter m. Below we

show these solutions explicitly.

Now, denote

z =
B2 β

Aα
m. (5.54)

Then, equation (5.53) becomes identical with (5.25) and has the same roots

(5.26).
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5.3.1 Periodicity and volume conservation

In principle, exact periodic solutions of KdV2 with D = 0 exist. They make

sense from a mathematical point of view. For KdV case the derivation of

such periodic solutions is presented in Whitham’s book [144]. The more care-

ful derivation, presented by Dingemans [33], stresses that periodic solutions

should have profile uplifts and depressions with respect to the undisturbed wa-

ter level. Therefore the volume conservation condition is crucial for obtaining

proper physical solutions.

Volume conservation determines the value of D. Here by mass conservation

we mean that for each m the solution involves the same volume of water∫ L

0

(A cn2(By,m) +D) dy = 0.

Then

D = −A
L

∫ L

0

cn2(By,m) dy ≡ −A
L
I(L) , (5.55)

where L = is the wavelength. The periodicity condition implies

cn2 (Bl,m) = cn2(0,m) =⇒ L =
2K(m)

B
, (5.56)

where K(m) is the complete elliptic integral of the first kind. Hence

D =−A
L
I(L)=− [E(am(2K(m)|m)|m)+ (m−1)K(m)]

2mK(m)
, (5.57)

where E(Θ|m) is the elliptic integral of the second kind and am(x|m) is the

Jacobi elliptic function amplitude. Since

E(am(2K(m)|m)|m))

2K(m)
≡ E(m)

K(m)
, (5.58)

where E(m) is the complete elliptic integral, and (6.101) simplifies to

D = −A
m

[
E(m)

K(m)
+m− 1

]
. (5.59)

The function
[
E(m)
K(m) +m− 1

]
is positive for m ∈ (0, 1) and vanishes at m = 0

and m = 1. For m→ 0, D tends to −A2 what is in agreement with sinusoidal

(cosinusoidal) limit of the solution, whereas for m → 1, D tends to 0, the

solution becomes a soliton.
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5.3.2 Coefficients of the exact solutions to KdV2

Without any assumptions on m,α, β, other than 0 ≤ m ≤ 1 we obtained

the set of four conditions (5.51)-(5.53) and (5.59) on A,B,D, v and m. Since

equation (5.53) admits two values for z then we have to consider two different

cases.

Case z = z2 =
43 +

√
2305

152

Solving the set (5.51)-(5.53) and (5.59) for z = z2 one obtains

A = A(m,α) =
3
(
51−

√
2305

)
m

37αEK(m)
≈ 0.2424

α

m

EK(m)
, (5.60)

B = B(m,β) =

√
3
(
−14 +

√
2305

)
703β EK(m)

, (5.61)

D = D(m,α) =

(
51−

√
2305

)
37α

(
1− 2m− 1

EK(m)

)
, (5.62)

v = v(m) =
9439− 69

√
2305

5476
−
(
377197− 7811

√
2305

) (
m2 −m+ 1

)
520220 EK(m)2

≈ 1.11875 − 0.00420523
(m2 −m+ 1)

EK(m)2
. (5.63)

Hence, B is real-valued only when EK(m) > 0 (see figure 5.1), that is for

m > ms ≈ 0.9611494753812. (5.64)

Therefore, for this branch of solutions with z = z2, the elliptic parameter

m ∈ (ms, 1]. For m > ms, the amplitude A > 0.

Notice that the velocity depends only on m.

The dependence of A,B,D, v on m for several cases of α, β parameters is

diplayed in figure 5.4.

Formulas (5.60)-(5.63) and figure 5.4 indicate that physically relevant so-

lutions are obtained in a narrow range of m close to 1. Only for such m values

of A are realistic (not very big). This conclusion is strengthen by the behav-

ior of velocity as function of m. Velocity is positive for m > mv=0, where

mv=0 ≈ 0.97357.

In figure 5.5 profiles of cnoidal KdV and KdV2 solutions are compared for

m close to 1 assuming the same amplitude for both solutions.

It is worth to emphasize that in the limit m → 1 coefficients of solutions

(5.60)-(6.98) receive values known for single soliton KdV2 solutions given

in [79].
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Fig. 5.4. Upper row: left - amplitude A (5.60), right - coefficient B (5.61) as func-

tions of m for α = 0.2, 0.3, 0.4, 0.5, represented by blue, green, magenta and red

lines, respectively. Lower row: left - coefficient D (5.62), right - velocity v (6.98) as

functions of m for the same parameters.

Case z = z1 =
43−

√
2305

152

Now,

A =A(m,α) =
3
(
51 +

√
2305

)
m

37αEK(m)
≈ 8.02787

m

αEK(m)
, (5.65)

B =B(m,β) =

√
−

3
(
14 +

√
2305

)
703β EK(m)

, (5.66)

D =D(m,α) =

(
51 +

√
2305

)
37α

(
1− 2m− 1

EK(m)

)
, (5.67)

v =v(m) =
9439 + 69

√
2305

5476
−
(
377197 + 7811

√
2305

) (
m2 −m+ 1

)
520220 EK(m)2

≈ 2.32866 − 1.44594

(
m2 −m+ 1

)
EK(m)2

. (5.68)

Figure 5.6 show the dependence of A,B,D, v on m for several cases of α, β

parameters for this branch of KdV2 solutions.
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Fig. 5.5. Profiles of KdV2 solutions (red) and KdV solutions (blue) for case m =

0.98 (solid) and m = 0.995 (dashed). All profiles are obtained with α = 0.5 and

β = 0.4. Amplitudes of KdV solutions are set to be equal to amplitudes of KdV2

solutions.

In this case physically reasonable values of |A| occur only for m close to 0.

Velocity stays positive for m < mv=0, where mv=0 ≈ 0.50367. It is worth to

note that since A < 0, solutions are “inverted” cnoidal functions (with crests

down and troughs up). This property is entirely unexpected, new result, since

KdV admits only common cnoidal solutions.

These new solutions are, however, not much different from usual cosine

waves. In figure 5.7 the profile of the inverted cnoidal wave, obtained in this

branch with α = 0.3, β = 0.5 and m = 0.2, is compared with the cosine wave

of the same amplitude and wavelength.

5.4 Numerical evolution

In order to check our analytic results we followed the evolution of several

cnoidal waves numerically. We used the finite difference (FDM) code developed

for KdV2 in the fixed frame (5.1) in our papers [78,79]. In examples presented

in this subsection we assume the initial wave to be the exact cnoidal wave

η(x, t) = A cn2[B(x−vt),m]+D. The algorithm used was the Zabusky-Kruskal

one [150], modified in order to include additional terms. The space derivatives

of η(x, t) were calculated numerically step by step from the grid values of

the function and lower order derivatives by a nine-point central difference
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Fig. 5.6. Upper row: left - amplitude A (5.65), right - coefficient B (5.66) as func-

tions of m for α = 0.2, 0.3, 0.4, 0.5, represented by blue, green, magenta and red

lines, respectively. Lower row: left - coefficient D (5.67), right - velocity v (5.68) as

functions of m for the same parameters.

formula. Calculations were performed on the interval x ∈ [0, λ] with periodic

boundary conditions of N grid points. The time step ∆t was chosen as in [150],

i.e., ∆t ≤ (∆x)3/4. The calculations shown in this section used grids with

N = 200. In calculations presented below the number of time steps reached

107−108. In all cases, the algorithm secures volume (mass) conservation up to

10-11 decimal digits. The precision of our model was confirmed in our studies

with the finite element method (FEM) [83,84].

An example of the motion of the normal cnoidal wave, the solution of

the KdV2 equation, obtained with numerical evolution for α = 0.5, β = 0.4,

m = 0.995 is shown in figure 5.8. This is the same wave as that shown in

figure 5.5 with the red dashed line.

The numerical solutions of normal cnoidal waves obtained for the z =

z1 branch are stable. The profile shown by the open symbols in figure 5.8,

obtained after 2.4·107 time steps deviates from the analytic result by less

than 10−5. Other tests made with initially perturbed solutions confirm their

numerical stability. In these tests, analytic solutions (5.37) were perturbed
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Fig. 5.7. Profiles of KdV2 solution (blue line) with the cosine wave of the same

amplitude and wavelength (red, dashed line). The KdV2 solution corresponds to the

case α = 0.3, β = 0.5 and m = 0.2.
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Fig. 5.8. Time evolution of the normal cnoidal wave for the case of parameters

α = 0.5, β = 0.4, m = 0.995. Profiles are displayed at time instants tn = ndt, where

dt = 1
4
T .
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Fig. 5.9. Time evolution of the inverted cnoidal wave i for the case α = 0.3, β = 0.5

and m = 0.2. Profiles are displayed at time instants tn = ndt, where dt = 1
4
T .

by a cosine wave with the amplitude of 1% of the cnoidal wave amplitude.

Profiles obtained after one period overlapped the initial profiles within the

line width. Numerical solutions are stable for much longer time intervals, as

well.

The same stability of numerical solutions is obtained for inverted cnoidal

waves. An example of the motion of the inverted cnoidal solution to the KdV2

for z = z1 branch, obtained by numerical evolution, is presented in figure 5.9.

The displayed case corresponds to the wave with α = 0.3, β = 0.5 and m =

0.2. This is the same wave as that displayed with the solid line in figure

5.7. The deviations of the profile obtained by the numerical evolution of the

inverted cnoidal solution after one period from the analytic solution are again

less than 10−5. Similarly to solutions belonging to the branch with z = z2

the inverted cnoidal solutions belonging to the z = z1 branch are resistant to

small perturbations of the initial conditions. The motion is numerically stable

for periods much longer than T , as well.
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5.4.1 Comments

From the study presented in this chapter, the following conclusions can be

drawn.

• For extended Korteweg - de Vries equation exact solutions, both solitonic

and periodic exist. These solutions have the same form as the correspond-

ing solutions of KdV equations but with coefficients altered.

• KdV2 equation imposes severe limitations on its exact solutions. Physically

relevant periodic solutions of KdV2 are related to two narrow intervals of

the m parameter. For m very close to 1, regular cnoidal waves are obtained.

For m very close to 0, inverted cnoidal waves are found. This is the entirely

new result specific for KdV2. First, since KdV fails for small m values.

Second, since KdV does not admit inverted cnoidal solutions. However,

wave profiles of these inverted cnoidal solutions to KdV2 are not much

different from a cosine function.
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Superposition solutions to KdV and KdV2

Recently, Khare and Saxena [90–92] demonstrated that for several nonlin-

ear equations which admit solutions in terms of elliptic functions cn(x,m),

dn(x,m) there exist solutions in terms of superpositions cn(x,m)±
√
m dn(x,m).

They also showed that KdV which admits solutions in terms of dn2(x,m) also

admits solutions in terms of superpositions dn2(x,m)±
√
m cn(x,m) dn(x,m).

Since then we found analytic solutions to KdV2 in terms of cn2(x,m) [70] the

results of Khare and Saxena [90–92] inspired us to look for solutions to KdV2

in a similar form.

6.1 Mathematical solutions to KdV

First, we recall shortly the results obtained by Khare and Saxena [90] for the

KdV equation. Let us note that the authors of the papers [90–92] were mainly

interested in the mathematical properties of solutions mostly disregarding

physical context.

Let us follow the approach used in [90] but formulating it in a fixed frame,

that is, for the equation (3.29)

ηt + ηx +
3

2
αηηx +

1

6
β η3x = 0. (6.1)

Introduce y = x − vt. Then η(x, t) = η(y), ηt = −vηy and equation (6.1)

takes the form of an ODE

(1− v)ηy +
3

2
αηηy +

1

6
β η3y = 0. (6.2)
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6.1.1 Single dn2 solution

Assuming solution in the form

η(x, t) = A dn2[B(x− vt),m] ≡ A dn2[By,m] (6.3)

and substituting (6.3) into (6.2) one obtains after some simplifications

1

3
ABm cn[By,m] dn[By,m] sn[By,m]

(
C0 + C2 cn

2[By,m]
)
. (6.4)

Equation (6.4) is satisfied when

C0 = −6 + 6v − 9Aα+ 9Amα+ 4B2β − 8B2mβ = 0 (6.5)

C2 = −9Amα+ 12B2mβ = 0. (6.6)

This implies

B =

√
3α

4β
A and v = 1 +

α

2
A(2−m). (6.7)

From mathematical point of view the amplitude A can be arbitrary.

6.1.2 Superposition solution

Next, the authors [90] studied superpositions

η±(x, t) =
1

2
A
(
dn2[B(x− vt),m]±

√
m cn[B(x− vt),m] dn[B(x− vt),m]

)
=

1

2
A
(
dn2[By,m]±

√
m cn[By,m] dn[By,m]

)
. (6.8)

Substitution of (6.8) into (6.2) leads to equation analogous to (6.4)

CF
(
C0

s + C2
s cn2[By,m] + C11 cn dn

)
, (6.9)

where the common factor CF is

CF =
1

24
AB
√
m
(
dn[By,m]±

√
m cn[By,m]

)2
sn[By,m]. (6.10)

The conditions for coefficients Cs0 , C
s
2 , C11 have in this case the form

C0
s = 9αA− 9αAm− 2βB2 + 10βB2m− 12v + 12 = 0, (6.11)

C2
s = m(9Aα− 12B2β) = 0, (6.12)

C11 =
√
m(9Aα− 12B2β) = 0. (6.13)
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Fig. 6.1. Profiles of functions A
2
dn2(x,m) - blue solid line and

A
2

√
m cn(x,m) dn(x,m) - red dashed line.

The equations (6.12) and (6.13) are equivalent and the same as (6.6). There-

fore the relation B =
√

3α
4βA remains the same as in (6.7). The equation (6.11)

implies that the velocity for both solutions η± (6.8) is

v = 1 +
α

8
A(5−m). (6.14)

In both cases of periodic solutions to KdV, that is, in the single dn2

solution (6.3) and the superposition solution (6.8) the KdV equation imposes

only two conditions on three coefficients A,B, v. Therefore one of them is

arbitrary. The usual choice is the amplitude A.

Superpositions η± (6.8) are the sum or the difference of two functions:
A
2 dn2[(x − vt),m] and A

2

√
m cn[(x − vt),m] dn[(x − vt),m]. Profiles of these

functions are displayed in figure 6.1 for A = B = 1, t = 0 and m = 0.9 on

the interval x ∈ [0, L], where L = 4K(m) is the space period of η± [K(m) is

the complete elliptic integral of the first kind]. It is clear that the wavelength

of η± is twice of the wavelength of single function solution A dn2[(x−vt),m].

Profiles of solutions η+ and η− are presented in figure 6.2 for the same

coefficients. It is well seen that both solutions represent the same wave only

shifted by L/2 = 2K(m). This value 2K(m) is the wavelength of the single

dn2 solution which is the sum η+ + η−.

6.2 Mathematical solutions to KdV2

Now, we look for periodic nonlinear wave solutions to KdV2 (5.1). After sub-

stitution y = x− vt the equation (5.1) takes the form of an ODE
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Fig. 6.2. Profiles of functions η+ - blue solid line and η− - red dashed line.

(1− v)ηy +
3

2
αηηy +

1

6
β η3y −

3

8
α2η2ηy (6.15)

+ αβ

(
23

24
ηyη2y +

5

12
ηη3y

)
+

19

360
β2η5y = 0.

6.2.1 Single periodic solution

First, we recall some properties of the Jacobi elliptic functions (arguments are

omitted)

sn2 + cn2 = 1, dn2 +m sn2 = 1. (6.16)

Their derivatives are

d sn

dy
= cn dn,

d cn

dy
= − sn dn,

d dn

dy
= −m sn cn. (6.17)

Assume a solution of (5.1) in the same form as KdV solution (6.3). Inser-

tion of (6.3) into (6.15) yields

ABm

180
cn dn sn

(
F0 + F2 cn

2 + F4 cn
4
)

= 0. (6.18)

Equation (6.18) holds for arbitrary arguments when F0, F2, F4 vanish simul-

taneously. The explicit form of this set of equations is following
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F0 = 135α2A2(m−1)2+30αA(m−1)
(
βB2(63m−20)+18

)
− 8

(
19β2B4

(
17m2−17m+ 2

)
+ 30βB2(2m−1) + 45

)
+ 360v = 0, (6.19)

F2 = −30m
[
9α2A2(m−1) + 6αA

(
βB2(32m−21) + 3

)
−8βB2

(
19βB2(2m− 1) + 3

)]
= 0, (6.20)

F4 = 45m2
(
3α2A2 + 86αAβB2 − 152β2B4

)
= 0. (6.21)

Equation (6.21) is equivalent to the [79, equation (26)] obtained for solitonic

solutions to KdV2. Denoting z = B2β
Aα one obtains from (6.21) two possible

solutions

z1 =
43−

√
2305

152
< 0 and z2 =

43 +
√

2305

152
> 0 . (6.22)

Then the corresponding amplitudes A are

A1 =
−43−

√
2305

3

B2β

α
< 0 and

A2 =
−43 +

√
2305

3

B2β

α
> 0 . (6.23)

Inserting this into (6.78) yields

B 2
1 =

3
(
47 +

√
2305

)(
549 + 11

√
2305

)
β(m− 2)

and

B 2
2 =

3
(
−47 +

√
2305

)(
−549 + 11

√
2305

)
β(m− 2)

. (6.24)

Finally, from (6.77) one obtains

v1/2 =
{(

2561482± 53302
√

2305
)
m2

∓
(

22827517± 475267
√

2305
)

(m− 1)
}
/ (6.25){

10
(

290153 + 6039
√

2305
)

(m− 2)2
}
.

Despite the same form of solutions to KdV and KdV2 there is a fundamen-

tal difference. For given m, KdV imposes only two conditions on coefficients

A,B, v, so there is one parameter freedom. This is no longer the case for

KdV2.

Remark 6.1. Solutions η1(x, t) = A1 dn2[B1(x − v1t),m], belonging to the

branch z = z1, are unphysical. Since m ∈ [0, 1], then B 2
1 < 0. Then B1 is
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purely imaginary, B1 = iB̄1. Jacobi elliptic functions dn of imaginary argu-

ments can be expressed in terms of Jacobi elliptic functions of real arguments

dn(iq,m) =
cn(q, 1−m) dn(q, 1−m)

1− sn2(q, 1−m)
. (6.26)

Since sn2 ∈ [0, 1], when sn2 = 1, the denominator becomes zero, therefore the

solution η1(x, t) is singular for some arguments.

So, in the case of single dn2 (6.3) solutions to KdV2 only z2 root (6.22)

has physical relevance. Finally, the coefficients of the solution are

A =
3(51−

√
2305)

37(2−m)α
≈ 0.2424

(2−m)α
(6.27)

B =

√
3(−14 +

√
2305)

703(2−m)β
≈
√

0.145(2−m)β (6.28)

v =
4
(
314
√

2305 + 129877
)
m2 +

(
18409

√
2305− 3209623

)
(m− 1)

520220(2−m)2

≈ 1.11455m2 − 4.4708(m− 1)

(2−m)2
(6.29)

The velocity given by (6.29) is almost constant as function of m. It decreases

slowly from v(0) ≈ 1.1177 to v(1) ≈ 1.11455.

Comparison of KdV and KdV2 dn2 solutions (6.3)

Is a dn2 solution of KdV2 much different from the KdV solution for the

same m? In order to compare solutions of both equations, remember that the

set of three equations (6.77)-(6.21) fixes all A,B, v coefficients for KdV2 for

givenm. In the case of KdV, the equation analogous to (6.18) imposes only two

conditions on three parameters. Therefore one parameter, say amplitude A,

can be chosen arbitrarily. Then we compare coefficients of solutions to KdV2

and KdV chosing the same value of A, that is, AKdV2. Such comparison is

displayed in figure 6.3 for α = β = 1
10 .

It is clear that vKdV2 and vKdV are very similar. We have the following

relations: for KdV B2

A = 3α
4 β , whereas for KdV2 B2

A = α
β z2. Since z2 ≈ 0.6,

BKdV/BKdV =
√

3
4z2
≈ 1.12 for α = β. The same relations hold between

KdV2 and KdV coefficients for superposition solutions shown in figure 6.4.
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Fig. 6.3. Comparison of the coefficients A,B, v, (z = z2) as functions of m for the

periodic dn2 solutions (6.3) to KdV and KdV2. Solid blue, red and magenta lines

represent KdV2 coefficients (A,B, v - respectively), dotted lines KdV coefficients.

For this comparison the coefficient AKdV (for KdV) is chosen to be equal to AKdV2.

In this example α = β = 0.1.

6.2.2 Superposition “ dn2 +
√
m cn dn”

Now assume the periodic solution to be in the same form as the corresponding

superposition solution of KdV [90]

η+(y) =
1

2
A
[
dn2(By,m) +

√
m cn(By,m) dn(By,m)

]
, (6.30)

where A,B, v are yet unknown constants (m is the elliptic parameter). We

will need

ηy = −1

2
AB
√
m
(√
m cn + dn

)2
sn, (6.31)

η2y =
1

2
AB2

√
m
(√
m cn + dn

)2(−cn dn+2
√
m sn2

)
, (6.32)

η3y =
1

2
AB3

√
m
(√
m cn + dn

)2
(6.33)

× sn
(
m cn2 + 6

√
m cn dn + dn2 − 4m sn2

)
,

η5y = −1

2
AB5

√
m
(√
m cn + dn

)2
× sn

[
m2 cn4 + 30m3/2 cn3 dn + dn4 − 44 dn2 sn2 (6.34)

+ 16m2 sn4 − 30
√
m cn dn

(
− dn2 + 4m sn2

)
+ cn2

(
74m dn2 − 44m2 sn2

)]
.



64 6 Superposition solutions to KdV and KdV2

Denote (6.15) as

E1 + E2 + E3 + E4 + E5 + E6 + E7 = 0, (6.35)

where

E1 = (1−v)ηy = −1

2
AB(1−v)

√
m
(√
m cn+ dn

)2
sn, (6.36)

E2 =
3

2
αηηy = −3

8
αA2B

√
m
(√
m cn + dn

)3
sn dn, (6.37)

E3 =
1

6
βη3y =

1

12
β AB3

√
m
(√
m cn + dn

)2
sn (6.38)(

m cn2 + 6
√
m cn dn + dn2 − 4m sn2

)
,

E4 = −3

8
α2η2ηy =

3

64
α2A3B

√
m dn2

(√
m cn+ dn

)4
sn, (6.39)

E5 =
23

24
αβ ηyη2y = −23

96
αβ A2B3m

(√
m cn + dn

)4
sn(

− cn dn + 2
√
m sn2

)
, (6.40)

E6 =
5

12
αβ ηη3y =

5

48
αβ A2B3

√
m dn

(√
m cn + dn

)3
sn(

m cn2 + 6
√
m cn dn + dn2 − 4m sn2

)
, (6.41)

E7 =
19

360
β2η5y = − 19

720
β2AB5

√
m
(√
m cn + dn

)2
sn[

m2 cn4 + 30m3/2 cn3 dn + dn4 − 44 dn2 sn2

+ 16m2 sn4 − 30
√
m cn dn

(
− dn2 + 4m sn2

)
(6.42)

+ cn2
(
74m dn2 − 44m2 sn2

)]
.

Then (6.35) becomes

1

2
AB
√
m
(√
m cn + dn

)2
sn (6.43)

×
(
F0 + Fcd cn dn + Fc2 cn

2 + Fc3d cn
3 dn + Fc4 cn

4
)

= 0.

Equation (6.43) is valid for arbitrary arguments when all coefficients

F0, Fcd, Fc2 , Fc3d, Fc4 vanish simultaneously. This gives us a set of equations

for the coefficients A,B, v
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F0 = −1440v − 135α2A2(m− 1)2

− 60αA(m− 1)
[
βB2(48m− 5) + 18

]
(6.44)

+ 4
[
19β2B4

(
61m2 − 46m+ 1

)
+60βB2(5m− 1) + 360

]
= 0,

Fcd = 30
√
m
[
9α2A2(m− 1) + 3αA

(
βB2(75m− 31) + 12

)
−4βB2

(
19βB2(5m− 1) + 12

)]
= 0, (6.45)

Fc2 = 15m
(
27α2A2(m− 1) + 12αA

(
βB2(59m− 37) + 6

)
−32βB2

(
19βB2(2m− 1) + 3

))
= 0, (6.46)

Fc3d = −90m3/2
(
3α2A2+86αAβB2−152β2B4

)
= 0, (6.47)

Fc4 = −90m2
(
3α2A2 + 86αAβB2 − 152β2B4

)
= 0. (6.48)

Equations (6.47) and (6.48) are equivalent and give the same condition

as (6.21). Solving (6.47) with respect to B2, we obtain the same relations as

in [79, equation (28)]

(B1/2)2 =
Aα

β

(
43∓

√
2305

152

)
. (6.49)

Denote

z1 =
43−

√
2305

152
and z2 =

43 +
√

2305

152
. (6.50)

It is clear that z1 < 0 and z2 > 0. B has to be real-valued. This is possible for

the case z = z1 if A < 0, and for z = z2 if A > 0. The value of z2 is the same

as that found for the exact soliton solution in [79, equation (28)]. In general

B2 =
Aα

β
z. (6.51)

Now, we insert (6.51) into (6.44),(6.45) and (6.46). Besides a trivial solution

with A = 0 we obtain

1440(1− v) +Aα(1−m) [1080− 135Aα(1−m)] (6.52)

−240Aα(1− 5m)− 30(Aα)2(10− 109m+ 96m2) z

+4(Aα)2(19− 847m+ 1159m2) z2 = 0,

9[Aα(m− 1) + 4] + 3[Aα(75m− 31)− 16] z (6.53)

−76Aα(5m− 1) z2 = 0,

9(3Aα(m− 1) + 8) + 12(Aα(59m− 37)− 8) z (6.54)

−608Aα(2m− 1) z2 = 0.
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From (6.53) we find

A = − 12(4z − 3)

α [76z2(5m− 1)− z(225m− 93)− 9(m− 1)]
(6.55)

but from (6.54) it follows that

A =− 24(4z − 3)

α [608z2(2m−1)−4z(177m−111)−27(m−1)]
. (6.56)

This looks like a contradiction, but substitution z = z1 = (43−
√

2305)/152

in both (6.55) and (6.56) gives the same result

A1 =
24 (71 +

√
2305)

(−329 + 5
√

2305)α (m− 5)
. (6.57)

For z = z2 = (43 +
√

2305)/152 the common result is

A2 =
24 (−71 +

√
2305)

(329 + 5
√

2305)α (m− 5)
. (6.58)

Now, using z = z1 and A1 given by (6.57) we obtain from (6.52)

v1 =
vnum−(m)

vden−(m)
(6.59)

and with z = z2 and A2 given by (6.58)

v2 =
vnum+(m)

vden+(m)
, (6.60)

where

vnum∓(m) = 6
{(

2912513∓ 58361
√

2305
)
m2

− 54
(

584397∓ 10069
√

2305
)
m

+75245133∓ 1419141
√

2305
}

and

vden∓(m) = 95
(

329∓ 5
√

2305
)2

(m− 5)2.

Discussion of mathematical solutions in the form (6.30)

From strictly mathematical point of view we found two families of solutions

determined by coefficients A,B, v as functions of the elliptic parameter m.

There are two cases.
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• Case 1. z = z1 =
43−

√
2305

152
≈ −0.0329633 < 0. Then

A1 = −12 (51 +
√

2305)

37α (5−m)
< 0, (6.61)

B1 = i

√
12(14 +

√
2305)

703(5−m)β
≡ i B′1 (6.62)

and v1 is given by (6.59). Note that B2
1 < 0, so B1 is imaginary. Jacobi

elliptic functions of imaginary arguments can be expressed as real-valued

functions of real arguments, since

cn(i q,m) =
1

cn(q, (1−m) )
, dn(i q,m) =

dn(q, (1−m) )

cn(q, (1−m) )
.

Then solution (6.30) reads

η1(x− v1t,m) =
1

2
A1

[
dn2(B1(x− v1t),m)

+
√
m cn(B1(x− v1t),m) dn(B1(x− v1t),m)

]
=

1

2
A1

[
dn2(B′1(x− v1t), (1−m) )

cn2(B′1(x− v1t), (1−m) )
(6.63)

+
√
m

dn(B′1(x− v1t), (1−m) )

cn2(B′1(x− v1t), (1−m) )

]
.

This form of solutions appears, to our best knowledge, for the first time

in the literature. Unfortunately, this solution becomes singular when cn

crosses zero and therefore has no physical relevance.

Remark 6.2. Absolute values of coefficients A1 are large for all m ∈ [0, 1].

One can argue that this is in contradiction with regime of validity of as-

sumptions necessary to derive the equation (5.1).

• Case 2. z = z2 =
43 +

√
2305

152
≈ 0.598753 > 0. Then

A2 =
12 (51−

√
2305)

37α (5−m)
≈ 0.9696

α (5−m)
> 0, (6.64)

B2 =

√
12(−14 +

√
2305)

703(5−m)β
≈

√
0.58055

(5−m)β
> 0, (6.65)

v2 ≈
1.11455m2 − 11.2464m+ 27.9646

(m− 5)2
. (6.66)
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Fig. 6.4. The same as in figure 6.3 but for superposition solutions η+ (6.30) and

η− (6.68). In this example α = β = 0.15.

The formula (6.66) for v2 is obtained by simplification of (6.60). Since

m ∈ [0, 1], (5−m) > 0 then B2 is real. The solution in this case is

η2(x− v2t,m) =
1

2
A2

[
dn2(B2(x− v2t),m) (6.67)

+
√
m cn(B2(x− v2t),m) dn(B2(x− v2t),m)

]
.

Coefficients A2, B2, v2 of superposition solutions (6.30) to KdV2 as func-

tions of m are presented in figure 6.4 for α = β = 0.15 and compared to

corresponding solutions to KdV. Here, similarly as in figure 6.3, we assume

that AKdV = AKdV2.

6.2.3 Superposition “ dn2 −
√
m cn dn”

Now we check the alternative superposition “ dn2 −
√
m cn dn”

η−(y) =
1

2
A
[
dn2(By,m)−

√
m cn(By,m) dn(By,m)

]
. (6.68)

In this case the derivatives are given by formulas similar to (6.31)-(6.34) with

some signs altered. Analogous changes occure in formulas (6.36)-(6.42). Then

(6.35) has a similar form like (6.43)

1

2
AB
√
m
(
−
√
m cn + dn

)2
sn (6.69)

×
(
F0 + Fcd cn dn + Fc2 cn

2 + Fc3d cn
3 dn + Fc4 cn

4
)

= 0.
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Equation (6.69) is valid for arbitrary arguments when all coefficients F0, Fcd,

Fc2 , Fc3d, Fc4 vanish simultaneously. This gives us a set of equations for the

coefficients v,A,B. Despite some changes in signs on the way to (6.69) this

set is the same as for “ dn2 +
√
m cn dn” superposition (6.44)–(6.48). Then the

coefficients A,B, v for superposition “ dn2 −
√
m cn dn” are the same as for

superposition “ dn2 +
√
m cn dn” given above. This property for KdV2 is the

same as for KdV, see [90]. It follows from periodicity of the Jacobi elliptic

functions. From

cn(y+2K(m),m)= − cn(y,m), dn(y+2K(m),m)= dn(y,m)

it follows that

dn2(y+2K(m),m)+
√

(m) cn(x+2K(m),m) dn(x+2K(m),m)

= dn2(x,m)−
√

(m) cn(x,m) dn(x,m). (6.70)

So, both superpositions η+ (6.30) and η− (6.68) represent the same solution,

but shifted by the period of the Jacobi elliptic functions. This property is well

seen in figures 6.5-6.7.
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Fig. 6.5. Profiles of KdV and KdV2 waves for m = 0.1.
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6.2.4 Examples

Below, some examples of wave profiles for both KdV and KdV2 are presented.

We know from section 6.1 that for a given m, the coefficients A,B, v of KdV2

solutions are fixed. As we have already written, this is not the case for A,B, v

of KdV solutions. So, there is one free parameter. In order to compare KdV2

solutions to those of KdV for identical m, we set AKdV = AKdV2. In figures

6.5-6.7, KdV solutions of the forms (6.3), (6.30) and (6.68) are drawn with

solid red, green and blue lines, respectively. For KdV2 solutions the same color

convention is used, but with dashed lines.
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Fig. 6.6. Profiles of KdV and KdV2 waves for m = 0.9.

Comparison of wave profiles for different m suggests several observations.

For small m, solutions given by the single formula (6.3) differ substantially

from those given by superpositions (6.30) and (6.68). Note that (6.3) is equal

to the sum of both superpositions and whenm→ 1 the distance between crests

of η+ and η− increases to infinity (in the m = 1 limit). All three solutions

converge to the same soliton.
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Fig. 6.7. Profiles of KdV and KdV2 waves for m = 0.99.

6.2.5 Comments

It is shown that several kinds of analytic solutions of KdV2 have the same

forms as the corresponding solutions to KdV but with different coefficients.

This statement is true for our single solitonic solutions [79], periodic solutions

in the form of single Jacobi elliptic functions cn2 [70] or dn2, and for periodic

solutions in the form of superpositions dn2 ±
√
m cn dn [129]. Coefficients

A,B, v of these solutions to KdV2 are fixed by coefficients of the equation,

that is by values of α, β parameters. This property of KdV2 is different from

the KdV case where one coefficient (chosen usually as A) is arbitrary.

6.3 Physical constraints on periodic solutions to KdV

and KdV2

Solutions to KdV and KdV2 discussed in Sections 6.1 and 6.2 are correct from

the mathematical point of view. However, they do not take into account the

fact that the volume of the fluid has to be the same for any amplitudes of

the excited waves. This requirement can be fulfilled by the presence of the

appropriate coefficient D in the wave profiles (6.71) or (6.75) which depends

on the amplitude of the wave.
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6.3.1 Constraints on solutions to KdV

Single dn2 solutions

First, consider periodic solutions in the form of single function dn2.

Assume solutions to KdV as

η(x, t) = A dn2[B(x− vt),m] +D or η(y) = A dn2[By,m] +D. (6.71)

Then substitution of (6.71) into (6.2) yields equation analogous to (6.4). So-

lution requires vanishing of coefficients C0 and C2. Condition C2 = 0 is in this

case identical with (6.6) implying the same relation between B and A, that

is,

B =

√
3α

4β
A.

The condition C0 = 0, due to nonzero D takes now the form

9αA− 9αAm− 4βB2 + 8βB2m+ 9αD − 6v + 6 = 0. (6.72)

Then periodicity condition for dn2 function and volume conservation condi-

tion give

L =
2K(m)

B
and D = −A

2

E(m)

K(m)
(6.73)

and from (6.72)

v = 1 +
α

2
A

(
2−m− 3E(m)

2K(m)

)
. (6.74)

The velocity given by (6.74) is sligtly different (by the last term in the bracket)

from that in (6.7). As always for KdV, the amplitude coefficient A can be

arbitrary.

Superposition solutions η±

Assume solutions to KdV in the form analogous to (6.8) with y = x− vt

η±(y) =
A

2

[
dn2(By,m)±

√
m cn(By,m) dn(By,m)

]
+D, (6.75)

where A,B,D, v are yet unknown constants (m is the elliptic parameter)

which have the same meaning as in a single dn2 solution. Coefficient D is

necessary in order to maintain, for arbitrary m, the same volume for a wave’s

elevations and depressions with respect to the undisturbed water level.

Insertion of (6.75) into (6.2) gives equation anlogous to (6.9)
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CF
(
F0 + F2 cn

2 + F11 cn dn
)

= 0, (6.76)

where common factor is CF = AB
√
m (
√
m cn + dn)

2
sn. Then there are

three conditions on the solution

F0 = 9αA− 9αAm− 2βB2 + 10βB2m+ 18αD − 12v + 12 = 0, (6.77)

F2 = 9αAm− 12βB2m = 0, (6.78)

F11 = 9αA
√
m− 12βB2

√
m = 0. (6.79)

Equations (6.78) and (6.79) are equivalent and yield the same

B =

√
3α

4β
A. (6.80)

Insertion this into (6.77) gives

αA(m− 5)− 4(3αD + 2) + 8v = 0. (6.81)

Periodicity condition implies

L =
4K(m)

B
. (6.82)

Note that the space period L is for η± solutions two times larger than that of

dn2 or cn2 solutions for the same elliptic parameter m. Then volume conser-

vation condition determines D as

D =− A

2

E(m)

K(m)
. (6.83)

Finally insertion of D into (6.81) gives velocity as

v = 1 +
αA

8

[
5−m− 6

E(m)

K(m)

]
≡ 1 +

αA

8
fEK(m). (6.84)

Note that the velocity (6.84) is different from (6.14) only by the last term in

the square bracket.

K(m) and E(m) which appear in (6.73)-(6.74) and (6.82)-(6.84) are the

complete elliptic integral of the first kind and the complete elliptic integral,

respectively.

Equations (6.80), (6.83) and (6.84) express coefficients B,D, v of the su-

perposition solution (6.75) as functions of the amplitude A, elliptic parameter

m ∈ [0, 1] and parameters α, β of the KdV equation. In principle, these equa-

tions admit arbitrary amplitude A of KdV solution in the form (6.75).
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Fig. 6.8. Function fEK(m) given by (6.85).

Coefficients B,D, v and the wavelength L obtained above for solution

(6.75) are different form coefficients of usual cnoidal solutions in the form

(11.6). In particular, since the function

fEK(m) =

[
5−m− 6

E(m)

K(m)

]
(6.85)

changes its sign at m ≈ 0.449834 the velocity dependence of the wave

(6.75) is much different than that of the cn2 wave [For cn2 wave v =

1+αA
2m

(
2−m− 3 E(m)

K(m)

)
], see, [70, equation (24)]. Examples of m dependence

of the velocity (6.84) are displayed in figure 6.9.
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Fig. 6.9. Velocity v(A,α,m) (6.84) of the solution (6.75) for different A and α.
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6.3.2 Constrains on superposition solutions to KdV2

Now, we look for solutions to KdV2 (5.1) in the same form (6.75) as solutions

to KdV. In this case, the corresponding ODE takes the form (6.15).

Assume solutions to KdV2 in the form (6.75), that is,

η±(y) =
A

2

[
dn2(By,m)±

√
m cn(By,m) dn(By,m)

]
+D,

where A,B,D, v are yet unknown constants (m is the elliptic parameter)

which have the same meaning as previously.

Insertion of (6.75) to (6.15) yields

CF
(
F0 + F2 cn

2 + F4 cn
4 + F11 cn dn + F31 cn

3 dn
)

= 0, (6.86)

where common factor is

CF = AB
√
m
(√
m cn + dn

)2
sn.

Equation (6.86) is satisfied for arbitrary arguments when all coefficients

F0, . . . , F31 vanish simultaneously. This imposes five conditions on parame-

ters

F0 = 135α2A2(m− 1)2 + 60αA(m− 1)
(
βB2(48m− 5)− 9αD + 18

)
− 4

[
19β2B4

(
61m2 − 46m+ 1

)
+ 30αD

(
5βB2(5m− 1) + 18

)
+60βB2(5m− 1)− 135α2D2 + 360

]
+ 1440v = 0, (6.87)

F2 = −15m
[
27α2A2(m− 1)− 12αA

(
βB2(37− 59m) + 3αD − 6

)
(6.88)

−16βB2
(
38βB2(2m− 1) + 15αD + 6

)]
= 0,

F4 = 90m2
(
3α2A2 + 86αAβB2 − 152β2B4

)
= 0, (6.89)

F11 = −30
√
m
[
9α2A2(m− 1)− 3αA

(
βB2(31− 75m) + 6αD − 12

)
(6.90)

−4βB2
(
19βB2(5m− 1) + 30αD + 12

)]
= 0,

F31 = 90m3/2
(
3α2A2 + 86αAβB2 − 152β2B4

)
= 0. (6.91)

As stated in [130], equations (6.89) and (6.91) are equivalent.

Denote z =
βB2

αA
. Then z roots of (6.91) are the same as for solitonic

solutions [79], cn2 solutions [70] and dn2 ± cn dn solutions [129], that is,

z1/2 =
43∓

√
2305

152
. (6.92)

In principle we should discuss both cases.
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Express equations (6.87), (6.88) and (6.90) through z by substituting

B =

√
Aαz

β
. (6.93)

This gives

608αA(2m− 1)z2 + 12z(αA(37− 59m) + 20αD + 8) (6.94)

−9(3αA(m− 1)− 4αD + 8) = 0,

9A(α− αm) + 76αA(5m− 1)z2 + 3αA(31− 75m)z (6.95)

+18αD + 24z(5αD + 2)− 36 = 0

from (6.88) and (6.90), respectively, and

v = 1− α

1440

{
αA2

[
m2
(
−4636z2+ 2880z + 135

)
+m

(
3496z2− 3180z − 270

)
−76z2 + 300z + 135

]
− 60A [−9αD +m(9αD + 50αDz + 20z − 18)

−2z(5αD + 2) + 18] + 540D(αD − 4)} (6.96)

from (6.87). Equations (6.94) and (6.95) are, in general, not equivalent for

arbitrary z. However, in both cases when z = z1 or z = z2, required by

(6.89) and (6.91), they express the same condition. This shows that equations

(6.88) and (6.90) are equivalent, just as (6.89) and (6.91) are, so equations

(6.87)-(6.91) supply only three independent conditions.

Solving (6.94) for D yields

D =
[
−27αA+ 27αAm− 1216αAmz2 + 708αAmz + 608αAz2

−444αAz − 96z + 72]× [12α(20z + 3)]
−1
. (6.97)

Substitution of B and D into (6.96) gives a long formula for the wave’s velocity

v = −
{
α2A2

[
24320(m(1607m− 1382) + 323)z4

− 3840(m(7703m− 7368) + 1791)z3 + 576(m(5919m− 7324) + 2044)z2

+4320(m− 1)(42m− 19)z + 1215(m− 1)2
]

+69120αA(2m− 1)z(2z(76z − 43)− 3)− 2880(8z(34z + 75) + 45)}

×
[
5760(20z + 3)2

]−1
. (6.98)

The explicit form of (6.98) will be presented in the next section, after specify-

ing the branch of z and taking into account conditions implied by periodicity

and volume conservation.
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Periodicity and volume conservation conditions

Denote u(By,m) = dn2(By,m)±
√
m cn(By,m) dn(By,m).

The periodicity condition implies

u (BL,m) = u(0,m) =⇒ L =
4K(m)

B
, (6.99)

where K(m) is the complete elliptic integral of the first kind. Note that the

wavelength L given by (6.99) is two times greater than that for a single cn2

periodic solution (5.56) (see also [70]).

Then volume conservation requires∫ L

0

η±(By,m) dy =
A

2

∫ L

0

u(By,m) dy +DL = 0. (6.100)

Volume conservation means that elevated and depressed (with respect to the

mean level) volumes are the same over the period of the wave.

From properties of elliptic functions∫ L

0

u(By,m) dy =
E(am(4K(m)|m)|m)

B
=

4E(m)

B
, (6.101)

where E(Θ|m) is the elliptic integral of the second kind, am(x|m) is the

Jacobi elliptic function amplitude and E(m) is the complete elliptic integral.

Then from (6.100)-(6.101) one obtains D in the form

D = −AE(m)

2K(m)
. (6.102)

In order to obtain explicit expressions for coefficients A,B,D, v, one has

to specify z. Choose the positive root first.

Case z = z2 = 43+
√

2305
152 ≈ 0.59875.

With this choice A > 0 and the cnoidal wave has crests elevation larger than

troughs depression with respect to still water level.

Substitution of z2 into equation (6.94) (or equivalently (6.95)) supplies

another relation between A and D, giving

D = −12(−51 +
√

2305) + 37(5−m)αA

444α
. (6.103)

Equating (6.102) with (6.103) one obtains (fEK(m) is given by (6.85))

A =
12
(
51−

√
2305

)
37α fEK(m)

, (6.104)
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Fig. 6.10. From top to bottom: amplitude A(m,α) (6.104), coefficient B (6.105),

coefficient D(m,α) (6.106) and velocity v(m) (6.107) of the solution (6.75) as func-

tions of m for α = 0.1, 0.3, 0.5.
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B =

√
12(
√

2305− 14)

703β fEK(m)
, (6.105)

D = −
6
(
51−

√
2305

)
37α fEK(m)

E(m)

K(m)
. (6.106)

Velocity formula (6.98) simplifies to

v =
9439− 69

√
2305

5476
+

(
7811
√

2305− 377197

520220

) (
m2 + 14m+ 1

)
[fEK(m)]

2 (6.107)

≈ 1.11875− 0.00420523

(
m2 + 14m+ 1

)
[fEK(m)]

2 .

In general, as stated in previous papers [70, 79, 129] the KdV2 equation

imposes one more condition on coefficients of solutions than KdV. Let us

discuss obtained results in more detail. Coefficients A,B,D, v are related to

the function fEK(m). This function is plotted in figure 6.8.

It is clear that for real-valued B the amplitude A has to be positive, and

therefore m must be greater than ≈ 0.45. Since B depends on m this condition

imposes restricts on wavenumbers. The m-dependence of coefficients A,B,D

and velocity v (6.104)-(6.107) are displayed in figure 6.10. Note, that v given

by (6.107) contrary to KdV case (6.84) depends only on m.

For m close to 1 the wave height, that is the difference between the crest’s

and trough’s level is almost equal to A/2. It is clear from figure 6.10 that the

wave height is reasonably small for m close to 1.

Case z = z1 = 43−
√

2305
152 ≈ −0.0329633.

A =
12
(√

2305 + 51
)

37α fEK(m)
, (6.108)

B =

√
−12(

√
2305 + 14)

703β fEK(m)
, (6.109)

D = −
6
(√

2305 + 51
)

37α fEK(m)

E(m)

K(m)
. (6.110)

Velocity formula (6.98) simplifies to

v = −9439 + 69
√

2305

5476
+

(
7811

√
2305 + 377197

520220

) (
m2 + 14m+ 1

)
[fEK(m)]

2 (6.111)

≈ −2.32866 + 1.44594

(
m2 + 14m+ 1

)
[fEK(m)]

2 .
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Fig. 6.11. From top to bottom: amplitude A(m,α) (6.108), coefficient B(m,β)

(6.109), coefficient D(m,α) (6.110) and velocity v(m) (6.111) of the solution (6.75)

as functions of m for α = 0.1, 0.3, 0.5.

In this case B is real-valued when fEK(m) is negative, that is for m less

that ≈ 0.45 (see, e.g, figure 6.8). But this means that A is negative, that is the

cnoidal wave has an inverted shape (crests down, troughs up). The following
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figure 6.11 illustrates examples of m-dependence of coefficients A,B,D, v for

m < 0.449.

6.3.3 Examples, numerical simulations

Table 6.1 contains several examples of coefficients A,B,D, v and the wave-

length L of superposition solutions to KdV2 for some particular values of α, β

and m for the branch z = z2.

Table 6.1. Examples of values of A,B,D, v and L for z = z2 case.

α β m A B D v L

0.10 0.10 0.99 4.108 1.5683 -0.5646 1.107 9.426

0.30 0.30 0.99 1.369 0.9054 -0.1882 1.107 16.33

0.50 0.50 0.99 0.822 0.7013 -0.1129 1.107 21.08

0.30 0.30 0.80 3.028 1.3465 -0.7904 1.071 6.706

0.50 0.50 0.80 1.817 1.0430 -0.4743 1.071 8.657

Figure 6.12 displays a comparison of a solution of KdV2 to solution of

KdV. For comparison, parameters α, β of the equations were chosen to be

α = β = 0.3. Compared are waves corresponding to m = 0.99. Coefficients

A,B,D, v of KdV2 solution are given in the second raw of Table 6.1. For

comparison KdV solution is chosen with the same A but B,D, v are given by

(6.80), (6.83) and (6.84), respectively.

Table 6.2 gives two examples of coefficients A,B,D, v and the wavelength

L of superposition solutions to KdV2 for some particular values of α, β and

small m for the branch z = z1.

Table 6.2. Examples of values of A,B,D, v and L for z = z1 case.

α β m A B D v L

0.30 0.30 0.10 -134.5 2.105 63.83 3.170 3.064

0.50 0.50 0.05 -71.44 1.535 34.82 0.717 4.147

In figure 6.13 profiles of the solution to KdV2 for the case α, β = 0.5

and m = 0.05 are displayed for t = 0, T/3, 2T/3, T . In this case, we obtain

an inverted cnoidal shape, with crest depression equals to -8.885 and trough

elevation equals 7.088.
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Fig. 6.12. Profiles of the KdV2 (blue lines) and KdV solutions (red lines) for

α = β = 0.3 and m = 0.99. Solid lines correspond to t = 0, T , dashed lines to

t = T/3 and dotted lines to t = 2T/3, respectively (T is the wave period).

In the case α, β = 0.3 and m = 0.1 the corresponding values of crest and

trough are -24.67 and 17.85, respectively.

For m close to 1 the wave height is much smaller than the coefficient A

and there exist an interval of small m where the wave height is physically

relevant.

Numerical calculations of the time evolution of superposition solutions

performed with the finite difference code as used in previous papers [70,78,79,

129] confirm the analytic results. Numerical evolution of any of the presented

solution shows their uniform motion with perfectly preserved shapes. The case

corresponding to z = z2 branch, with parameters listed in the second row of

Table 6.1, is illustrated in figure 6.14. This is the same wave as that displayed

in figure 6.12 (blue lines).

The case corresponding to z = z1 branch, with parameters listed in the

first row of Table 6.2, is illustrated in figure 6.15. This is the same wave as

that displayed in figure 6.13 (blue lines).

Remark 6.3. From periodicity of the Jacobi elliptic functions it follows that

η+(x, t) = η−(x± L/2, t). (6.112)

This means that both η+(x, t) and η−(x, t) represent the same wave, but shifted

by half of the wavelength with respect to one another.
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Fig. 6.13. Profiles of the KdV2 solutions for α = β = 0.5 and m = 0.05 (blue lines)

and for α = β = 0.3 and m = 0.1 (red lines). Solid lines correspond to t = 0, T ,

dashed lines to t = T/3 and dotted lines to t = 2T/3, respectively (T is the wave

period corresponding to the case).

Conclusions

From the studies on the KdV2 equation presented in this chapter and in

[70,79,129,130] one can draw the following conclusions.

• There exist several classes of exact solutions to KdV2 which have the same

form as the corresponding solutions to KdV but with slightly different

coefficients. These are solitary waves of the form A cn2 [79], cnoidal waves

A cn2 + D [70] and periodic waves in the form (6.75), that is, A
2 [ dn2 ±

√
m cn dn] +D studied in [129,130].

• KdV2 imposes one more condition on coefficients of the exact solutions

than KdV.

• Periodic solutions for KdV2 can appear in two forms. The first form,

A cn2 + D, is, as pointed out in [70], physically relevant in two narrow

intervals of m, one close to m = 0, another close to m = 1. The second

form, given by (6.75) gives physically relevant periodic solutions in similar

intervals. However, for m close to 1 the superposition solution (6.75) forms

a wave similar to A cn2 + D, whereas for small m this wave has inverted

cnoidal shape.

• All the above-mentioned solutions to KdV2 have the same function form

as the corresponding KdV solutions but with slightly different coefficients.
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Fig. 6.14. Time evolution of the superposition solution η+(x, t) for α = β = 0.3

and m = 0.99 obtained in numerical simulations. Profiles of the wave at t =

0, T/3, 2T/3, T are shown, where T is the period. The x interval is equal to the

wavelength.

Besides having single solitonic and periodic solutions, KdV also possesses

multi-soliton solutions. The question whether exact multi-soliton solutions

for KdV2 exist is still open. However, numerical simulations presented in the

subsection 6.3.4, in line with the Zabusky-Kruskal numerical experiment [150]

suggest such a possibility.

6.3.4 Do multi-soliton solutions to KdV2 exist?

For KdV there exist multi-soliton solutions which can be obtained, e.g. using

the inverse scattering method [2, 48], nonlinear superposition principle based

on auto-Backlund transformations [142] or the Hirota direct method [65]. The

fact that KdV2 is nonintegrable would seem to exclude the existence of multi-

soliton solutions to KdV2. On the other hand, numerical simulations demon-

strate, that for some initial conditions a train of KdV2 solitons, almost the

same as of KdV solitons emerges from the cosine wave as in Zabusky and

Kruskal [150] numerical simulation. Below we describe such numerical simu-

lations with results displayed in figure 6.16.
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Fig. 6.15. Time evolution of the superposition solution η+(x, t) for α = β = 0.3

and m = 0.05 obtained in numerical simulations. Profiles of the wave at t =

0, T/3, 2T/3, T are shown, where T is the period. The x interval is equal to the

wavelength.

Initial conditions for both simulations were chosen as a hump η(x, 0) =

A cos( π40 (x+20)) for 0 ≤ x ≤ 40 and η(x, 0) = 0 for x > 40 moving to the right.

Then such a wave was evolved by a finite difference method code developed

in [78–80]. There is a surprising similarity of trains of solitons obtained in

evolutions with KdV and KdV2. This behavior might suggest the possible

existence of multi-soliton KdV2 solutions.

In a multi-soliton solution of KdV, each soliton has a different amplitude.

Otherwise, these amplitudes are arbitrary. KdV2 always imposes one more

condition on coefficients of the solutions than does KdV. Therefore if multi-

soliton solutions to KdV2 exist, we would expect some restrictions on these

amplitudes.
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Fig. 6.16. Top: Emergence of soliton trains according to KdV from initial cosine

wave. A = 0.3, T = 50. Bottom: The same according to KdV2.
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Approximate analytic solutions to KdV2

equation for uneven bottom

The ubiquitous Korteweg–de Vries equation [96] is a common approximation

for several problems in nonlinear physics. One of these problems is the shal-

low water wave problem extensively studied during the last fifty years and

described in many textbooks and monographs (see, e.g., [2,36,66,72,117,123,

127, 144]). The KdV equation corresponds to the case when the water depth

is constant. There have been numerous attempts to study nonlinear waves

in the case of a non-flat bottom. One of the first attempts to incorporate

bottom topography is due to Mei and Le Méhauté [111]. However, the au-

thors did not obtain any simple KdV-type equation. Among the first papers

treating a slowly varying bottom is Grimshaw’s paper [53]. He obtained an

asymptotic solution describing a slowly varying solitary wave above a slowly

varying bottom. For small amplitudes, the wave amplitude varies inversely as

the depth. Djordjević and Redekopp [34] studied the development of packets

of surface gravity waves moving over an uneven bottom. They derived the

variable coefficient nonlinear Schrödinger equation (NLS) for such waves and

using expansion in a single small parameter they found fission of an enve-

lope soliton. Benilov and Howlin [11] later developed a similar approach. This

fission from the NLS has also been found in other physical contexts [11,72].

We point out papers [57,116,124] as examples of approaches which combine

linear and nonlinear theories. For instance, in [116] the authors study long-

wave scattering by piecewise-constant periodic topography for solitary-like

wave pulses and KdV solitons. Another extensively investigated approach is

the Gardner equation (sometimes called the forced KdV equation) [58,77,134].

Van Groeasen and Pudjaprasetya [?,126] within a Hamiltonian approach. For

a slowly varying bottom, they obtained a forced KdV-type equation. The dis-
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cussion of that equation gives an increase of the amplitude and decrease of

the wavelength when a solitary wave enters a shallower region. The Green-

Naghdi equations follow when taking an appropriate average of vertical vari-

ables [50,89,115]. Another study of long wave propagation over a submerged

2-dimensional bump was recently presented in [118], albeit according to linear

long-wave theory.

An interesting numerical study of solutions to the free-surface Euler equa-

tions in the conformal-mapping formulation has been published by the team

working within the MULTIWAVE project [114]. The authors illustrate that

approach by numerical results for soliton fission over a submerged step and

supercritical stream over a submerged obstacle [140].

In this chapter, we briefly summarize the derivation of a KdV-type equa-

tion, second order in small parameters, containing terms from the bottom

function, derived by us in [78]. Next, we present some examples of the evo-

lution of a KdV soliton according to that equation, obtained in numerical

simulations, stressing changes of soliton’s velocity and amplitude when the

wave passes over an extended obstacle or hole. It is worth noting that the

equation derived in [78] is a KdV-like equation of the second order, a single

evolution equation for surface waves which contains terms for a bottom vari-

ation. In this context see a paper by Kichenassamy and Olver “Existence and

nonexistence of solitary wave solutions to higher-order model evolution equa-

tions” [88]. The authors claimed for most of the higher-order models, but only

those which reduce to KdV solitary waves in an appropriate scaling limit, soli-

tary wave solutions of the appropriate form do not exist! On the other hand,

Burde [23] presents solitary wave solutions of the higher-order KdV models

for bi-directional water waves.

Recently, with E. Infeld and G. Rowlands, we found exact solitonic [79] and

periodic [70] wave solutions for water waves moving over a smooth riverbed.

Amazingly they were simple, though governed by a more exact expansion

of the Euler equations with several new terms as compared to KdV [24, 78,

79, 105]. Our next step is to consider how a rough river or ocean bottom

modifies these results. We start with a simple case. The geometry is one space

dimensional, and the wave is a soliton.

Here we consider the KdV2B equation (4.31) (introduced in section 4.2)

governing the elevation of the water surface η/H above a flat equilibrium at

the surface. For reader’s convenience it is rewritten below
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ηt + ηx + α
3

2
ηηx + β

1

6
η3x

+ α2

(
−3

8
η2ηx

)
+ αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+ β2 19

360
η5x (7.1)

+ βδ
1

4

(
− 2

β
(hη)x + (h2xη)x − (hη2x)x

)
= 0.

The last three terms are due to a bottom profile. We emphasize, that (7.1)

was derived in [78, 79] under the assumption that α, β, δ are small (positive

by definition) and of the same order. The details of the derivation of KdV2B

equation are contained in section 4.2.

This chapter presents an attempt, made in [128], to describe dynamics

of the exact KdV2 soliton when it approaches a finite interval of an uneven

bottom. We will use the reductive perturbation method introduced by Taniuti

and Wei [137]. Using two space scales allows us to transform equation for the

uneven bottom (7.1) into KdV2 equation with some coefficients altered, that

is, the equation for the flat bottom. This transformation is approximate, but

the analytic solution of the resulted equation is known. This approximate

analytic description will be compared with ‘exact’ numerical calculations.

As already described in section 5.2 the exact single soliton solution of the

KdV2 equation (4.27) (which is also equivalent to (7.1) with δ = 0, or h = 0)

has the same form as the KdV soliton

η(x, t) = A sech[B(x− vt)]2. (7.2)

However, coefficients A,B, v of the KdV2 soliton given in equations (5.30)-

(5.32), are slightly different than those for the KdV soliton, see their compar-

ison in section 5.2. Let us remind that on the way to the derivation of the

solution three intermediate conditions for the coefficients have been obtained

(5.22)-(5.24). These three conditions are as follows

(1− v) +
2

3
B2β +

38

45
B4β2 = 0, (7.3)

3Aα

4
−B2β +

11

4
AαB2β − 19

3
B4β2 = 0, (7.4)

−
(

1

8

)
(Aα)2 − 43

12
AαB2β +

19

3
B4β2 = 0. (7.5)

Denoting z =
βB2

αA
one obtains (7.5) as quadratic equation with respect to z

with solutions

z1 =
43−

√
2305

152
≈ −0.033 < 0 and z2 =

43 +
√

2305

152
≈ 0.599 > 0. (7.6)
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Since B =
√

α
β zA, only z2 provides real B value. Equations (7.4) and (7.5)

are consistent only when α = αs =
3(51−

√
2305)

37
≈ 0.242399. Then (7.3)

determines velocity

v = 1 +
2

3
αsz2 +

38

45
(αsz2)2 ≈ 1.114546. (7.7)

7.1 Approximate analytic approach to KdV2B equation

Equation (7.1) can be written in the form

∂η

∂t
+

∂

∂x
f(η, h) = 0, (7.8)

where f(η, h) is given by

f(η, h) = η +
3α

4
η2 − α2

8
η3 + αβ

[
13

48

(
∂η

∂x

)2

+
5

12
η
∂2η

∂x2

]
+
β

6

∂2η

∂x2

+
19

360
β2 ∂

4η

∂x4
+ βδ

[
− 2

β
hη +

∂2h

∂x2
η − h∂

2η

∂y2

]
. (7.9)

We treat h as slowly varying and introduce two space scales x and x1(= εx)

which are treated as independent until the end of calculation [137]

h = h(εx) = h(x1), ε� 1. (7.10)

We also introduce

y =

∫ x

0

a(εx)dx− t, (7.11)

where a is as yet undefined. To first order in ε

η = η0(y, x1) + εη1(y, x1) + . . . (7.12)

∂η

∂t
= −∂η0

∂y
− ε∂η1

∂y
+ . . . (7.13)

∂η

∂x
= a(x1)

∂η0

∂y
+ ε

∂η0

∂x1
+ εa(x1)

∂η1

∂y
+ . . . (7.14)

∂2η

∂x2
= a2 ∂

2η0

∂y2
+ ε

(
∂a

∂x1

∂η0

∂y
+ 2a

∂2η0

∂y∂x1
+ a2 ∂

2η0

∂y2

)
+ . . . (7.15)

Now
∂nη

∂xn
= an

∂nη0

∂yn
+O(ε) . (7.16)
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We have

f(η, h) = η0 +
3α

4
η2

0 −
α2

8
η3

0 + αβ

[
13

48
a2

(
∂η0

∂y

)2

+
5

12
η0a

2 ∂
2η0

∂y2

]

+
β

6
a2 ∂

2η0

∂y2
+

19

360
β2a4 ∂

4η0

∂y4
(7.17)

+ βδ

[
−h(x1)η0

2β
− a2h(x1)

∂2η0

∂y2

]
+O(ε) = f0(η0, h) +O(ε) .

From (7.8), (7.13) and (7.17) to lowest order we have

−∂η0

∂y
+ a

∂

∂y
[f0(η0, h)] = 0 (7.18)

and, since a = a(x1), we obtain

∂

∂y
(η0 − af0) = 0 . (7.19)

We restrict consideration to a single soliton, so η0 → 0 as y → ±∞ and so

does f0. Integration of (7.19) yields to the lowest order

η0 − a(x1)f0 = 0 . (7.20)

Introduce ζ = y/a(x1) which is constant in our approximation. Now

∂η0

∂y
=

1

a

∂η0

∂ζ
(7.21)

and from (7.20), (7.17), (7.21) we obtain

(1− a(x1))η0 −
3α

4
η2

0 a+
α2

8
η3

0 a− αβ

[
13

48

(
∂η0

∂ζ

)2

+
5

12
η0
∂2η0

∂ζ2

]
a (7.22)

− 19

360
β2 ∂

4η0

∂ζ4
a+ βδ h(x1)

[
η0

2β
+
∂2η0

∂ζ2

]
a− β

6

∂2η0

∂ζ2
a = 0.

Dividing by (−a) yields(
1− δ h

2
− 1

a

)
η0 +

3α

4
η2

0 −
α2

8
η3

0 + αβ

[
13

48

(
∂η0

∂ζ

)2

+
5

12
η0
∂2η0

∂ζ2

]

+
19

360
β2 ∂

4η0

∂ζ4
+
β

6
(1− 6 δ h)

∂2η0

∂ζ2
= 0. (7.23)

This should be compared to (4.27) or [79, equation (22)]. Remember that at

this stage δ h(x1) is to be treated as constant with respect to inegration over
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ζ. The only difference is that v =

(
δh

2
+

1

a

)
and (1 − 6 δ h) instead of 1

appear in the last term.

Following [79] we obtain

η0 = A sech2(B ζ), ζ =
1

a(x1)

[∫ x

0

a(x1)dx− t
]
. (7.24)

In equations (7.3)-(7.4) [(24),(25) and (20) of [79]] we replace β B2 (but not

β2B4 or αβAB2 since we modify only first order terms) by

β (1− 6 δ h)B2. (7.25)

Now z = z2 = 43+
√

2305
152 is as in (7.6). We obtain

η0 = Ā sech2

[
B̄

a(x1)

(∫ x

0

a(x1)dx− t
)]

(7.26)

with
1

a
+
δ h

2
= v − βδh, q =

b

B2
, b =

3z
76
3 z − 11

(7.27)

and

Ā = A(1 + qδh), B̄ = B(1 + qδ h/2),

where A,B, v are given by eqs. (30)-(32) in [79]. Thus

1

a
= v −

(
1

2
+ β

)
δh. (7.28)

At this stage we take x1 = ε x and δh = δh(x). So∫ x

0

a(x) dx =

∫ x

0

dx

v −
(

1
2 + β

)
δh(x)

. (7.29)

Assume δh(x) is nonzero only in interval x ∈ [L1, L2].

For x < L1, η0 = Asech2(B(x− vt)), δh ≡ 0, 1
a = v .

For x > L2, δh ≡ 0, 1
a = v and

η0 = A sech2

[
B

(
v

∫ L2

L1

a(x)dx+ (x− vt)

)]
. (7.30)

There is a change of phase as the pulse passes through the region where

δh 6= 0. The alteration in the phase is given by∫ L2

L1

dx

[
1

1− (1/2+β)δh
v

− 1

]
≈ β + 1/2

v

∫ L2

L1

δ h(x) dx . (7.31)

If this integral is zero phase is unaltered. This can happen if a deeper region

is followed by a shallower region of appropriate shape or vice versa.
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7.2 Numerical tests

In the following figures, we present time evolution of the approximate analytic

solution (7.26) to KdV2 equation with the uneven bottom (7.1) for several

values of parameters of the system. These evolutions are compared with ‘exact’

numerical solutions of (7.1). In both cases, initial conditions were the exact

solutions of KdV2 equation. Therefore in all presented examples α = αs and

the amplitude of initial soliton is equal to 1.
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x

Fig. 7.1. Profiles of the soliton as given by (7.26). The shape of the trapezoidal

bottom is shown (not in scale). Consecutive times are tn = n, n = 0, 1, 2, 3, . . . , 32.

In figure 7.1 we present the approximate solution (7.26) for the case when

soliton moves over a trapezoidal elevation with L1 = 5 and L2 = 25. We took

β = δ = 0.15. For smaller δ the effects of uneven bottom are very small, for

larger δ second order effects (not present in analytic approximation) cause

stronger overlaps of different profiles.

We compare this approximate solution of (7.1) to a numerical simulation

obtained with the same initial condition. The evolution is shown in figure 7.2.

We see that the approximate solution has the main properties of the soliton

motion as governed by equation (7.1). However, since the numerical solution

contains higher order terms depending on the shape of h the exact motion as

obtained from numerics shows additional small amplitude structures known

from earlier papers, for example, [78,79]. This is clearly seen in figure 7.3 where
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Fig. 7.2. Profiles of numerical solution of the equation (7.1) obtained with the same

initial condition. Time instants the same as in figure 7.1.

profiles obtained in analytic and numeric calculations are compared at time

instants t = 0, 5, 10, 15, 20, 25, 30 on wider interval of x. All numerical results

were obtained with calculations performed on wider interval x ∈ [−30, 70] with

periodic boundary conditions. Details of numerics was described in [70,78,79].

In figures 7.4-7.6 we present results analogous to those presented in figures

7.1-7.3 but with a different shape of the bottom bump and larger values of

β = δ = 0.2. In this case the bump is chosen as an arc of parabola h(x) =

1 − (x − 15)2/100 between the same L1 = 5 and L2 = 24 as in trapezoidal

case.

In approximate analytic solution, KdV2 soliton changes its amplitude and

velocity only over bottom fluctuation. When the bottom bump is passed it

comes back to initial shape (phase only may be changed). This is not the case

for ’exact’ numerical evolution of the same initial KdV2 soliton when it evolves

according to the second order equation (7.1). This is clearly visible in figures

7.3 and 7.6. What is this motion for much larger times? In order to answer this

question, one has to perform numerical calculations on a much wider interval

of x. Such results are presented in figure 7.7. The interaction of soliton with the

bottom bump creates two wave packets of small amplitudes. First moves with

higher frequency faster than the soliton and is created when soliton enters the

bump, second moves slower with lower frequency and appears when soliton

leaves it. After some time both are separated from the main wave. Since
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Fig. 7.3. Comparison of +48 68 3282 909wave profiles shown if figures 7.1 and 7.2

for time instants t = 0, 5, 10, 15, 20, 25, 30. Consecutive profiles are vertically shifted

by 0.1.

periodic boundary conditions were used in the numerical algorithm, the head

of the wave packet, radiated forward, traveled for t = 152 larger distance

than the interval chosen for calculation and is seen at the left side of the wave

profile.

We have to emphasize that this behavior is generic, it looks similar for

different shapes of bottom bumps and different values of β, δ parameters. It

was observed in our earlier papers [79,80,82] in which initial conditions were

in the form of KdV soliton.

We have derived a simple formula describing approximately a soliton en-

countering an uneven riverbed. The model reproduces the known increase in

amplitude when passing over a shallower region, as well as the change in phase.

However, the full dynamics of the soliton motion is much richer, the uneven

bottom causes low amplitude soliton radiation both ahead and after the main

wave. This behavior was observed in our earlier papers [79, 80, 82] in which

initial conditions were in the form of KdV soliton, whereas in the present cases

the KdV2 soliton, that is, the exact solution of the KdV2 equation was used.
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Fig. 7.4. Profiles of the soliton as given by (7.26). The shape of the trapezoidal

bottom is shown (not in scale). Consecutive times are tn = n, n = 0, 1, 2, 3, . . . , 32.
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Fig. 7.5. Profiles of numerical solution of the equation (7.1) obtained with the same

initial condition. Time instants the same as in figure 7.4.
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Fig. 7.6. Comparison of wave profiles shown if figures 7.4 and 7.5 for time instants

t = 0, 5, 10, 15, 20, 25, 30.
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Conservation laws

It is well known, see, e.g., [36, 112,113,117], that for the KdV equation there

exists an infinite number of invariants, that is, integrals over space of functions

of the wave profile and its derivatives, which are constants in time. Looking

for analogous invariants for the second order KdV equation we met with some

problems even for the standard KdV equation (which is first order in small

parameters). This problem appears when energy conservation is considered.

In this chapter, we reconsider invariants of the KdV equation and formulas

for the total energy in several different approaches and different frames of

reference (fixed and moving ones). We find that the invariant I(3), sometimes

called the energy invariant, does not always have that interpretation. We also

give a proof that for the second order KdV equation, obtained in [24, 78, 79,

105],
∫∞
−∞ η2dx is not an invariant of motion.

There are many papers considering higher-order KdV type equations.

Among them we would like to point out works of Byatt-Smith [25], Kichenas-

samy and Olver [88], Marchant [105–109], Zou and Su [153], Tzirtzilakis

et.al. [139] and Burde [23]. It was shown that if some coefficients of the sec-

ond order equation for shallow water problem (4.27) are different or zero then

there exists a hierarchy of soliton solutions. Kichenassamy and Olver [88] even

claimed that for second order KdV equation solitary solutions of appropriate

form cannot exist. This claim was falsified in our paper [79] where the an-

alytic soliton solution of the extended KdV equation (4.27) was found and

next in [70, 129, 130] where several types of analytic periodic solutions were

derived. Concerning the energy conservation, there are indications that colli-

sions of solitons [64,66] which are solutions of higher order equations of KdV

type can be inelastic [139,153].
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8.1 KdV and KdV2 equations

As already presented in Section 3.1, the KdV equation, derived in scaled

variables, in a fixed reference frame according to the first order perturbation

approach with respect to two small parameters, has the form (3.29), that is,

ηt + ηx + α
3

2
ηηx + β

1

6
η3x = 0. (8.1)

Small parameters α, β are defined by ratios of the wave amplitude a, the

average water depth h and mean wavelength l as α = a
h and β =

(
h
l

)2
. (For

reader’s convenience we repeat several equations from Section 3.1 with new

numeration).

Reminder: The scaling of variables leading to dimensionless variables in the

fixed reference frame is given by (3.9).

Transformation to a moving frame in the form

x̄ = (x− t), t̄ = t, η̄ = η, (8.2)

allows us to remove the term ηx in the KdV equation in a frame moving with

the velocity of sound
√
gh

η̄t̄ + α
3

2
η̄η̄x̄ + β

1

6
η̄3x̄ = 0. (8.3)

The simplest, mathematical form of the KdV equation is obtained from

(8.1) by passing to the moving frame with additional scaling

x̂ =

√
3

2
(x− t), and t̂ =

1

4

√
3

2
α t, (8.4)

which gives a standard, mathematical form of the KdV equation

ηt̂ + 6 η ηx̂ +
β

α
ηx̂x̂x̂ = 0 or

ηt̂ + 6 η ηx̂ + ηx̂x̂x̂ = 0 for β = α. (8.5)

Equations (8.5), particularly with β = α are favored by mathematicians,

see, e.g., [98]. This form of KdV is the most convenient for ISM (the Inverse

Scattering Method, see, e.g., [2, 5, 48]) used for construction of multi-soliton

solutions.

Problems with mass, momentum and energy conservation in the KdV

equation were discussed by Ali and Kalisch in [8]. In this paper the authors
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considered the KdV equations in the original dimensional variables. Then the

KdV equations are

ηt + cηx +
3

2

c

h
ηηx +

ch2

6
ηxxx = 0 (8.6)

in a fixed frame of reference and

ηt +
3

2

c

h
ηηx +

ch2

6
ηxxx = 0 (8.7)

in a moving frame. In both equations, c =
√
gh and (8.7) is obtained from

(8.6) by setting x′ = x− ct and dropping the prime sign.

In this chapter we discuss the energy formulas obtained both in fixed and

moving frames of reference for KdV (8.1), (8.3), (8.5)-(8.7). There seem to

be some contradictions in the literature because the form of some invariants

and the energy formulas are not the same in different sources, sometimes

because of using different reference frames and/or not the same scalings. In

this chapter we address these problems.

The second goal is to present some invariants for the extended KdV equa-

tion (4.27), that is, the equation obtained from the set of hydrodynamic equa-

tions (4.2)-(4.5) in the second order perturbation approach.

8.2 Invariants of KdV type equations

What invariants can be attributed to equations (8.1), (8.3), (8.5)-(8.7)?

It is well known, see, e.g. [36, Ch. 5], that an equation of the form (an

analog to continuity equation ∂%
∂t + ∂(%v)

∂x = 0)

∂T

∂t
+
∂X

∂x
= 0, (8.8)

where neither T (an analog to density) nor X (an analog to flux) contain

partial derivatives with respect to t, corresponds to some conservation law. It

can be applied, in particular, to KdV equations (where there exist an infinite

number of such conservation laws) and to the equations of KdV type like

(4.27). Functions T andX may depend on x, t, η, ηx, η2x, . . . , h, hx, . . . , but not

on ηt. If both functions T and Xx are integrable on (−∞,∞) and lim
x→±∞

X =

const (soliton solutions), then integration of equation (8.8) yields

d

dt

(∫ ∞
−∞

T dx

)
= 0 or

∫ ∞
−∞

T dx = const. (8.9)
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since ∫ ∞
−∞

Xx dx = X(∞, t)−X(−∞, t) = 0. (8.10)

The same conclusion applies for periodic solutions (cnoidal waves), when in

the integrals (8.9), (8.10) limits of integration (−∞,∞) are replaced by (a, b),

where b− a = L is the space period of the cnoidal wave (the wave length).

8.2.1 Invariants of the KdV equation

For the KdV equation (8.1) the two first invariants can be obtained easily.

Writing (8.1) in the form

∂η

∂t
+

∂

∂x

(
η +

3

4
αη2 +

1

6
βηxx

)
= 0 (8.11)

one immediately obtains the conservation of mass (volume) law

I(1) =

∫ ∞
−∞

η dx = const. (8.12)

Similarly, multiplication of (8.1) by η gives

∂

∂t

(
1

2
η2

)
+

∂

∂x

(
1

2
η2 +

1

2
αη3 − 1

12
βη2

x +
1

6
βηηxx

)
= 0 (8.13)

resulting in the invariant of the form

I(2) =

∫ ∞
−∞

η2 dx = const. (8.14)

In the literature of the subject, see, e.g., [8,36], I(2) is attributed to momentum

conservation.

Invariants I(1), I(2) have the same form for all KdV equations (8.1), (8.3),

(8.5), (8.6), (8.7).

Denote the left hand side of (8.1) by KDV(x, t) and take

3η2 ×KDV(x, t)− 2

3

β

α
ηx ×

∂

∂x
KDV(x, t). (8.15)

The result, after simplifications is

∂

∂t

(
η3 − 1

3

β

α
η2
x

)
+

∂

∂x

(
9

8
αη4 +

1

2
βη2xη

2 (8.16)

−βη2
xη + η3 +

1

18

β2

α
η2

2x −
1

9

β2

α
ηxη3x −

1

3

β

α
η2
x

)
= 0.
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Then the next invariant for KdV in the fixed reference frame (8.1) is

I
(3)
fixed frame =

∫ ∞
−∞

(
η3 − 1

3

β

α
η2
x

)
dx = const. (8.17)

The same construction like (8.15) but for the equation (8.3) in moving

frame results in

∂

∂t

(
η3 − 1

3

β

α
η2
x

)
+

∂

∂x

(
9

8
αη4 +

1

2
βη2xη

2 (8.18)

−βη2
xη + η3 +

1

18

β2

α
η2

2x −
1

9

β2

α
ηxη3x

)
= 0.

Then the next invariant for KdV equation in moving reference frame (8.3) is

I
(3)
moving frame =

∫ ∞
−∞

(
η3 − 1

3

β

α
η2
x

)
dx = const. (8.19)

The procedure similar to those described above leads to the same invari-

ants for both equations (8.6) and (8.7) where KdV equations are written in

dimensional variables. To see this, it is enough to take 3η2 × kdv(x, t) −
2
3h

3 ∂
∂xkdv(x, t) = 0, where kdv(x, t) is the l.h.s. either of (8.6) or (8.7). For

equation (8.6) the conservation law is

∂

∂t

(
η3 − h3

3
η2
x

)
+

∂

∂x

(
cη3 − 9c

8h
η4 − 1

3
ch3η2

x (8.20)

−ch2ηη2
x +

1

2
ch2η2ηxx +

1

18
ch5η2

xx −
1

9
ch5ηxηxxx

)
= 0,

whereas for equation (8.7) the flux term is different

∂

∂t

(
η3 − h3

3
η2
x

)
+

∂

∂x

(
9c

8h
η4 − ch2ηη2

x (8.21)

+
1

2
ch2η2ηxx +

1

18
ch5η2

xx −
1

9
ch5ηxηxxx

)
= 0.

But in both cases the same I(3) invariant is obtained as

I
(3)
dimensional =

∫ ∞
−∞

(
η3 − h3

3
η2
x

)
dx = const. (8.22)

For the moving reference frame, in which the KdV equation has a standard

(mathematical) form (8.5), invariants I(1) and I(2) have the same form, but
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the invariant I(3) is slightly different. To see this difference denote the l.h.s.

of (8.5) by KDVm(x, t) and construct

3η2 ×KDVm(x, t)− β

α
ηx ×

∂

∂x
KDVm(x, t) = 0.

Then after simplifications one obtains

∂

∂t

(
η3 − 1

2

β

α
η2
x

)
+

∂

∂x

[
9

2
η4 − 6

β

α
ηη2
x (8.23)

+3
β

α
η2ηxx −

1

2

(
β

α
ηxx

)2

+

(
β

α

)2

ηxηxxx

]
= 0,

which implies the invariant I(3) in the following form

I
(3)
moving frame =

∫ ∞
−∞

(
η3 − 1

2

β

α
η2
x

)
dx = const or (8.24)

I
(3)
moving frame =

∫ ∞
−∞

(
η3 − 1

2
η2
x

)
dx = const for β = α.

We see, however, that the difference between (8.24) and (8.19) is caused by

additional scaling.

Conclusion Invariants I(3) have the same form for fixed and moving frames

of reference when the transformation from fixed to moving frame scales x and

t in the same way (e.g. x′ = x − t and t′ = t). When scaling factors are

different, like in (8.4), then the form of I(3) in the moving frame differs from

the form in the fixed frame.

For those solutions of KdV which preserve their shapes during the motion,

that is, for cnoidal solutions and single soliton solutions, integrals of any power

of η(x, t) and any power of arbitrary derivative of the solution with respect

to x are invariants. That is,

I(a,n) =

∫ ∞
−∞

(ηnx)adx = const, (8.25)

where n = 0, 1, 2, . . ., and a ∈ R is an arbitrary real number. Then an arbi-

trary linear combination of I(a,n) is an invariant, as well. Therefore for such

KdV solutions the particular form of the I(3) invariant, i.e. (8.17), (8.24) or

(8.22) is not important because each term is an invariant, separately. Differ-

ences, however, can show up for multi-soliton solutions during soliton collisions

when different scaling is used.
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8.2.2 Invariants of the second order equations

Can we construct invariants for the extended KdV equation (KdV2)? Let us

try to take T = η for equation (4.27). Then we find that all terms, except ηt,

can be written as Xx, as∫ [
ηx + α

3

2
ηηx + β

1

6
η3x + α2

(
−3

8
η2ηx

)
+αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+ β2 19

360
η5x

]
dx (8.26)

= η +
3

4
αη2 +

1

6
βη2x −

1

8
α2η3 + αβ

(
13

48
η2
x +

5

12
ηη2x

)
+

19

360
β2η4x.

As (8.26) depends on η and space derivatives and also since all those functions

vanish when x→ ±∞, the conservation law for mass (volume)∫ ∞
−∞

η(x, t) dx = const. (8.27)

holds for the second order equation. (Conservation law (8.27) holds for the

equation with an uneven bottom (4.31), as well.)

Until now we did not find any other invariants for the second order equa-

tions. Moreover, we can show that the integral I(2) (8.14) is no longer an

invariant of the second order KdV equation (4.27).

Upon multiplication of the equation (4.27) by η one obtains

∂

∂t

(
1

2
η2

)
+

∂

∂x

[
1

2
η2 +

1

2
αη3 +

1

6
β

(
−1

2
η2
x + ηη2x

)
− 3

32
α2η4 (8.28)

+
19

360
β2

(
1

2
η2
xx − ηxη3x + ηη4x

)
+

5

12
αβ η2η2x

]
+

1

8
αβ ηηxη2x = 0.

The last term in (8.28) can not be expressed as ∂
∂xX(η, ηx, . . .). Therefore∫ +∞

−∞ η2dx is not a conserved quantity. The same conclusion holds for the

second order equation with an uneven bottom (4.31).

Since besides I(2), there are no exact invariants for KdV2 (4.31) one

can look for adiabatic (approximate) invariants. This problem is described

in Chapter 9.

8.3 Energy

The invariant I(3) is, in the literature, usually referred to as the energy in-

variant. Is this really the case?
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8.3.1 Energy in a fixed frame as calculated from the definition

The hydrodynamic equations for an incompressible, inviscid fluid, in irrota-

tional motion and under gravity in a fixed frame of reference, lead to a KdV

equation (3.29)

η̃t̃ + η̃x̃ + α
3

2
η̃η̃x̃ + β

1

6
η̃3x̃ = 0 (8.29)

with accompanying equation (3.28) for velocity potential (below w = fx)

f̃x̃ = η̃ − 1

4
αη̃2 +

1

3
βη̃x̃x̃ (8.30)

allows us to calculate the total energy of the fluid (in dimensionless quantities)

from the definition.

The total energy is the sum of potential and kinetic energy. In our two-

dimensional system the energy in original (dimensional coordinates) is

E = T + V =

∫ +∞

−∞

(∫ h+η

0

ρv2

2
dy

)
dx+

∫ +∞

−∞

(∫ h+η

0

ρgy dy

)
dx . (8.31)

Equations (8.29) and (8.30) are obtained after scaling [24,78,79]. We now

have dimesionless variables, according to (3.9)

φ̃ =
h

La
√
gh
φ, x̃ =

x

L
, η̃ =

η

a
, ỹ =

y

h
, t̃ =

t

L/
√
gh
, (8.32)

and

V = ρgh2L

∫ +∞

−∞

∫ 1+αη̃

0

ρ ỹ dỹ dx̃, (8.33)

T =
1

2
ρgh2L

∫ +∞

−∞

∫ 1+αη̃

0

(
α2φ̃2

x̃ +
α2

β
φ̃2
ỹ

)
dỹ dx̃. (8.34)

Note, that the factor in front of the integrals has the dimension of energy.

In the following, we omit signs ∼, having in mind that we are working in

dimensionless variables. Integration in (8.33) with respect to y yields

V =
1

2
gh2Lρ

∫ ∞
−∞

(
α2η2 + 2αη + 1

)
dx (8.35)

=
1

2
gh2Lρ

[∫ ∞
−∞

(
α2η2 + 2αη

)
dx+

∫ ∞
−∞

dx

]
.

After renormalization (substraction of constant term
∫∞
−∞ dx) one obtains

V =
1

2
gh2Lρ

∫ ∞
−∞

(
α2η2 + 2αη

)
dx. (8.36)
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In kinetic energy we use the velocity potential expressed in the lowest

(first) order

φx = fx −
1

2
βy2fxxx and φy = −βyfxx, (8.37)

where fx was defined in (8.30). Now the bracket in the integral (8.34) is(
α2φx

2 +
α2

β
φy

2

)
= α2

(
f2
x + βy2(−fxfxxx + f2

xx)
)
. (8.38)

Inegration with respect to the vertical coordinate y gives, up to the same

order,

T =
1

2
ρgh2L

∫ +∞

−∞
α2

[
f2
x(1 + αη) + β(−fxfxxx + f2

xx)
1

3
(1 + αη)3

]
dx

=
1

2
ρgh2L

∫ +∞

−∞
α2

[
f2
x + αf2

xη +
1

3
β
(
f2
xx − fxfxxx

)]
dx. (8.39)

In order to express energy through the elevation function η we use (8.30). We

then substitute fx = η in terms of the third order and f2
x = η2 − 1

2αη
3 +

2
3βηηxx in terms of the second order

T =
1

2
ρgh2L

∫ +∞

−∞
α2

[(
η2 − 1

2
αη3 +

2

3
βηηxx

)
+ αη3 +

1

3
β
(
η2
x − ηηxx

)]
dx

=
1

2
ρgh2Lα2

[∫ +∞

−∞

(
η2 +

1

2
αη3

)
dx+

∫ +∞

−∞

1

3
β
(
η2
x + ηηxx

)
dx

]
. (8.40)

The last term vanishes as∫ +∞

−∞

(
η2
x + ηηxx

)
dx =

∫ +∞

−∞
η2
xdx+ ηηx|+∞−∞ −

∫ +∞

−∞
η2
xdx = 0. (8.41)

Therefore the total energy in the fixed frame is given by

Etot = T + V = ρgh2L

∫ ∞
−∞

(
αη + (αη)2 +

1

4
(αη)3

)
dx. (8.42)

The energy (8.42) in a fixed frame of reference does not contain the I(3)

invariant

Etot = T + V = ρgh2L

∫ ∞
−∞

(
αη + (αη)2 +

1

4
(αη)3

)
dx

= ρgh2L

(
αI(1) + α2I(2) +

1

4
α2I(3) +

1

12
α2β

∫ ∞
−∞

η2
x dx

)
.

(8.43)

The energy (8.42), (8.43) in a fixed frame of reference has noninvariant

form. The last term in (39) results in small deviations from energy conserva-

tion only when ηx changes in time in soliton’s reference frame, what occurs
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only during soliton collision. This deviations are discussed and illustrated in

Section 8.5.

The result (8.42) gives the energy in powers of η only. The same structure

of powers in η was obtained by the authors of [8], who work in dimensional

KdV equations (8.6) and (8.7). On page 122 they present a non-dimensional

energy density E in a frame moving with the velocity U . Then, if U = 0 is

set, the energy density in a fixed frame is proportional to αη + α2η2 as the

formula is obtained up to second order in α. However, the third order term is
1
4α

3η3, so the formula up to the third order in α becomes

E ∼ αη + α2η2 +
1

4
α3η3. (8.44)

This energy density contains the same terms like (8.42) and does not contain

the term η2
x, as well.

Energy calculated from the definition does not contain a proper invariant

of motion.

8.3.2 Energy in a moving frame

Now, we consider the total energy according to (28) calculated in a frame

moving with the velocity of sound c =
√
gh. Using the same scaling (29) to

dimensionless variables we note that in these variables c = 1. As pointed

by Ali and Kalisch [8, Sect. 3], working with such system one has to replace

φx by the horizontal velocity in a moving frame, that is by φ̃x̃ − 1
α = αη̃ −

1
4αη̃

2 +β
(

1
3 −

y2

2

)
η̃x̃x̃− 1

α . Then repeating the same steps as in the previous

subsection yields the energy expressed by invariants

Etot = ρgh2L

∫ ∞
−∞

[
−1

2
αη̃ +

1

4
(αη̃)2 +

1

2
α3

(
η̃3 − 1

3

β

α
η̃2
x̃

)]
dx̃

= ρgh2L

(
−1

2
αI(1) +

1

4
α2I(2) +

1

2
α3I(3)

)
. (8.45)

The crucial term − 1
6α

2β η̃2
x̃ in (8.45) appears due to integration over vertical

variable of the term β
α η̃x̃x̃ supplied by (φ̃x̃ − 1

α )2.

8.4 Variational approach

8.4.1 Lagrangian approach, potential formulation

Some attempts at the variational approach to shallow water problems are

summarized in Whitham’s book [144, Sect 16.14].
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For KdV as it stands, we can not write a variational principle directly. It

is necessary to introduce a velocity potential. The simplest choice is to take

η = ϕx. Then equation (8.1) in the fixed frame takes the form

ϕxt + ϕxx +
3

2
αϕxϕxx +

1

6
βϕxxxx = 0 . (8.46)

The appropriate Lagrangian density is

Lfixed frame = −1

2
ϕtϕx −

1

2
ϕ2
x −

α

4
ϕ3
x +

β

12
ϕ2
xx . (8.47)

Indeed, the Euler–Lagrange equation obtained from Lagrangian (8.47) is just

(8.46).

For our moving reference frame the substitution η = ϕx into (8.3) gives

ϕxt +
3

2
αϕxϕxx +

1

6
βϕxxxx = 0 . (8.48)

So, the appropriate Lagrangian density is

Lmoving frame = −1

2
ϕtϕx −

α

4
ϕ3
x +

β

12
ϕ2
xx . (8.49)

Again, the Euler-Lagrange equation obtained from Lagrangian (8.49) is just

(8.48).

8.4.2 Hamiltonians for KdV equations in the potential formulation

The Hamiltonian for the KdV equation in a fixed frame (8.1) can be obtained

in the following way [28]. Defining generalized momentum π =
∂L
∂ϕt

, where

L is given by (8.47), one obtains

H =

∫ ∞
−∞

[πϕ̇− L] dx =

∫ ∞
−∞

[
1

2
ϕ2
x +

α

4
ϕ3
x −

β

12
ϕ2
xx

]
dx

=

∫ ∞
−∞

[
1

2
η2 +

1

4
α

(
η3 − β

3α
η2
x

)]
dx . (8.50)

The energy is expressed by invariants I(2), I(3) so it is a constant of motion.

The same procedure for KdV in a moving frame (8.3) gives

H =

∫ ∞
−∞

[πϕ̇− L] dx =

∫ ∞
−∞

[
α

4
ϕ3
x −

β

12
ϕ2
xx

]
dx

=
1

4
α

∫ ∞
−∞

(
η3 − β

3α
η2
x

)
dx . (8.51)
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The Hamiltonian (8.51) only consists I(3).

The constant of motion in a moving frame is

E =
1

4
I(3) = const. (8.52)

The potential formulation of the Lagrangian, described above, is succesful

for deriving KdV equations both for fixed and moving reference frames. It

fails, however, for the extended KdV equation (4.27). We proved that there

exists a nonlinear expression of L(ϕt, ϕx, ϕxx, . . .), such that the resulting

Euler–Lagrange equation differs very little from equation (4.27). The differ-

ence lies only in the value of one of the coefficients in the second order term

αβ
(

23
24ηxη2x + 5

12ηη3x

)
. Particular values of coefficients in this term cause the

lack of the I(2) invariant for second order KdV equation, (see (8.28)) and ad-

mit for adiabatic invariants only. A more detailed discussion on this point is

given in Chapter 9.

8.5 Luke’s Lagrangian and KdV energy

The full set of Euler equations for the shallow water problem, as well as KdV

equations (8.1), (8.5), and the extended KdV equation (4.27) can be derived

from Luke’s Lagrangian [103], see, e.g. [105]. Luke points out, however, that

his Lagrangian is not equal to the difference of kinetic and potential energy.

Euler-Lagrange equations obtained from L = T − V do not have the proper

form at the boundary. Instead, Luke’s Lagrangian is the sum of kinetic and

potential energy supplemented by the φt term which is necessary for dynamical

boundary condition.

8.5.1 Derivation of KdV energy from the original Euler equations

according to [72]

In Chapter 5.2 of [72], Infeld and Rowlands present a derivation of the KdV

equation from the Euler (hydrodynamic) equations using a single small pa-

rameter ε. Moreover, they show that the same method allows us to derive the

Kadomtsev-Petviashvili (KP) equation [76] for water waves [12, 67, 68, 102]

and also nonlinear equations for ion-acoustic waves in a plasma [69, 71]. The

authors first derive equations of motion, then construct a Lagrangian and look

for constants of motion. For the purpose of this paper and for comparison to

results obtained in the next subsections it is convenient to present their results
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starting from Luke’s Lagrangian density. That density can be written as (here

g = 1)

L =

∫ 1+η

0

[
φt +

1

2
(φ2
x + φ2

z) + z

]
dz . (8.53)

In Chapter 5.2.1 of [72] the authors introduce scaled variables in a movimg

frame (ε plays a role of small parameter and if ε = α = β, then KdV equation

is obtained).

Then (for details, see [72, Chapter 5.2])

φz = −ε 3
2 zfξξ, φx = εfξ − ε2 z

2

2
fξξξ,

φt = −εfξ + ε2

(
fτ +

z2

2
fξξξ

)
− ε3 z

2

2
fξξτ . (8.54)

Substitution of the above formulas into the expression [ ] under the integral

in (8.53) gives

[ ] = z − εfξ + ε2

(
fτ +

1

2
f2
ξ +

z2

2
fξξξ

)
(8.55)

+ ε3 z
2

2

[
−fξξτ + (f2

ξξ − fξfξξξ)
]

+O(ε4).

Remark 8.1. The full Lagrangian is obtained by integration of the Lagrangian

density (8.53) with respect to x. Integration limits are (−∞,∞) for a soliton

solutions, or [a, b], where b−a = L the wave length (space period) for cnoidal

solutions. Integration by parts and properties of the solutions at the limits, see

(8.10), allow us to use the equivalence
∫∞
−∞(f2

ξξ − fξfξξξ)dξ =
∫∞
−∞ 2f2

ξξdξ.

Therefore

[ ] = z−εfξ+ε2

(
fτ +

1

2
f2
ξ +

z2

2
fξξξ

)
+ε3 z

2

2

[
−fξξτ + 2f2

ξξ

]
+O(ε4). (8.56)

Integration over y gives (note that 1 + η =⇒ 1 + εη)

L =
1

2
(1 + εη)2 + (1 + εη)

[
−εfξ + ε2

(
fτ +

1

2
f2
ξ

)]
+

1

3
(1 + εη)3

[
1

2
ε2fξξξ −

1

2
ε3fξξτ + ε3f2

ξξ

]
. (8.57)

Write (8.57) up to third order in ε

L = L(0) + εL(1) + ε2L(2) + ε3L(3) +O(ε4) .

It is easy to show, that
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L(0) =
1

2
, L(1) = η − fξ,

L(2) = fτ +
1

2
η2 − ηfξ +

1

2
f2
ξ +

1

6
fξξξ, (8.58)

L(3) = ηfτ +
1

2
ηf2
ξ +

1

2
ηfξξξ −

1

6
fξξτ +

1

3
f2
ξξ.

The Hamiltonian density reads as

H = fτ
∂L
∂fτ

+ fξξτ
∂L
∂fξξτ

− L (8.59)

= −
[

1

2
+ ε (η − fξ) + ε2

(
1

2
η2 − ηfξ +

1

2
f2
ξ +

1

6
fξξξ

)
+ε3

(
1

2
ηf2
ξ +

1

2
ηfξξξ +

1

3
f2
ξξ

)]
.

Dropping the constant term one obtains the total energy as

E =

∫ ∞
−∞

[
ε (η − fξ) + ε2

(
1

2
η2 − ηfξ +

1

2
f2
ξ +

1

6
fξξξ

)
+ε3

(
1

2
ηf2
ξ +

1

2
ηfξξξ +

1

3
f2
ξξ

)]
dξ. (8.60)

Now, we need to express fξ and its derivatives by η and its derivatives.

We use (8.30) replacing α and β by ε, that is,

fξ = η − 1

4
εη2 +

1

3
εηξξ. (8.61)

Then the total energy in a moving frame is expressed in terms of the second

and the third invariants

E = −
[
ε2 1

4

∫ ∞
−∞

η2 dx+ ε3 1

2

∫ ∞
−∞

(
η3 − 1

3
η2
ξ

)
dx

]
. (8.62)

Note that the term 1
3η

2
ξ occuring in the third order invariant originates

from three terms appearing in φ2
z, φ2

x and φt (see terms fξξ and fξξξ in

(8.54)).

8.5.2 Luke’s Lagrangian

The original Lagrangian density in Luke’s paper [103] is

L =

∫ h(x)

0

ρ

[
φt +

1

2
(φ2
x + φ2

y) + gy

]
dy . (8.63)
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After scaling as in [24,78,79]

φ̃ =
h

La
√
gh
φ, x̃ =

x

L
, η̃ =

η

a
, ỹ =

y

h
, t̃ =

t

L/
√
gh
, (8.64)

we obtain

φt = ghα φ̃t̃, φ2
x = ghα2 φ̃2

x̃, φ2
y = gh

α2

β
φ̃2
ỹ. (8.65)

The Lagrangian density in scaled variables becomes (dy = hdỹ)

L = ρgha

∫ 1+αη

0

[
φ̃t̃ +

1

2

(
φ̃2
x̃ +

α2

β
φ̃2
ỹ

)]
dỹ +

1

2
ρgh2(1 + αη)2. (8.66)

So, in dimensionless quantities

L
ρgha

=

∫ 1+αη

0

[
φ̃t̃ +

1

2

(
αφ̃2

x̃ +
α

β
φ̃2
ỹ

)]
dỹ +

1

2
αη2, (8.67)

where the constant term and the term proportional to η in the expansion of

(1+αη)2 are omitted. The form (8.67) is identical with Eq. (2.9) in Marchant

& Smyth [105].

The full Lagrangian is obtained by integration over x. In dimensionless

variables (dx = Ldx̃) it gives

L = E0

∫ ∞
−∞

[∫ 1+αη

0

[
φ̃t̃ +

1

2

(
αφ̃2

x̃ +
α

β
φ̃2
ỹ

)]
dỹ +

1

2
αη2

]
dx̃. (8.68)

The factor in front of the integral, E0 = ρghaL = ρgh2Lα, has the dimension

of energy.

Next, the signs ( ∼ ) will be omitted, but we have to remember that we

are working in scaled dimensionless variables in a fixed reference frame.

8.5.3 Energy in the fixed reference frame

Express the Lagrangian density by η and f = φ(0). Now, up to first order

in small parameters

φ = f−1

2
βy2fxx, φt = ft−

1

2
βy2fxxt, φx = fx−

1

2
βy2fxxx, φy = −βyfxx.

(8.69)

Then the expression under the integral in (8.67) becomes

[ ] = ft −
1

2
βy2fxxt +

1

2
αf2

x +
1

2
αβy2

(
−fxfxxx + f2

xx

)
. (8.70)
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From properties of solutions at the limits
(
−fxfxxx + f2

xx

)
⇒ 2f2

xx. Integra-

tion of (8.70) over y yields

L
ρgha

=

(
ft +

1

2
αf2

x

)
(1 + αη)− 1

2
βfxxt

1

3
(1 + αη)3

+ αβf2
xx

1

3
(1 + αη)3 +

1

2
αη2. (8.71)

The dimensionless Hamiltonian density is (ft
∂L
∂ft

+ fxxt
∂L
∂fxxt

− L)

H
ρgh2L

=−α
[

1

2
αf2

x(1 + αη) + αβf2
xx

1

3
(1 + αη)3 +

1

2
αη2

]
. (8.72)

Again, we need to express the Hamiltonian by η and its derivatives, only.

Inserting

fx = η − 1

4
αη2 +

1

3
βηxx (8.73)

into (8.72) and leaving terms up to third order one obtains

H
ρgh2L

= −α
[
αη2 +

1

4
α2η3 +

1

3
αβ(η2

x + ηηxx)

]
. (8.74)

The energy is

E

ρgh2L
= −α

∫ ∞
−∞

[
αη2 +

1

4
α2η3 +

1

3
αβ(η2

x + ηηxx)

]
dx

= −
[
α2

∫ ∞
−∞

η2dx+
1

4
α3

∫ ∞
−∞

η3dx

]
(8.75)

since the integral of the αβ term vanishes. Here, in the same way as in calcu-

lations of energy directly from the definition (8.42), the energy is expressed by

integrals of η2 and η3. The term proportional to αη is not present in (8.75),

because it was dropped earlier [105].

8.5.4 Energy in a moving frame

Transforming into the moving frame one has

x̄ = x− t, t̄ = αt, ∂x = ∂x̄, ∂t = −∂x̄ + α∂t̄, (8.76)

φ = f − 1

2
βy2fx̄x̄, φx = fx̄ −

1

2
βy2fx̄x̄x̄, φy = −βyfx̄x̄, (8.77)

φt = −fx̄ +
1

2
βy2fx̄x̄x̄ + α(ft̄ −

1

2
βy2fx̄x̄t̄). (8.78)

Up to second order
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1

2

(
αφ2

x +
α

β
φ2
y

)
=

1

2

[
αf2

x̄ + αβy2(−fx̄fx̄x̄x̄ + f2
x̄x̄)
]

=
1

2
αf2

x̄ + αβy2f2
x̄x̄.

(8.79)

Therefore the expression under the integral in (8.67) is

[ ] = −fx̄ +
1

2
βy2fx̄x̄x̄ + α(ft̄ −

1

2
βy2fx̄x̄t̄) +

1

2
αf2

x̄ + αβy2f2
x̄x̄. (8.80)

Integration yields

L
ρgha

=

(
−fx̄ + αft̄ +

1

2
αf2

x̄

)
(1 + αη) (8.81)

+
1

3
(1 + αη)3

(
1

2
β(fx̄x̄x̄ − fx̄x̄t̄) + αβf2

x̄x̄

)
+

1

2
αη2.

Like in (8.72) above, the Hamiltonian density is

H
ρgh2L

= −α
[(
−fx̄ +

1

2
αf2

x̄

)
(1 + αη) (8.82)

+
1

3
(1 + αη)3

(
1

2
βfx̄x̄x̄ + αβf2

x̄x̄

)
+

1

2
αη2

]
.

Expressing fx̄ by (8.73) one obtains

H
ρgh2L

= −α
[
−1

4
αη2 +

1

3
βηxx −

1

2
α2η3 (8.83)

+ αβ

(
−1

4
η2
x −

5

12
ηηxx

)
− 1

18
β2ηxxxx

]
.

Finally the energy is given by

E

ρgh2L
= α2 1

4

∫ ∞
−∞

η2dx+ α3 1

2

∫ ∞
−∞

(
η3 − 1

3

β

α
η2
x

)
dx (8.84)

since integrals from terms with β, β2 vanish at integration limits, and

− 5
12ηηxx ⇒

5
12η

2
x. The invariant term proportional to αη is not present in

(8.84), because it was dropped in (8.67). If we include that term, the total

energy is a linear combination of all three lowest invariants, I(1), I(3), I(3).

Comment An almost identical formula for the energy in a moving frame,

for KdV expressed in dimensional variables (8.7), was obtained in [8]. That

energy is expressed by all three lowest order invariants

E = −1

2
c2
∫ ∞
−∞

η dx+
1

4

c2

h

∫ ∞
−∞

η2 dx+
1

2

c2

h2

∫ ∞
−∞

(
η3 − h3

3
η2
x

)
dx, (8.85)
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as well. Translation of (8.85) to nondimensional variables yields

E% = %gh2L

(
−1

2
αI(1) +

1

4
α2I(2) +

1

2
α3I(3)

)
.

8.5.5 How strongly is energy conservation violated?

The total energy in the fixed frame is given by equation (8.42). Taking into

account its non-dimensional part we may write

E1(t) =
T + V

%gh2L
=

∫ ∞
−∞

[
αη + (αη)2 +

1

4
(αη)3

]
dx

= αI(1) + α2I(2) +
1

4

∫ ∞
−∞

(αη)3dx. (8.86)
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Fig. 8.1. Precision of energy conservation for 3-soliton solution. Energies are plotted

as open circles (E1) and open squares (E2) for 40 time instants. Reproduced with

permission from [80]. Copyright (2015) by the American Physical Society

In order to see how much the changes of E1 violate energy conservation

we will compare it to the same formula but expressed by invariants

E2(t) = αI(1) + α2I(2) +
1

4
α3I(3). (8.87)



8.5 Luke’s Lagrangian and KdV energy 117

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-50 -40 -30 -20 -10  0  10  20

η
(x

,t
)

x

 t=-12

 t = -6

 t =  0

Fig. 8.2. Shape evolution of 3-soliton solution during collision. Reproduced with

permission from [80]. Copyright (2015) by the American Physical Society

The time dependence of E1 and E2 is presented in figure 8.1 for a 3-

soliton solution of KdV (8.1). Time evolution is calculated on the interval

t ∈ [−12, 0]. The shape of the 3-soliton solution is presented only for three

times t = −12,−6, 0 in order to show shapes changing during the collision.

For presentation, the example of the 3-soliton solution with amplitudes

equals 1.5, 1 and 0.5 was chosen. In figure 8.2 the positions of solutions at

given times were artificially shifted to set them closer to each other. The plots

in figures 8.1 and 8.2 for t > 0 are symmetric to those which are shown in the

figures.

For this example the relative discrepancy of the enregy E1 from the con-

stant value, is very small

δE =
E1(t = −12)− E1(t = 0)

E1(t = −12)
≈ 0.000258. (8.88)

However, the E2 energy is conserved with the numerical precision of thir-

teen decimal digits in this example. In a similar example with a 2-soliton so-

lution (with amplitudes 1 and 0.5) the relative error (8.88) was even smaller,

with the value δE ≈ 0.00014. This suggests that the degree of nonconservation

of energy increases with n, where n is the number of solitons in the solution.
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8.5.6 Conclusions for KdV equation

The main conclusions can be formulated as follows.

• The invariants of KdV in fixed and moving frames have the same form.

(Of course when we have the same scaling factor for x and t in the trans-

formation between frames).

• We confirmed some known facts. Firstly, that the usual form of the energy

H = T + V is not always expressed by invariants only. The reason lies

in the fact, as pointed out by Luke in [103], that the Euler–Lagrange

equations obtained from the Lagrangian L = T − V do not supply

the right boundary conditions. Secondly, the variational approach based

on Luke’s Lagrangian density provides the correct Euler equations at the

boundary and allows for a derivation of higher order KdV equations.

• In the frame moving with the velocity of sound all energy components are

expressed by invariants. Energy is conserved.

• Numerical calculations confirm that invariants I(1), I(2), I(3) in the forms

(8.12), (8.14), (8.17), (8.19) are exact constants of motion for two- and

three-soliton solutions, both for fixed and moving coordinate systems. In

all performed tests the invariants were exact up to fourteen digits in double

precision calculations.

• For the extended KdV equation (4.27) we have only found one invariant

of motion I(1) (8.27).

• The total energy in the fixed coordinate system as calculated in (8.42)

is not exactly conserved but only altered during collisions, even then by

minute quantities (an order of magnitude smaller than expected).

8.6 Extended KdV equation

In this section we calculate energy formula corresponding to a wave motion

governed by second order equations in scaled variables, that is the equation

(4.27) for the fixed coordinate system and the corresponding equation for a

moving coordinate system. As previously we compare energies calculated from

the definition with those Luke’s Lagrangian.

8.6.1 Energy in a fixed frame calculated from definition

Now, instead of (8.1) we consider the extended KdV equation (KdV2), that

is (4.27).
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In section 8.3, the total energy of the wave governed by KdV equation, that

is the equation (8.1) with terms only up to first order in small parameters was

obtained in (8.42). In calculation according to equation (4.27) the potential

energy is expressed by the same formula (8.35) as previously for KdV equation.

In the expression for kinetic energy the velocity potential has to be expanded

to second order in small parameters

φ = f − 1

2
βy2fxx +

1

24
β2y4fxxxx (8.89)

with derivatives 
φx = fx − 1

2βy
2fxxx + 1

24β
2y4fxxxxx

φy = −βyfxx + 1
6β

2y3fxxxx.

(8.90)

Integrating over y and retaining terms up to fourth order yields

T =
1

2
ρgh2L

∫ +∞

−∞
α2

[
f2
x + αηf2

x +
1

3
β
(
f2
xx − fxfxxx

)
+ αβ(ηf2

xx − ηfxfxxx)

+β2

(
1

20
f2
xxx −

1

15
fxxfxxxx +

1

60
fxfxxxxx

)]
dx. (8.91)

Expression (8.91) limited to first line gives kinetic energy for KdV equation,

compare (8.39).

Now, we use the expression for fx (and its derivatives) up to second order,

see, e.g., [105, equation (2.7)], [79, equation (17)]

fx = η− 1

4
αη2 +

1

3
βηxx+

1

8
α2η3 +αβ

(
3

16
η2
x +

1

2
ηηxx

)
+

1

10
β2ηxxxx. (8.92)

Insertion (8.92) and its derivatives into (8.91) gives

T =
1

2
ρgh2L

∫ +∞

−∞
α2

[
η2 +

1

2
αη3 +

1

3
β
(
η2
x + ηηxx

)
− 3

16
α2η4 + αβ

(
29

24
ηη2
x +

3

4
η2ηxx

)
(8.93)

+β2

(
1

20
η2
xx +

7

45
ηxηxxx +

19

180
ηηxxxx

)]
dx.

From properties of solutions at x → ±∞ terms with β and β2 in square

bracket vanish and the term with αβ can be simplified. Finally one obtains

T =
1

2
ρgh2L

∫ +∞

−∞
α2

[
η2 +

1

2
αη3 − 3

16
α2η4 − 7

24
αβηη2

x

]
dx. (8.94)
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Then total energy is the sum of (8.36) and (8.94)

Etot = ρgh2L

∫ ∞
−∞

[
αη + (αη)2 +

1

4
(αη)3 − 3

32
(αη)4 − 7

48
α3βηη2

x

]
dx.

(8.95)

The first three terms are identical as in KdV energy formula (8.42), the

last two terms are new for extended KdV equation (4.27).

8.6.2 Energy in a fixed frame calculated from Luke’s Lagrangian

Calculate energy in the same way as in Section 8.5, but in one order higher.

In scaled coordinates Lagrangian density is expressed by (8.67) (here we keep

infinite constant term)

L = ρgh2L

{∫ 1+αη

0

α

[
φt +

1

2

(
αφ2

x +
α

β
φ2
y

)]
dy +

1

2
(1 + αη)2

}
. (8.96)

From (8.89) we have

φt = ft −
1

2
βy2fxxt +

1

24
β2y4fxxxxt. (8.97)

Inserting (8.97) and (8.90) into (8.96), integrating over y and retaining terms

up to third order one obtains (constant term 1
2 is dropped)

L
ρgh2L

= α

{
(η + ft) + α

(
1

2
η2 + ηft +

1

2
f2
x

)
− 1

2
βfxxt

+
1

2
α2ηf2

x + αβ

(
1

6
f2
xx −

1

2
ηfxxt −

1

6
fxfxxx

)
+

1

120
β2fxxxxt

+
1

2
α2β

(
ηf2
xx − η2fxxt − ηfxfxxx

)
(8.98)

+ αβ2

(
1

40
f2
xxx −

1

30
fxxfxxxx +

1

24
ηfxxxxt +

1

120
fxfxxxxx

)
−β3 1

5040
fxxxxxxt

}
.

The the Hamiltonian density

H = ft
∂L
∂ft

+ fxxt
∂L
∂fxxt

+ f(4x)t
∂L

∂f(4x)t
+ f(6x)t

∂L
∂f(6x)t

− L

is
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H
ρgh2L

= −αη − 1

2
α2
(
η2 + f2

x

)
− 1

2
α3ηf2

x + α2β

(
−1

6
f2
xx +

1

6
fxfxxx

)
+ α3β

(
−1

2
ηf2
xx +

1

2
ηfxfxxx

)
(8.99)

+ α2β2

(
− 1

40
f2
xxx +

1

30
fxxfxxxx −

1

120
fxfxxxxx

)
.

Now, we use fx in the second order (8.92) and its derivatives. Insertion these

expressions into (8.99) and retention terms up to third order yields

H
ρgh2L

= −αη − α2η2 − 1

4
α3η3 +

3

32
α4η4 (8.100)

+ α2β

(
−1

6
η2
x −

1

6
ηηxx

)
+ α3β

(
−29

48
ηη2
x −

3

8
η2ηxx

)
+ α2β2

(
− 1

40
η2
xx −

7

90
ηxηxxx −

19

360
ηηxxxx

)
.

The energy is obtained by integration of (8.100) over x (using integration by

parts and properties of η and its derivatives at x → ±∞). Then terms with

αβ and αβ2 vanish. The final result is

E = −ρgh2L

∫ +∞

−∞

[
αη + (αη)2 +

1

4
(αη)3 − 3

32
(αη)4 − 7

48
α3βηη2

x

]
dx,

(8.101)

the same as (8.95) but with the opposite sign.

8.6.3 Energy in a moving frame from definition

Let us follow arguments given by Ali and Kalisch [8, Sec. 3] and used already in

Section 8.3. Working in a moving frame one has to replace φx by the horizontal

velocity in a moving frame, that is, φx− 1
α . Then in a frame moving with the

sound velocity we have
φx = fx − 1

2βy
2fxxx + 1

24β
2y4fxxxxx − 1

α

φy = −βyfxx + 1
6β

2y3fxxxx.

(8.102)

Then the expression under integral over y in (8.34) becomes (in the following

terms up to fourth order are kept)
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(
α2φ2

x +
α2

β
φ2
y

)
= 1− 2αfx + α2f2

x + y2α2βf2
xx (8.103)

+ y2αβfxxx − y2α2βfxfxxx −
1

12
y4αβ2fxxxxx

+ y4α2β2

(
1

4
f2
xxx −

1

3
fxxfxxxx +

1

12
fxfxxxxx

)
.

After integration over y one obtains

T =
1

2
ρgh2L

∫ +∞

−∞

[
1 + α (η − 2fx) + α2

(
−2ηfx + f2

x

)
+

1

3
αβfxxx

+ α3ηf2
x −

1

60
αβ2fxxxxx + α2β

(
1

3
f2
xx + ηfxxx −

1

3
fxfxxx

)
+ α3β

(
ηf2
xx + η2fxxx − ηfxfxxx

)
(8.104)

+ α2β2

(
1

20
f2
xxx−

1

15
fxxfxxxx−

1

12
ηfxxxxx+

1

60
fxfxxxxx

)]
dx.

Then insertion fx (8.92) and its derivatives yields

T =
1

2
ρgh2L

∫ +∞

−∞

[
−αη − 1

2
α2η2 − 1

3
αβηxx +

3

4
α3η3− α2β

(
5

24
η2
x +

1

2
ηηxx

)
− 19

180
αβ2ηxxxx −

7

16
α4η4 + α3β

(
7

12
ηη2
x +

3

8
η2ηxx

)
(8.105)

+ α2β2

(
11

30
η2
xx+

233

360
ηxηxxx+

119

360
ηηxxxx

)
+

1

36
αβ3ηxxxxxx

]
dx,

where constant term is dropped. Using properties of solutions at x → ±∞
this expression can be simplified to

T =
1

2
ρgh2L

∫ +∞

−∞

[
−αη − 1

2
α2η2 +

3

4
α3η3 − 7

16
α4η4 (8.106)

+
7

24
α2β η2

x +
1

12
α3β ηη2

x +
1

20
α2β2η2

xx

]
dx.

Then total energy is

Etot = ρgh2L

∫ +∞

−∞

[
1

2
αη +

1

4
α2η2 +

3

8
α3η3 − 7

32
α4η4 (8.107)

+
7

48
α2β η2

x +
1

24
α3β ηη2

x +
1

40
α2β2η2

xx

]
dx.

In special case α = β this formula simplifies to

Etot = ρgh2L

∫ +∞

−∞

[
1

2
αη +

1

4
α2η2 + α3

(
3

8
η3 +

7

48
η2
x

)
(8.108)

+α4

(
− 7

32
η4 +

1

24
ηη2
x +

1

40
η2
xx

)]
dx.
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8.6.4 Energy in a moving frame from Luke’s Lagrangian

Follow considerations in Section 8.5, but with KdV2 equation (4.27). Trans-

forming into the moving frame through (8.76) we have now

φ = f − 1

2
βy2fx̄x̄ +

1

24
β2y4fx̄x̄x̄x̄, (8.109)

φx = fx̄ −
1

2
βy2fx̄x̄x̄ +

1

24
β2y4fx̄x̄x̄x̄x̄, (8.110)

φy = −βyfx̄x̄ +
1

6
β2y3fx̄x̄x̄x̄, (8.111)

φt = −fx̄ +
1

2
βy2fx̄x̄x̄ −

1

24
β2y4fx̄x̄x̄x̄x̄ + α(ft̄ −

1

2
βy2fx̄x̄t̄ +

1

24
β2y4fx̄x̄x̄x̄t̄).

(8.112)

Inserting (8.109)-(8.112) into (8.96) one obtains Lagrangian density in

moving frame as (constant term 1
2 is dropped as previously)

L
ρgh2L

= α(η − fx̄) + α2

(
1

2
η2 + ft̄ − ηfx̄ +

1

2
f2
x̄

)
+

1

6
αβfx̄x̄x̄ + α3

(
ηft̄ +

1

2
ηf2
x̄

)
− 1

120
αβ2fx̄x̄x̄x̄x̄

+ α2β

(
1

6
f2
x̄x̄ −

1

6
fx̄x̄t̄ +

1

2
ηfx̄x̄x̄ −

1

6
fx̄fx̄x̄x̄

)
(8.113)

+ α3β

(
1

2
ηf2
x̄x̄ −

1

2
ηfx̄x̄t̄ +

1

2
η2fx̄x̄x̄ −

1

2
ηfx̄fx̄x̄x̄

)
+ α2β2

(
1

40
f2
x̄x̄x̄−

1

30
fx̄x̄fx̄x̄x̄x̄+

1

120
fx̄x̄x̄x̄t̄−

1

24
ηfx̄x̄x̄x̄x̄+

1

120
fx̄fx̄x̄x̄x̄x̄

)
.

Then Hamiltonian density

H = ft̄
∂L
∂ft̄

+ fx̄x̄t̄
∂L
∂fx̄x̄t̄

+ fx̄x̄x̄x̄t̄
∂L

∂fx̄x̄x̄x̄t̄
− L (8.114)

after insertion of (8.113) into (8.114) yields

H
ρgh2L

= α (−η + fx̄) + α2

(
−1

2
η2 + ηfx̄ −

1

2
f2
x̄

)
− 1

6
αβfx̄x̄x̄ −

1

2
α3ηf2

x̄

+
1

120
αβ2fx̄x̄x̄x̄x̄ + α2β

(
−1

6
f2
x̄x̄ −

1

2
ηfx̄x̄x̄ +

1

6
fx̄fx̄x̄x̄

)
+ α3β

(
−1

2
ηf2
x̄x̄ −

1

2
η2fx̄x̄x̄ +

1

2
ηfx̄fx̄x̄x̄

)
(8.115)

+ α2β2

(
− 1

40
f2
x̄x̄x̄ +

1

30
fx̄x̄fx̄x̄x̄x̄ +

1

24
ηfx̄x̄x̄x̄x̄ −

1

120
fx̄fx̄x̄x̄x̄x̄

)
.
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In order to express (8.115) by η only we use fx̄ in the form (8.92) and its

derivatives. It gives

H
ρgh2L

= −1

4
α2η2 +

1

6
αβηx̄x̄ −

3

8
α3η3 + α2β

(
5

48
η2
x +

1

4
ηηxx

)
+

19

360
αβ2ηx̄x̄x̄x̄ +

7

32
α4η4 − α3β

(
7

24
ηη2
x̄ +

3

16
η2ηx̄x̄

)
(8.116)

− α2β2

(
11

60
η2
x̄x̄ +

233

720
ηx̄ηx̄x̄x̄ +

119

720
ηηx̄x̄x̄x̄

)
− 1

72
αβ3ηx̄x̄x̄x̄x̄x̄.

Then energy is given by the integral

E = %gh2L

∫ +∞

−∞

[
−1

4
α2η2 +

1

6
αβηx̄x̄ −

3

8
α3η3 (8.117)

+ α2β

(
5

48
η2
x +

1

4
ηηxx

)
+

19

360
αβ2ηx̄x̄x̄x̄ +

7

32
α4η4

− α3β

(
7

24
ηη2
x̄ +

3

16
η2ηx̄x̄

)
− 1

72
αβ3ηx̄x̄x̄x̄x̄x̄

−α2β2

(
11

60
η2
x̄x̄ +

233

720
ηx̄ηx̄x̄x̄ +

119

720
ηηx̄x̄x̄x̄

)]
dx.

From properties of solution integrals of terms with αβ, αβ2, αβ3 vanish

and terms with α2β, α3β, α2β2 can be simplified. Finally, energy is given by

the follwing expression

E = %gh2L

∫ +∞

−∞

[
−1

4
α2η2 − 3

8
α3η3 +

7

32
α4η4 (8.118)

− 7

48
α2βη2

x −
1

24
α3βηη2

x̄ −
1

40
α2β2η2

x̄x̄

]
dx.

In special case when β = α the result is

E = %gh2L

∫ +∞

−∞

[
−1

4
α2η2 − α3

(
3

8
η3 +

7

48
η2
x

)
+α4

(
7

32
η4 − 1

24
ηη2
x̄ −

1

40
η2
x̄x̄

)]
dx. (8.119)

If the invariant term I(1) ≡
∫
αη dx is dropped in (8.95) or (8.101) then

the energy calculated in the moving frame (8.118) have the same value but

with oposite sign.
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8.6.5 Numerical tests

Fixed frame

In order to check energy conservation for the extended KdV equation (4.27),

we performed several numerical tests. First, let us discuss energy conserva-

tion in a fixed frame. We calculated time evolution governed by the equation

(4.27) of waves which initial shape was given by 1-, 2- and 3-soliton solutions

of the KdV (first order) equations. For presentation, the following initial con-

ditions were chosen. The 3-soliton solution has amplitudes 1.5, 1 and 0.25,

the 2-soliton solution has amplitudes 1 and 0.5, and the 1-soliton solution has

the amplitude 1. The changes of energy presented in figures 8.4 and 8.5 are

qualitatively the same also for different amplitudes. An example of such time

evolution for the 3-soliton solution is presented in figure 8.3.
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 1.6

 1.8

 2

 50  100  150  200  250  300  350  400  450

η
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t=120
t=240
t=315

Fig. 8.3. Example of time evolution of 3-soliton solution. Reproduced with permis-

sion from [80]. Copyright (2015) by the American Physical Society

Time range in figure 8.3 contains the initial profile of 3-soliton solution

with almost separated solitons at t = 0, intermediate shapes and almost ideal

overlap of solitons at t = 315. In order to avoid overlaps of profiles and

display details the subsequent shapes are shifted vertically with respect to

the previous ones. Note behind the main wave additional slower waves which

are generated by second order terms of the equation (4.27), that were already

discussed in [79].
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Fig. 8.4. Energy (non)conservation for the extended KdV equation in the fixed

frame (4.27). Symbols represent values of the total energy given by formulas (8.95)

or (8.101). Full square symbols represent the invariant I(1). Reproduced with per-

mission from [80]. Copyright (2015) by the American Physical Society

We see that the total energy for waves which move according to the ex-

tended KdV equation is not conserved. Although energy variations are gen-

erally small (in time range considered they do not extend 0.001%, 0.004%

and 0.005% for 1-, 2-, 3-soliton waves, respectively) they increase with more

complicated waves. For additional check of numerics the invariant I(1) =∫ +∞
−∞ αη(x, t)dx for the eaquation (4.27) was plotted as Mass. In spite of ap-

proximate integration the value of I(1) was obtained constant up to 10 digits

for all initial conditions.

Moving frame

Here we present variations of the energy calculated in a moving frame. The

time evolution of the wave is given by the equation (4.27) transformed with

(8.76), that is the equation

ηt̄ +
3

2
ηηx̄ +

1

6

β

α
η3x̄ −

3

8
αη2ηx̄ + β

(
23

24
ηx̄η2x̄ +

5

12
ηη3x̄

)
+

19

360

β2

α
η5x̄ = 0.

(8.120)
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Fig. 8.5. Energy (non)conservation for the extended KdV equation in the moving

frame (8.120). Symbols represent values of the total energy given by the formula

(8.107). Full square symbols represent the invariant I(1). Reproduced with permis-

sion from [80]. Copyright (2015) by the American Physical Society

The time range of the evolution was chosen for a convenient comparison

with the numerical results obtained in the fixed reference frame, that is 2- and

3-soliton waves move from separate solitons to full overlap. The convention

of symbols is the same as in figure 8.4, the energy is calculated according to

the formula (8.107). In moving coordinate system energy variations are even

greater than in the fixed reference frame because in the time considered it

approaches values of 0.02%, 0.12% and 0.2% for 1-, 2- and 3-soliton waves,

respectively. This increase of relative time variations of energy cannot be at-

tributed only to two times smaller leading term ( 1
2αη) in (8.107) with respect

to (8.95). Again, despite of approximate integration, the value of I(1) was

obtained constant up to 10 digits for all initial conditions.

8.6.6 Conclusions for KdV2 equation

We calculated energy of the fluid governed by the extended KdV equation

(4.27) in two cases.
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1. In the fixed frame (sections 8.6.1 and 8.6.2).

2. In the frame moving with the natural velocity c =
√
gh (sections 8.6.3

and 8.6.4).

In both cases we calculated energy using two methods, from definition and

from Luke’s Lagrangian. Both methods give consistent results. For fixed frame

energies (8.95) and (8.101) are the same. For moving frame the energy cal-

culated from the definition contains one term more than energy calculated

from Luke’s Lagrangian, but this term (
∫
αη dx) is the invariant I(1). When

this term is dropped both energies in moving coordinate system (8.107) and

(8.118) are the same and energies in both coordinate systems differ only by

the sign.

The general conclusion concerning energy conservation for shallow water

wave problem can be formulated as follows. Since there exists the Lagrangian

of the system (Luke’s Lagrangian), then exact solutions of Euler equations

have to conserve energy. However, when approximate equations of different

orders resulting from the exact Euler equations are considered, energy con-

servation is not a priori determined. The KdV equation obtained in first

order approximation has a miraculous property, an infinite number

of invariants with energy among them. However, this astonishing

property is lost in second order approximation to the Euler equa-

tions and energy in this order may be conserved only approximately.



9

Adiabatic invariants for the extended KdV

equation

It is common knowledge that KdV possesses an infinite number of invariants

or conservation laws also known as integrals of motion [14, 36, 113, 122]. The

two lowest KdV invariants are related to conservation of the fluid volume

(mass) and its total momentum. The next one is related to energy conser-

vation. Derivations of the first KdV invariants and their relations to volume

momentum and energy conservation were presented in Chapter 8. The higher

KdV invariants have no simple interpretation. KdV is, however, the result of

an approximation of the set of the Euler equations within the perturbation

approach, limited to the first order in expansion with respect to parameters

assumed to be small. Several authors have extended KdV to the second order

(KdV2), e.g., [24,70,82,105,108,146]. In [78,79] the authors have derived the

KdV2 equation for an uneven bottom, that is KdV2B, introducing an addi-

tional small parameter related to bottom variation. However, this improved

form is lacking in exactly conserved entities other than the ubiquitous mass

law.

Many papers, e.g., [14,35,37–39,45,56,61–63,94,95,152] claim the existence

of higher invariants and integrability of second order KdV type equations. In

particular Benjamin and Olver [14] have discussed Hamiltonian structure,

symmetries and conservation laws for water waves. A near-identity transfor-

mation (NIT), introduced by Kodama [94, 95] and then used by many au-

thors, e.g., [35, 37–39, 45, 56, 61–63, 152], allows us to transform the second

order KdV type equation to an asymptotically equivalent Hamiltonian form.

The existence of the Hamiltonian form for the transformed equation supplies

the full hierarchy of invariants, which appear to be adiabatic invariants for

the original equation.
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If there are no exact invariants in the system one looks for adiabatic (ap-

proximate) ones, as in [22]. Recently we developed a straightforward method

to calculate adiabatic invariants, which allows us to find them directly from

the original ‘physical’ equation (it also works for equations written in dimen-

sional variables) [70]. Our method consists of the following: one proceeds with

the KdV2 as with construction of KdV invariants and then uses the addition

of KdV, multiplied by a small parameter, to cancel the nonintegrable terms.

In [70] we focused on this direct method mentioning NIT-based derivation of

adiabatic invariants rather briefly. In this chapter the NIT method is discussed

more broadly with particular attention paid to energy conservation law.

In [132] it is shown that KdV2 for nonflat bottom [78, 79] admits no gen-

uinely generalized symmetries, and thus is not symmetry-integrable.

9.1 Adiabatic invariants for KdV2 - direct method

We are interested in invariants of the extended KdV equation (4.27) called by

us KdV2 (since it is obtained in second order perturbation approach), which

is repeated below for reader’s convenience

ηt + ηx +
3

2
αηηx +

1

6
β η3x (9.1)

− 3

8
α2η2ηx + αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+

19

360
β2η5x = 0.

The equation was considered by several authors, see, e.g., [24, 70, 78–82, 105,

108].

In Section 8.2.2 we have recalled the fact that I(1) =

∫ ∞
−∞

η dx is an

invariant of equation (9.1) and represents the conservation of mass [80].

Below, we will be using the same notations as in Section 8.2.

9.1.1 Second invariant

The second invariant of KdV, I(2) =

∫ ∞
−∞

η2 dx is not an invariant of KdV2,

since, see [80, Sec. III B], upon multiplication of equation (9.1) by η one

obtains

∂

∂t

(
1

2
η2

)
+

∂

∂x

[
1

2
η2 +

1

2
αη3 +

1

6
β

(
−1

2
η2
x + ηη2x

)
− 3

32
α2η4 (9.2)

+
19

360
β2

(
1

2
η2
xx − ηxη3x + ηη4x

)
+

5

12
αβ η2η2x

]
+

1

8
αβ ηηxη2x = 0 .
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The last term in (9.2) can not be expressed as
∂

∂x
X(η, ηx, . . .). Therefore∫ +∞

−∞
η2dx is not a conserved quantity. There are no exact higher order in-

variants of (9.1), either.

It is possible, however, to find approximate invariants of (9.1), for which

terms violating the invariance are of the third order in α, β. Our method allows

us to find such approximate invariants with relatively low effort. It consists

in forming an equation containing functions T and X through some manip-

ulations with KdV2. Then some terms in X have nonintegrable form with

respect to x similar to the last term in (9.2). We add some linear combination

of type (c1α+ c2β)×KdV 2(x, t) to that equation, drop the third order terms

and require that nonintegrable terms cancel. (Equivalently, we add some lin-

ear combination of type (c1α+ c2β)×KdV (x, t) without dropping any term.)

This action yields a new T ′ function and an approximate conservation law

for
∫∞
−∞ T ′dx. Note that this procedure is analogous to that used in the con-

struction of KdV invariants, described in detail in section 8.2.1. The term

KdV 2(x, t) used above means the l.h.s. of the KdV2 equation (9.1).

The first approximate invariant can be obtained by adding to (9.2) equa-

tion (9.1) multiplied by c1αη
2, dropping third-order terms and choosing an

appropriate value of c1 in order to cancel the term
1

8
αβ ηηxη2x. When this is

done we are left with the expression

c1αηtη
2 + c1αη

2ηx + c1
3

2
α2η3ηx + c1

1

6
αβη2η3x. (9.3)

In integration over x of (9.3), the second and fourth terms are integrable with

respect to x and then they can be included into the flux function X.

The last term in (9.3) can be transformed to − 1
3c1αβηηxη2x. The condition

for cancellation of this term with 1
8αβ ηηxη2x gives c1 =

3

8
. Then the first term

in (9.3) yields

c1αηtη
2 =

∂

∂t

(
1

8
αη3

)
(9.4)

and since the other terms are integrable we obtain an approximate invariant

of KdV2 (1
2 is omitted)

I
(2α)
ad =

∫ ∞
−∞

(
η2 +

1

4
αη3

)
dx ≈ const. (9.5)

However, there is an alternative way to cancel the last term in (9.2)

and obtain a second approximate invariant. This goal can be achieved by
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adding to (9.2) equation (9.1) multiplied by c2βη2x, dropping again third-

order terms and choosing an appropriate value of c2 in order to cancel the

term
1

8
αβ ηηxη2x. Then new terms are

c2βηtη2x + c2βηxη2x + c2
3

2
αβηηxη2x + c2

1

6
β2η2xη3x. (9.6)

In integration over x of (9.6), the second and fourth terms are integrable

with respect to x and then they can be included into X. The condition for

cancellation of nonintegrable terms

c2
3

2
αβηηxη2x +

1

8
αβ ηηxη2x = 0

implies c2 = − 1
12 .

Integration of the first term in (9.6) over x gives∫ ∞
−∞

c2βηtη2xdx = c2β

(
ηtηx|∞−∞ −

∫ ∞
−∞

ηtxηx

)
= −c2β

∫ ∞
−∞

∂

∂t

(
1

2
η2
x

)
.

(9.7)

Since terms with ηxη2x and η2xη3x can be expressed as
(
− 1

2η
2
x

)
x

and(
− 1

2η
2

2x

)
x
, respectively, the final result is

∂

∂t

∫ ∞
−∞

1

2

(
η2 +

1

12
βη 2

x

)
dx+ F (η, ηx, η2x)|∞−∞ = O(α3), (9.8)

where F (η, ηx, η2x) comes from the flux term and vanishes due to properties of

the solutions at ±∞. We assume that solutions at ±∞ vanish or are periodic.

Therefore we have an approximate (adiabatic) invariant of KdV2 (9.1) in

the form

I
(2β)
ad =

∫ ∞
−∞

(
η2 +

1

12
β η 2

x

)
dx ≈ const. (9.9)

The existence of two independent adiabatic invariants I
(2α)
ad and I

(2β)
ad

means also that

I
(2)
ad = ε I

(2α)
ad + (1− ε)I(2β)

ad =

∫ ∞
−∞

(
η2 + ε

1

12
αη3 + (1− ε) 1

12
β η 2

x

)
dx

(9.10)

is an adiabatic invariant for any ε, that is, there exists one parameter family

of adiabatic second invariant of KdV2.

9.1.2 Third invariant

In order to find the third invariant for KdV2 one can follow the procedure

described in section 8.2.1, in equations (8.15)-(8.17), but with KdV2 equation.

Let us take
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3η2 ×KDV2(x, t)− 2

3

β

α
ηx ×

∂

∂x
KDV2(x, t) = 0 (9.11)

and consider a simpler case, when β = α. The result is

∂

∂t

(
η3 − 1

3
η2
x

)
+

∂

∂x

(
η3 − 1

3
η2
x + α

9

8
η4 − α2 9

40
η5

)
(9.12)

+ α

(
−η3

x − ηηxη2x +
1

2
η2η3x

)
+ α2

(
1

2
ηη3
x +

25

8
η2ηxη2x −

23

36
ηxη

2
2x

+
5

4
η3η3x −

11

12
η2
xη3x −

5

18
ηηxη4x +

19

120
η2η5x

)
.

In (9.12), we omitted terms which vanish under integration over x. All

terms in the second and third rows of (9.12) are nonintegrable. However,

taking an integral of the form
∫∞
−∞ ...dx and integrating by parts they can be

reduced to two types of nonintegrable terms. All terms in the bracket with

α become proportional to ηηxη2x. All terms in the bracket with α2 reduce to

ηηxη2x and ηxη
2

2x. Then using procedures described above for second adiabatic

invariant, that is, by adding to (9.12) the KdV multiplied by proper factors

one can cancel these nonintegrable terms. The added terms supply additional

terms in the T function. As in the case of second invariant this action is not

unique and there is some freedom in the form of final adiabatic invariant. One

of admissibe forms is

I
(3)
ad =

∫ ∞
−∞

(
η3 − 1

3
η2
x − αη4 +

7

12
αηη2

x

)
dx. (9.13)

Note that the first two terms in (9.13) are identical to the exact KdV invariant.

The presented method allows us to obtain higher order adiabatic invari-

ants.

9.2 Near-identity transformation for KdV2 in fixed

frame

All our considerations were performed in the fixed reference frame. They were

motivated by two facts. First, as we have pointed out in [80, eq. (39)] even for

KdV energy has noninvariant form (the same fact was shown, in dimension

variables, in the paper of Ali and Kalisch [8]). Second, we aim to study in-

variants, and asymptotic invariants not only for KdV and KdV2 but also for
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the KdV2 equation with uneven bottom, derived in [78,79]. For this equation

only the fixed reference frame makes sense.

Second order versions of KdV type equations are not unique since there

exist transformations which transform the given equation into an equation of

the same form but with some coefficients altered. These equations are asymp-

totically equivalent, that is, their solutions converge to the same form when

small parameters tend to zero. Therefore such transformation, called near-

identity transformation (NIT), is often used to convert higher order nonlinear

differential equations to their asymptotically equivalent forms which can be

integrable. Such NIT was first introduced by Kodama [94, 95] and then used

and generalized by many authors, see, e.g., [37–39, 45, 54, 56, 63, 108]. Below

we apply NIT in the form suitable for the KdV2 equation.

We employ the near-identity transformation in the form used by the au-

thors of [37]

η = η′ + αaη′2 + βbη′xx + · · · , (9.14)

where a, b are some constants. (Here, we choose + sign. The inverse transfor-

mation, up to terms of second order, is η′ = η − αaη2 − βbηxx + · · · ).
NIT should preserve the form of the KdV2 (9.1), at most altering some

coefficients. Then it is possible to choose coefficients a, b of NIT such that the

transformed equation possesses a Hamiltonian (see the consequences in the

subsection 9.2.2).

Insertion (9.14) into (9.1) yields (terms of order higher than the second in

α, β are neglected)

η′t + η′x + α

[(
3

2
+ 2a

)
η′η′x + 2aη′η′t

]
+ β

[(
1

6
+ b

)
η′3x + bη′xxt

]
(9.15)

+ αβ

{[(
23

24
+ a+

3

2
b

)
η′xη
′
2x

]
+

[(
5

12
+

1

3
a+

3

2
b

)
η′η′3x

]}
+ α2

(
−3

8
+

9

2
a

)
η′2η′x + β2

[(
19

360
+

1

6
b

)
η′5x

]
= 0.

Since terms with time derivatives (η′t, η
′
xxt) appear in first order with respect

to small parameters we can replace them by appropriate expressions obtained

from KdV2 (9.1) limited to first order, that is from KdV (3.29)

η′t = −η′x −
3

2
αη′η′x −

1

6
βη′3x (9.16)

and
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η′xxt = ∂xx

(
−η′x −

3

2
αη′η′x −

1

6
βη′3x

)
= −η′3x−

3

2
α(3η′xη

′
2x + η′η′3x)− 1

6
βη′5x.

(9.17)

Inserting (9.16) and (9.17) into (9.15) one obtains

η′t + η′x +
3

2
αη′η′x +

1

6
βη′3x + α2

(
−3

8
+

3

2
a

)
η′2η′x (9.18)

+ αβ

[(
23

24
+ a− 3b

)
η′xη
′
2x +

5

12
η′η′3x

]
+

19

360
β2η′5x = 0.

The equation (9.18) for η′ has the same form as KdV2 (9.1) with only two

coefficients altered. The coefficient in front of the term with α2η2ηx is changed

from − 3
8 to − 3

8 + 3
2a and the coefficient in front of the term with αβηxη2x is

changed from 23
24 to 23

24 + a− 3b.

9.2.1 NIT - second adiabatic invariant

For the NIT-transformed KdV2 equation (9.18) one can find the second in-

variant in the same way as previously, that is multiplying (9.18) by η′ and

requiring that the coefficient in front of the nonintegrable term vanishes. This

gives ∫ ∞
−∞

η′
[

5

12
η′η′3x +

(
23

24
+ a− 3b

)
η′xη
′
2x

]
dx = 0. (9.19)

Since ∫ ∞
−∞

η′2η′3x dx = −2

∫ ∞
−∞

η′η′xη
′
2x dx (9.20)

one obtains(
−2

5

12
+

23

24
+ a− 3b

)∫ ∞
−∞

η′η′xη
′
xx dx = 0 =⇒ a− 3b+

1

8
= 0. (9.21)

Then under the condition

a− 3b = −1

8
(9.22)

the integral

∫ ∞
−∞

η′2dx is the exact invariant of the equation (9.18).

Using inverse NIT

η′ = η − αaη2 − βbηxx + · · · , (9.23)

and neglecting higher order terms, one gets∫ ∞
−∞
η′2dx ≈

∫ ∞
−∞

[
η2 − 2αaη3 − 2βbηηxx

]
=

∫ ∞
−∞

[
η2 − 2αaη3 + 2βbη2

x

]
dx,

(9.24)
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where the last term was obtained through integration by parts. The r.h.s. of

(9.24) is the most general form of the second adiabatic invariant of KdV2 un-

der the condition (9.22), that is, one parameter family of adiabatic invariants

I
(2)
ad =

∫ ∞
−∞

[
η2 − 2αaη3 + 2βbη2

x

]
dx ≈ const. (9.25)

In particular, with a = 0, b = 1
24

I
(2)
ad =

∫ ∞
−∞

(
η2 +

1

12
βη2

x

)
dx = I

(2β)
ad (9.26)

and with b = 0, a = − 1
8

I
(2)
ad =

∫ ∞
−∞

(
η2 +

1

4
αη3

)
dx = I

(2α)
ad . (9.27)

These adiabatic invariants are the same as those obtained in the direct way

in (9.5) and (9.9).

The above formulas come from NIT (9.14) in which the sign + was used.

However, if in (9.14) the sign − is chosen then the condition (9.22) is replaced

by a − 3b = 1
8 . The signs of the inverse NIT become opposite and then the

final forms of adiabatic invariants remain the same as in (9.25)-(9.27).

9.2.2 NIT - third adiabatic invariant

NIT-transformed KdV2 (9.18) describes waves in the fixed frame. In order to

determine its Hamiltonian form let us convert (9.18) to a moving frame by

transformation

x̄ = x− t, t̄ = t, ∂x = ∂x̄, ∂t = −∂x̄ + ∂t̄. (9.28)

Then (9.18) can be written in more general form as

ηt̄ + αAηηx̄ + βBη3x̄ + α2A1η
2ηx̄ + β2B1η5x̄ + αβ (G1ηη3x̄ +G2ηx̄η2x̄) = 0,

(9.29)

where

A =
3

2
, B =

1

6
, A1 = −3

8
+

3

2
a, B1 =

19

360
, G1 =

5

12
G2 =

23

24
+a−3b.

(9.30)

In the following we drop bars over t and x, remembering that now we work

in the moving reference frame.
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In particular, the parameters a, b of NIT can be chosen such that

G2 = 2G1. (9.31)

In this case the Hamiltonian for the equation (9.29) exists. The condition

(9.31) with (9.30) gives

23

24
+ a− 3b = 2

5

12
=⇒ a− 3b = −1

8
.

This is the same condition as (9.22). This condition supplies one parame-

ter family of NIT, assuring Hamiltonian form of the NIT-transformed KdV2

(9.29) in the moving frame.

This Hamiltonian form is

η′t =
∂

∂x

(
δH
δη′

)
, (9.32)

where the Hamiltonian H =
∫∞
−∞H dx has density

H = −1

6
αAη′ 3 +

1

2
βBη′ 2x −

1

12
α2A1η

′ 4 − 1

2
β2B1η

′ 2
xx +

1

2
αβG1η

′η′ 2x . (9.33)

Since H = H(η′, η′x, η
′
xx), then the functional derivative in (9.32) is

δH
δη′

=
∂H
∂η′
− ∂

∂x

∂H
∂η′x

+
∂2

∂x2

∂H
∂η′xx

(9.34)

= −1

2
αAη′ 2 − βBη′xx −

1

3
α2A1η

′ 3 − αβG1

(
1

2
η′ 2x + η′η′xx

)
− β2B1η

′
4x.

Insertion (9.34) into (9.32) yields

η′t = −αAη′η′x−βBη′3x−α2A1η
′2η′x+β2B1η

′
5x−αβG1(2η′xη

′
xx+η′η′xx). (9.35)

We see that the Hamiltonian form of KdV2 in the moving frame exists under

the condition that the coefficient at the term η′xη
′
xx is two times larger that

the coefficient at the term η′η′xxx. This is achieved by a proper choice of a, b

parameters of NIT, which is the condition (9.22).

Now, the Hamiltonian is the exact constant of motion for the NIT-

transformed equation (9.29) under the condition (9.22)∫ ∞
−∞

[
−1

6
αAη′ 3 +

1

2
βBη′ 2x −

1

12
α2A1η

′ 4 (9.36)

−1

2
β2B1η

′ 2
xx +

1

2
αβG1η

′η′ 2x

]
dx = const.
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In order to obtain the adiabatic invariant of the original equation (9.1) it is

necessary to perform the inverse NIT, that is

η′ = η − αaη2 − βbηxx (9.37)

and then to neglect in the Hamiltonian density all higher order terms. This

yields

H =− 1

6
αAη3 +

1

2
βBη2

x + α2

(
1

2
aA− 1

12
A1

)
η4 (9.38)

+ β2

(
−1

2
B1η

2
2x − bBηxη3x

)
+ αβ

[(
1

2
G1 − 2aB

)
ηη2
x +

1

2
bAη2η2x

]
with the condition (9.22).

Now, we restore the original notation A = η and numerical values of

coefficients (9.30). Using relations which come from integration by parts∫ ∞
−∞

ηxη3x dx = −
∫ ∞
−∞

η 2
2x dx,

∫ ∞
−∞

η2η2x dx = −2

∫ ∞
−∞

ηη2
x dx

and changing irrelevant sign one obtains finally

I
(3)
ad =

∫ ∞
−∞

[
1

4
αη3 − 1

12
βη2

x − α2

(
1

32
+

5

8
a

)
η4 + β2

(
19

720
− 1

6
b

)
η 2

2x

+αβ

(
1

3
a+

3

2
b− 5

24

)
ηη2
x

]
. (9.39)

The result is one parameter family (9.22) of adiabatic invariants related to

energy.

In a particular case, when in (9.22), we set a = 0, b = 1
24 and then

I
(3)
ad =

∫ ∞
−∞

[
1

4
αη3 − 1

12
βη2

x −
1

32
α2η4 +

7

720
β2η 2

2x −
7

48
αβηη2

x

]
dx. (9.40)

When in (9.22) we set a = − 1
8 , b = 0, then we obtain

I
(3)
ad =

∫ ∞
−∞

[
1

4
αη3 − 1

12
βη2

x +
3

64
α2η4 +

19

720
β2η 2

2x −
1

4
αβηη2

x

]
dx. (9.41)

Another particular form of (9.39) can be received when one sets

19

720
− 1

6
b = 0 =⇒ b =

19

120
, a =

7

20
.

Then, (9.39) reduces to
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I
(3)
ad =

∫ ∞
−∞

[
1

4
αη3 − 1

12
βη2

x −
1

4
α2η4 +

7

240
αβηη2

x

]
dx. (9.42)

In a similar way one can set

1

3
a+

3

2
b− 5

24
= 0 =⇒ b =

1

10
, a =

7

40
.

In this case the adiabatic invariant has the form

I
(3)
ad =

∫ ∞
−∞

[
1

4
αη3 − 1

12
βη2

x −
9

64
α2η4 +

7

720
β2η 2

2x

]
dx. (9.43)

9.2.3 Momentum and energy for KdV2

Relations between invariants and conservation laws are not as simple as might

be expected, even for KdV. In this subsection we present these relations for

motion in a fixed reference frame. Expressions of energy for KdV and KdV2

in the moving frame can be found in [80,81].

KdV case

The first KdV invariant, that is,
∫∞
−∞ η dx = const, represents volume (mass)

conservation of the incompressible fluid.

When components of momentum are calculated as integrals over the fluid

volume from momentum density the results are as follows

px = p0

∫ ∞
−∞

[
η +

3

4
αη2

]
dx = p0

[
I1 +

3

4
α I2

]
and py = 0, (9.44)

where p0 is a constant in units of momentum. Since the vertical component

of the momentum is zero and the horizontal component is expressed by the

two lowest invariants we have the conservation of momentum law.

The total energy in the fixed frame is, see e.g. (8.43) (E0 is a constant in

energy units)

Etot = E0

∫ ∞
−∞

(
αη + (αη)2 +

1

4
(αη)3

)
dx

= E0

(
αI(1) + α2I(2) +

1

4
α2I(3) +

1

12
α2β

∫ ∞
−∞

η2
x dx

)
.

This energy has noninvariant form. The last term in results in small devi-

ations from energy conservation only when ηx changes in time in the soliton

reference frame, which occurs only during soliton collisions.
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KdV2 case

Volume conservation, that is, I1 =
∫∞
−∞ η dx = const, is fulfilled for KdV2,

too.

Calculation of momentum components within second order approximation

of the Euler equations gives also a vanishing vertical component py = 0. For

a horizontal component one gets

px = p0

∫ ∞
−∞

(
η +

3

4
αη2 − 1

8
α2η3 − 7

48
αβη2

x

)
dx (9.45)

= p0

[
I1 +

3

4
α

∫ ∞
−∞

(
η2 − 1

6
αη3 − 7

36
βη2

x

)
dx

]
.

The total momentum of the fluid is composed of two terms. The first is pro-

portional to the volume. The second, an integral in the lower row of (9.45),

contains the same functional terms η2, η3, η2
x as the expressions for the second

adiabatic invariants (9.10) and (9.25) but with slightly different coefficients.

Analogously to the KdV case (9.44) one can write

px(ad) ≈ p0

[
I1 +

3

4
αI

(2)
ad

]
. (9.46)

We will see in section 9.3 that px(ad), given by (9.46), has much smaller devi-

ations from a constant value than px, given by (9.45).

Energy Etot = T + V for the system governed by KdV2, see, e.g., [80,

equation (91)], is as follows

Etot = E0

∫ ∞
−∞

(
αη + (αη)2 +

1

4
(αη)3 − 3

32
(αη)4 − 7

48
α3βηη2

x

)
dx. (9.47)

This expression can be written as

Etot = E0

[
αI1 + α2 I2β

ad + α2

∫ ∞
−∞

(
1

4
αη3− 1

12
βη2

x−
3

32
α2η4− 7

48
αβηη2

x

)
dx

]
≈ E0 α

[
I1 + α

(
I2β
ad + αI3

ad

)]
, (9.48)

where I2β
ad is given by (9.9) and I3

ad was chosen in the form (9.42). Equation

(9.48) shows that the energy of the system described by KdV2 in a fixed frame

is approximately given by the sum of exact first invariant and combination of

second and third adiabatic invariants. Since there is one parameter freedom

in these adiabatic invariants other particular approximate formulas for the

energy are admissible, as well. Because of the approximate character of adia-

batic invariants the energy of the system is not a conserved quantity. When

motion of several solitons is considered the largest changes in the energy occur

when solitons change their shapes during collisions, see, e.g., [80, figure 4].
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Fig. 9.1. Time evolution of initially 1-, 2- and 3-soliton KdV solution according to

KdV2 (9.1). Reproduced with permission from [70]. Copyright (2017) by Elsevier

9.3 Numerical tests

One might wonder how good adiabatic invariants are. The calculations pre-

sented below give some insight.

First we calculated the time evolution, governed by equation (9.1), for

three particular waves. The finite difference method (FDM) of Zabusky [149],

generalized for precise calculation of higher derivatives [78,79] was used. The

finite element method (FEM) used for the same problems in [83] gives the

same results for soliton’s motion. As initial conditions 1-, 2- and 3-soliton

solutions of KdV were taken. The amplitudes of the 3-soliton solution were

chosen to be 1.0, 0.6 and 0.3, the amplitudes of the 2-soliton solution were

chosen as 1.0 and 0.3 and the amplitude of this single soliton was chosen as

1.0. The motion of these waves according to (9.1) and their shapes at some

instants are presented in figure 9.1. In order to avoid overlaps, vertical shifts

by 0.2 and horizontal shifts by 30 were applied in the figure. In all calculations

presented here the small parameters were both α = β = 0.1.
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The precision of numerical calculations of time evolution according to

KdV2 can be verified by presentation of the exact invariant, that is volume

conservation. Its numerical values displayed in figure 9.2 are constant up to

10 digits.
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[V
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)

t

Vol 1-sol Vol 2-sol Vol 3-sol

Fig. 9.2. Numerical precision of the volume conservation law for the three waves

displayed in figure 9.1. Reproduced with permission from [70]. Copyright (2017) by

Elsevier

9.3.1 Momentum (non)conservation and adiabatic invariant I
(2)
ad

To study approximate invariants I
(2β)
ad and I

(2α)
ad we write each of them as the

sum of two terms

I
(2α)
ad =

∫ ∞
−∞

η2 dx+

∫ ∞
−∞

1

4
αη3 dx =: Ie(t) + Ia(t), (9.49)

I
(2β)
ad =

∫ ∞
−∞

η2 dx+

∫ ∞
−∞

1

12
β η2

x dx =: Ie(t) + Ib(t). (9.50)

The first term in (9.49) and (9.50) is identical to the exact KdV invariant.

Values of adiabatic invariants I
(2α)
ad (9.49) and I

(2β)
ad (9.50) calculated for

the time evolution of waves displayed in figure 9.1 are presented in figure 9.3.

In this scale both adiabatic invariants look perfectly constant. In order to see

how good these invariants are we show how they change with respect to the

initial values.

Figure 9.4 shows changes in the quantities Ie, Ia and Ib for all three 1-, 2-,

and 3-soliton waves presented in figure 9.1. Displayed are the relative changes

of
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Fig. 9.3. Absolute values of the adiabatic invariants (9.49) and (9.50) for the time

evolution shown in figure 9.1. Reproduced with permission from [70]. Copyright

(2017) by Elsevier
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Fig. 9.4. Relative changes of Ia and Ib as a functions of time for the three waves

presented in figure 9.1. Reproduced with permission from [70]. Copyright (2017) by

Elsevier

Ie =
Ie(t)− Ie(0)

Ie(0) + Ia(0)
, Ia =

Ia(t)− Ia(0)

Ie(0) + Ia(0)
, Ib =

Ib(t)− Ib(0)

Ie(0) + Ia(0)
.

The figure shows that the corrections Ia, Ib to the KdV invariant Ie have

very similar absolute values as Ie but opposite sign. Therefore one can ex-

pect that their sums with Ie should almost cancel ensuring that variations of

approximate invariants I
(2α)
ad and I

(2β)
ad will be very small.
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Fig. 9.5. Relative changes of the approximate invariants: I
(2α)
ad , denoted as Ie +

Ia and I
(2β)
ad denoted as Ie + Ib for the three waves displayed in the figure 9.1.

Reproduced with permission from [70]. Copyright (2017) by Elsevier

This expectation is confirmed by figure 9.5. For long term evolution,

the relative changes of all approximate invariants are less than the order of

0.00025.

As we have already mentioned the fluid momentum is related to the adia-

batic invariant I
(2)
ad . Let us compare the momentum given by defintion (9.45)

with its approximation expressed by adiabatic invariant (9.46). The former is

presented in figure 9.6, top. In the latter, displayed in figure 9.6, bottom, for

I
(2)
ad we used (9.10) with ε = 1

2 . It is clear that the approximate momentum

expressed by exact first invariant and adiabatic invariant I
(2)
ad sufers much

smaller fluctuations than the exact momentum (9.45).

9.3.2 Energy (non)conservation and adiabatic invariant I
(3)
ad

Relative changes of the energy, that is (E(t)−E(0))/E(0) for time evolution

of 1-, 2- and 3-soliton waves, presented in figure 9.1, are displayed in figure 9.7,

top.

How good are adiabatic invariants I
(2)
ad and I

(3)
ad ? The energy (9.47) can be

approximated by a linear combination of three terms (9.48), exact invariant I1

and adiabatic invariants I
(2)
ad and I

(3)
ad . Relative changes of that approximate
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Fig. 9.6. Top: Relative changes of px (9.45) as a function of time for the three waves

presented in figure 9.1. Bottom: The same for px(ad) (9.46).

energy (9.48) are displayed in figure 9.7, bottom. Comparing top and bottom

parts of the figure 9.7, we see, that, as in the case of momentum, the approxi-

mate energy expressed by adiabatic invariants is closer to constant value than

the exact one.

Apart from volume conservation, which holds almost to numerical pre-

cision (see figure 9.2), the adiabatic invariants presented in figures 9.5 and

9.6, and the energy shown in figure 9.7 for longer times slowly decrease with

time. In our opinion the reason lies in the fact that initial conditions, taken

as 1-, 2-, 3-soliton solutions of the KdV equation, are not exact solutions

of the KdV2 equation. The known 1-soliton analytic solution of KdV2 equa-
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Fig. 9.7. Top: Relative changes of energy (9.47) as a function of time for the three

waves presented in figure 9.1. Reproduced with permission from [82]. Copyright

(2017) by Elsevier. Bottom: The same for energy approximated by adiabatic invari-

ants (9.48).

tion found in [79] preserves exactly its shape and then possesses the infinite

number of invariants. The same is true for recently found [70] exact analytic

periodic solutions of KdV2. However, we do not expect the existence of ex-

act n-soliton solutions for KdV2 since it does not belong to a hierarchy of

integrable equations. On the other hand the 2- or 3-soliton solutions of an

integrable equation like those obtained through NIT are likewise not exact

solutions of (9.1) and the deviations from exactness will cause dissipation.



9.4 Summary and conclusions 147

9.4 Summary and conclusions

In this chapter adiabatic invariants of KdV2 are described in detail. A method

of direct calculation of adiabatic invariants for KdV2, developed in [82], is

presented. This method can be applied directly to equations written in the

fixed reference frame and with different small parameters of similar order, for

instance α 6= β. The method does not require a transformation to a particular

moving frame, nor a near-identity transformation and therefore calculations of

second invariant are simpler. It can be applied also to higher order invariants.

The NIT-based method, developed in section 9.2, seems to be more suitable

for the adiabatic invariant related to energy since it gives the most general

form of this invariant directly.

Numerical tests have proved that adiabatic invariants related to momen-

tum and energy have indeed almost constant values. The largest deviations

from these nearly constant values appear during soliton collisions.

Since the KdV2 equation has nonintegrable form, momentum and energy

are not exact constants (see, e.g., figure 9.6 and figure 9.7).

There is, however, an intriguing kind of paradox with KdV2 invariants. On

the one hand, exact invariants related to momentum and energy do not exist,

only adiabatic ones are found. On the other hand, despite the non-integrability

of KdV2, there exist exact analytic solutions of KdV2. The form of the single

soliton solution of KdV2 was found in [79, Sect. IV]. Recently, in [70, 129,

130], we found several kinds of analytic periodic solutions of KdV2 known as

cnoidal waves. These KdV2 solutions have the same form as corresponding

KdV solutions, but with different coefficients. Both of these solutions preserve

their shapes during motion, so for such initial conditions the infinite number

of invariants like those given by (8.25) exists. When initial conditions have

the form different from analytic solutions only adiabatic invariants are left.
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Numerical simulations for KdV2B equation -

Finite Difference Method

10.1 FDM algorithm

Let us briefly describe the scheme of our FDM code. This is a Zabusky-Kruskal

type of algorithm [150] extended for second order terms and terms introduced

by the non-flat bottom and modified in order to compute space derivatives of

η(x, t) with high accuracy.

We calculate time evolution of waves assuming periodic boundary condi-

tions. This assumption is natural for periodic solutions (cnoidal waves). For

soliton solutions, these conditions require a wide space interval, such that

values of η(x, t) at both ends of this interval are very close to zero.

Denote by

ηji = η(xi, tj), (i = 0, 1, 2, . . . , N), (10.1)

the value of the solution of (4.31) in the grid point xi = i dx at time in-

stant tj = j dt. Discrete values of space derivatives of the wave profile are

consequently denoted by

ηx(xi, tj) = (ηx)
j
i , η2x(xi, tj) = (η2x)

j
i , . . . η5x(xi, tj) = (η5x)

j
i . (10.2)

Similarly the values of the bottom function and its derivatives in the mesh

points are denoted by

hi, (hx)i, (h2x)i, (h3x)i. (10.3)

With such notations the N-dimensional vector of the wave profile at time

tj+1 is given by so-called leap-frog
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For a given instant of time, high-order space derivatives ηnx are calculated

sequentially from the profile η using nine-point central difference formula.

This scheme can be used to calculate time evolution according to KdV

equation (3.29), KdV2 equation (4.27) and KdV2B equation (4.31). For the

first one, it is enough to keep only terms in the first line in (10.4). For the

second case, one has to keep terms in the first three lines of (10.4). Time

evolution of a wave moving over an uneven bottom is obtained from the full

equation (10.4).

10.2 Numerical simulations, short evolution times

In this section, some examples of numerical calculations of time evolution

according to the second order equation (4.31) are presented and discussed. All

calculations are done in non-dimensional variables (4.1). The initial condition

was always taken in the form of the exact KdV soliton (the solution of first

order KdV equation (3.29)). Calculations were performed on the interval x ∈
[0, X] with periodic boundary conditions. The space step in the grid was

chosen to be ∆x = 0.05 and the time step ∆t = (∆x)3/4, like in [150]. In all

simulations, the volume of the fluid was conserved up to 10-11 digits.

First, we calculated the time evolution of the exact KdV soliton according

to second order equation (4.27). When α = β = 0.1 the soliton moves almost

unchanged for a long time. That behavior persists even for larger values of

small parameters (α = β = 0.15) though distortions of the tails of the soliton,

tiny in the previous case, become a little bigger.
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In the case α > β one obtains that nonlinear terms prevail and the initial

soliton quickly evolves into the two-soliton solution. In the opposite case α < β

dispersive terms predominate, and one observes decreasing amplitude of the

wave, increasing width, distortion of the shape and creation of the wave trains

at the tails. All these effects are known from the analysis of the pure KdV

equation (3.29). Up to reasonable values of small parameters, α, β / 0.15, the

same behavior is preserved for solutions to the second order equation (4.27).

Below several early results obtained in [78] for the time evolution of solu-

tions to the second order equation with bottom topography included (4.31)

are presented.
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Fig. 10.1. Time evolution of the KdV soliton according to the equation (4.31) for

decreasing water depth.

The simulations show the influence of h(x)-dependent terms. For the

beginning let us present the case of smooth decreasing (or increasing) of

the water depth. The cases are shown in figures 10.1 and 10.2, respec-

tively. The non-dimensional h(x) function was chosen in the form h(x) =

± 1
2 (tanh(0.05(x− 50)) + 1). In both cases the calculations were performed on

the interval x ∈ [0, 200] with N = 4000 grid points, where the bottom func-

tion for the subinterval x ∈ [100, 200] was symmetric to that in the subinterval

x ∈ [0, 100]. Such setting assured almost exact smoothness of the function h(x)

and its derivatives. The cases shown in figures 10.1 and 10.2 model incoming

and outgoing sea-shore waves.
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Fig. 10.2. Time evolution of the KdV soliton for α = β = 0.1 δ = 0.5 for increasing

water depth.

In the figures 10.1-10.7 the bottom function is drawn with the thick red

line (not in scale). Medium thick blue lines represent the wave shapes at

t = 0, 10, 20, . . . and the green ones at t = 5, 15, 25, . . .. In figure 10.1 we see a

growth of the wave amplitude, forward scattering and formation of the shock

wave when the soliton approaches the shallow region. In figure 10.2 the wave

slows down and decreases its amplitude when the water depth increases. At

the same time, a backward scattered wave appears.

Figures 10.3 and 10.4 show the soliton motion for the bottom containing

a well and a hump. In both cases α = β = 0.1 and δ = 0.5. The bottom

function was chosen as a sum of two Gaussians centered at x = 15 and x = 25

with widths σ = 2. Calculations were performed on the interval X ∈ [0 : 50]

with N = 1000 grid points and periodic boundary conditions. In order to

show details of the evolution thin yellow lines are plotted for t ∈ [5, 35] with

the step ∆t = 1. In both cases, we see decreasing/increasing amplitudes of

the wave passing over the well/hump, respectively. However, when the wave

comes back to the flat part of the bottom, it almost comes back to its original

shape.

The shape of the soliton evolving with respect to the equation (4.31) is

resistant to bottom variations extended on long distances. The case presented
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Fig. 10.3. Time evolution of the KdV soliton according to KdV2B for the Gaussian

well followed by the symmetric hump.
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Fig. 10.4. Time evolution of the KdV soliton according to KdV2B for the Gaussian

hump followed by the symmetric well.
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Fig. 10.5. Motion of the soliton according to the equation (4.31) for periodically

varying bottom.

in figure 10.5 shows the time evolution of the KdV soliton when the bottom

function is the sinus function with the period 2π/12.5 and the amplitude

0.2H. The soliton wave moves with its shape almost unchanged modifying its

amplitude, width, and speed. This behavior maintains for larger values of δ,

only the distortions of tails become larger.

The numerical simulations presented above exhibit the fact that KdV soli-

ton persist its form even for substantial changes of the bottom.

10.3 Further numerical studies

In the previous section, we reported the earliest examples of numerical cal-

culations for the time evolution of a KdV soliton according to the KdV2B

equation (4.31) performed in [78]. However, the examples for a non-flat bot-

tom were limited to short time evolution. In this section, we present results

obtained for much longer times of evolution in [79]. Several cases of a long

term evolution of wave motion according to the KdV2B equation, obtained

with FDM algorithm (10.4) have been already shown in previous chapters (see

figures 6.16, 7.7, 8.3, 9.1).
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Fig. 10.6. Time evolution of the initial KdV soliton according to Eq. (4.31) for

bottom shape function h−(x) and α = β = 0.1, δ = 0.2. See detailed explanations in

the text. Reproduced with permission from [79]. Copyright (2014) by the American

Physical Society

10.3.1 Initial condition in the form of KdV soliton

All the calculations presented below are performed in non-dimensional vari-

ables (4.1). In all examples presented in this subsection we assume the initial

wave as the exact single KdV soliton η(x, t) = sech
[√

3
2

(
x− x0 − t(1 + α

2 )
)]2

at x0 = 0, t = 0 (in non-dimensional variables we took the amplitude of the

soliton to be 1). Calculations were performed on the interval x ∈ [0, D] with

the periodic boundary conditions of N grid points. The space grid points

were separated by ∆x = 0.05. The time step ∆t was chosen as in [150],

i.e., ∆t = (∆x)3/4. The calculations shown in this section used grids with

N = 4400 and N = 13200, implying D = 220 and D = 660. For the soliton

motion covering the interval x ∈ [0, D] the number of time steps reaches 2·107.

In all cases, the algorithm secures the volume (mass) conservation (8.12) up

to 8-10 decimal digits. The initial position of the soliton is x0 = 0 in all cases.

We begin calculations with the bottom function defined as h±(x) =

± 1
2 [tanh(0.055(x − 55)) + 1] for x ≤ 110 and its symmetric reflection with

respect to x = 110 for x > 110. figure 10.6 presents snapshots of the time evo-
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lution of the initial wave, according to Eq. (4.31), over the bottom, defined by

h−(x) function. The red (solid) curves show the profiles of the wave at time

instants ti = 0, 10, 20, 30, 40 dt, where dt = 4, whereas the blue (dotted) ones

correspond to times ti = 5, 15, 25, 35 dt. The same color and line scheme is

used in the next figures. One observes a decrease in the amplitude of the wave

when the depth of water increases and the inverse behavior when the bottom

slants up. The small backscattered tail increases slowly with time.

In figure 10.7 the same sequence of snapshots for the soliton motion is

presented for the bottom function h+(x). Here one observes at first an increase

then a decrease in the amplitude of the main wave. In the case when the main

part of the wave approaches a shallower region a forward scattering occurs

and creates waves of much smaller amplitude outrunning the main one.

A closer inspection of the results presented above brings to light appar-

ent relations between the bottom changes and amplitude and velocity of the

main wave. When the pure KdV equation is considered (corresponding to a

limitation of Eq. (4.31) to first order and flat bottom) the amplitude of the

soliton and its velocity is greater when the water depth is smaller. Therefore,

from this point of view, one expects a slower soliton motion when it enters a
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Fig. 10.7. The same as in figure 10.6 but for the bottom shape function h+(x).

Reproduced with permission from [79]. Copyright (2014) by the American Physical

Society
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Fig. 10.8. Anticorrelations between the soliton’s velocity and the water depth.

Dots indicate the average velocities of the tops of solitons for given positions, lines

with the same color the shape of the bottom function. Reproduced with permission

from [79]. Copyright (2014) by the American Physical Society

deeper basin and a faster motion when it moves towards a shallowing. On the

other hand, inspection of solutions to the KdV-type equation obtained in [59],

(see, e.g., figures 3 and 4), which is second order in the small parameter for

slow bottom changes, shows qualitatively that when the depth decreases, the

amplitude of the solitary wave increases with simultaneous decrease of its

wavelength and velocity. (The small parameter used in [59, 126] is different

from ours, as it measures the ratio of the bottom variation to a wavelength.)

A decrease of the velocity with simultaneous increase of the amplitude (and a

creation of slower secondary waves) is obtained for the solitary wave entering

a shallower region in [140, see, figure1], as well.

The distances between the peaks shown in figures 10.6 and 10.7 indicate

that the main waves in figure 10.6 cover, in the same time periods, larger

distances over a deeper water than the waves in figure 10.7 traveling over

shallower water. The corresponding sequence of decrease/increase and in-

crease/decrease of the wave’s amplitude is apparently visible in figure 10.6

and figure 10.7, respectively.

Can we get more details on these velocities from our numerical data?

Having recorded the profiles of solitons η(x, tk) in smaller time steps than

those presented in figures 10.6-10.7, we made an effort to estimate the average

values of the velocities for a given time step. Define

v(x, ti) =
X(ti)−X(ti−1)

ti − ti−1
, (10.5)
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Fig. 10.9. Correlations between the soliton’s amplitude and the water depth. Case

α = β = 0.1, δ = 0.2. Dots indicate amplitudes of solitons for given positions, lines

with the same color the shape of the bottom function. Reproduced with permission

from [79]. Copyright (2014) by the American Physical Society

where X(ti) is the position of the top of the wave. Because this position,

due to the finite space grid, is read off by interpolation, the values of X(ti)

have precision limited to 4-5 digits. This is enough, however, to observe an

almost perfect anticorrelation of these velocities with the depth. Contrary to

“obvious” conclusions from KdV reasoning, figure 10.8 shows that when the

water depth increases, the average velocity of the top of the wave likewise in-

creases and vice versa. From plots of the bottom functions h(x), appropriately

scaled and vertically shifted, one sees that this correlation is almost linear.

Concerning numerical values, note that the velocity of the KdV soliton is

vKdV = 1 + α
2 = 1.05. Similar, however less linear, correlations occur between

the water depth and the soliton’s’ amplitude. It is presented in figure 10.9.

The forwardly scattered waves seen in figure 10.7 suggest that something

interesting can occur at later stages of the wave motion. However, in order

to eliminate the influence of “neighbor cell effects” arising from the periodic

boundary conditions, we decided to check this with an interval three times

longer, x ∈ [0 : 660] in which the bottom varies only in the first part of that

interval. Several snapshots of the wave motion in that setting are shown in

figure 10.3.1. In this case, the calculated data are plotted at time steps of

2k dt and (2k + 1) dt, k = 0, 1, . . . , 7, where dt = 8. Comparing waves at time

instants t = 15 dt, 20 dt, 25 dt, . . . (where the parts of the waves are still

far from the boundary) one sees a sequential formation of the forward wave

train in the form of a wave packet. This wave packet comes from the main
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Fig. 10.10. Distortions of solitary wave due to the motion over an extended obstacle

for α = β = 0.1, δ = 0.2. See details in the text. Reproduced with permission

from [79]. Copyright (2014) by the American Physical Society

part (a solitary wave) and moves faster than the main wave. Then this wave

packet divides at later stages of the motion. The thick green line (sf) going

through the positions of the top of the envelope of this wave packet indicates

the constant velocity of that part of the wave. Two other thick lines, grey

(sv) and magenta (sb), join the positions of the main soliton and the smaller

one, scattered backward, respectively. All three lines show the constant (but

different) velocities of these objects when the wave has already passed the

obstacle and moves over a flat bottom.

Figure 10.11 shows the longtime evolution of the initial soliton above an

extended well of the same shape and amplitude as the obstacle in the previous

case. Here only one backward scattered wave is seen. Its velocity, indicated

by the thick magenta line (sb), is only a little smaller than the velocity of the

main part of the wave.

Does the main part of the wave preserve the shape of the KdV soliton

when it is moving over the flat bottom region after passing the interval of the

varying bottom? In order to answer this question, we compared the shapes of

the main part of the wave at temporal points t = 440, 520, 600 with the shape

of KdV soliton.
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Fig. 10.11. Distortions of a solitary wave due to motion over an extended well.

Case α = β = 0.1, δ = 0.2. Reproduced with permission from [79]. Copyright (2014)

by the American Physical Society

In figure 10.12 the shapes of the main part of the waves after a long period

of evolution, shown in figures 10.3.1 and 10.11, are compared with the shape of

the KdV soliton. The comparison was made as follows. For each time instant

ti, we selected an interval x ∈ [xtop(t) − 5, xtop(t) + 5], where xtop(t) was

the position of the top of that wave. Then we fitted the formula f(x, t) =

a sech[b(x − ct)]2 to values of η(x, t) recorded in grid points as solutions of

Eq. (4.31). The symbols in figure 10.12 represent numerical solutions to (4.31),

whereas the green lines (sol) represent the fitted KdV solitons. It is remarkable

that, for the given case, it is the same soliton for all time instants when

the wave has already passed the obstacle or a well. In the case when the

obstacle forms a bump, figure 10.3.1, the fitted parameters are a = 0.9367,

b = 0.8073, c = 1.0467. In the case of a well, figure 10.11, the corresponding

set is a = 0.9707, b = 0.8206, c = 1.0488. This means that after formation

of smaller waves scattered forward and/or backward during interaction with a

bottom obstacle the main part preserves the shape of a KdV soliton, although

with slightly smaller amplitude, width and velocity.
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from figure 10.3.1 (left) and figure 10.11 (right) with the shape of the KdV soliton

(sol) after shifts to the same position. Reproduced with permission from [79]. Copy-

right (2014) by the American Physical Society

10.3.2 Initial condition in the form of KdV2 soliton

In this subsection we present some examples of the time evolution of the wave

which at t = 0 is given by (5.2), with coefficients A,B, v fulfilling (5.31)-(5.32),

i.e., it is the exact solution of the second order KdV-type equation for a flat

bottom (4.27). In figure 10.13 three cases of solitons, corresponding to three

different sets of (α, β) and moving according to the second order equation

(4.27) are displayed. In all cases, the soliton’s velocity is the same, given by

(5.32), which is different from the KdV case, where the velocity depends on

α. It is clear from the figure 10.13 that the numerical solution preserves its

shape and amplitude for all cases in agreement with the analytic solution.

In figures 10.14 and 10.15 we show time evolution of the initial soliton

(5.2) according to the equation (4.31) which contains terms from an uneven

bottom. In order to compare these cases with the evolution of initial KdV

soliton, all parameters of the calculations are the same as those related to

results shown in figures 10.3.1 and 10.11.
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Fig. 10.13. Time evolution of the exact solitons η(x, t) = ASech2 (B(x− vt)), ac-

cording to the KdV2 equation (4.27) obtained in numerical simulations for three

different sets of parameters α and β. Reproduced with permission from [79]. Copy-

right (2014) by the American Physical Society

In general, the time evolution of initial KdV2 soliton is qualitatively very

similar to the evolution of KdV soliton. In particular, as seen in figures 10.11

and 10.15, time evolution is roughly the same when soliton encounters firstly

deepening and next shallowing of the bottom. There are, however, some dif-

ferences. First of all the initial velocities of the solitons are slightly different.

For exact KdV soliton it is vKdV = 1 + α
2 = 1.05 for α = 0.1. The velocity of

KdV2 soliton (5.32) is vKdV2 ≈ 1.11455.

In cases displayed in figures 10.3.1 and 10.14, when soliton enters firstly

shallowing and then deepening, the wave packet created in front of the KdV2

soliton is broader than that in the case of KdV soliton. It moves faster and

its fragmentation, in later stages of the evolution, is more pronounced.

In conclusion, we stress that numerical simulations according to the KdV2

equation containing terms originating from a varying bottom (4.31) revealed

quantitative results concerning the velocity and amplitude of the solitary

wave. The initial soliton almost preserves its parameters (shape, amplitude)

during the motion over bottom topography being resistant to distortions.
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Fig. 10.14. The same as in figure 10.3.1 but for initial condition given by the

exact KdV2 soliton. Reproduced with permission from [79]. Copyright (2014) by

the American Physical Society
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Fig. 10.15. The same as in figure 10.11 but for initial condition given by the

exact KdV2 soliton. Reproduced with permission from [79]. Copyright (2014) by
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Numerical simulations: Petrov-Galerkin and

Finite Element Method

Results of numerical simulations presented in all previous chapters have been

obtained with the finite difference method (FDM for short) discussed in Chap-

ter 10.

It was demonstrated in [32] that finite element method (FEM) describes

properly the dynamics of the KdV equation in standard, mathematical form

(3.33), which is the equation in a moving frame of reference resulting from a

particular scaling of x and t variables (3.32). In [84] we extended this version of

FEM for the second order equations, that is, KdV2 (4.27) and KdV2B (4.31).

In [83] we generalized the method to include a white stochastic noise which

can simulate the random influence of such factors like air pressure fluctuations

and/or wind gusts. Next, we compared the results obtained in this numerical

scheme with some of the results obtained earlier using the finite difference

method in [78] and [79].

11.1 Numerical method

The emergence of soliton solutions to the KdV equation was observed in nu-

merics fifty years ago [150]. Several numerical methods used for solving the

KdV equation are discussed in [138]. Among them is the finite difference

explicit method [150], the finite difference implicit method [49] and several

versions of the pseudospectral method, as in [47]. It is also worth mentioning

papers using the FEM and Galerkin methods [17,26,31]. Most numerical ap-

plications use periodic boundary conditions, but there also exist calculations

that apply Dirichlet boundary conditions on a finite interval [133,147,148].



166 11 Numerical simulations: Petrov-Galerkin and Finite Element Method

Below we describe the construction of a method which will be applicable

not only for the numerical simulation of the evolution of nonlinear waves

governed by equations (4.27) or (4.31) but also for their stochastic versions.

Such stochastic equations are studied in the next section. Since stochastic

noise is irregular, solutions are not necessarily smooth, neither in time nor in

space. A finite element method (FEM) seems to be suitable for such a case.

11.1.1 Time discretization

In [83], we have adapted the Crank–Nicholson scheme for time evolution,

beginning with the KdV equation (3.29) in a fixed coordinate system. Note

that ηηx = 1
2 (η2)x. Denote also v = ηx and w = vx. Let us choose time step τ .

Then the KdV equation (3.29) in the Crank–Nicholson scheme can be written

as a set of coupled first order differential equations

ηn+1 − ηn + τ

(
∂

∂x
ηn+ 1

2 +
3α

4

∂

∂x
(ηn+ 1

2 )2 +
β

6
wn+ 1

2

)
= 0, (11.1)

∂

∂x
ηn+ 1

2 = vn+ 1
2 ,

∂

∂x
vn+ 1

2 = wn+ 1
2 ,

where

ηn+ 1
2 = 1

2

(
ηn+1 + ηn

)
,

vn+ 1
2 = 1

2

(
vn+1 + vn

)
,

wn+ 1
2 = 1

2

(
wn+1 + wn

)
.

(11.2)

For second order equations (4.27) or (4.31) we need to introduce two new

auxiliary variables, p = wx and q = px. Note that η2ηx = 1
3 (η3)x, ηxη2x =

1
2 (η2

x)x = 1
2 (v2)x. Moreover, η5x = q = px and

23

24
ηxη2x +

5

12
ηη3x =

13

48
(v2)x +

5

12
(ηw)x.

This setting allows us to write the Crank–Nicholson scheme for (4.27) as

the following set of first order equations
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ηn+1 − ηn + τ
∂

∂x

[
ηn+ 1

2 +
3α

4

(
ηn+ 1

2

)2

+
β

6
wn+ 1

2 − 1

8
α2
(
ηn+ 1

2

)3

(11.3)

+αβ

(
13

48

(
vn+ 1

2

)2

+
5

12

(
ηn+ 1

2wn+ 1
2

))
+

19

360
β2
(
qn+ 1

2

)]
= 0,

∂

∂x
ηn+ 1

2 − vn+ 1
2 = 0,

∂

∂x
vn+ 1

2 − wn+ 1
2 = 0,

∂

∂x
wn+ 1

2 − pn+ 1
2 = 0,

∂

∂x
pn+ 1

2 − qn+ 1
2 = 0,

where

pn+ 1
2 = 1

2

(
pn+1 + pn

)
,

qn+ 1
2 = 1

2

(
qn+1 + qn

)
.

(11.4)

For the second order KdV type equation with an uneven bottom (4.31) the

first equation in the set (11.3) has to be supplemented by terms originating

from bottom variations, yielding

ηn+1 − ηn + τ
∂

∂x

[
ηn+ 1

2 +
3α

4

(
ηn+ 1

2

)2

+
β

6
wn+ 1

2 − 1

8
α2
(
ηn+ 1

2

)3

(11.5)

+αβ

(
13

48

(
vn+ 1

2

)2

+
5

12

(
ηn+ 1

2wn+ 1
2

))
+

19

360
β2
(
qn+ 1

2

)
1

4
βδ

(
− 2

β

(
hn+ 1

2 ηn+ 1
2

)
+ηn+ 1

2 gn+ 1
2 + hn+ 1

2wn+ 1
2

)]
= 0,

where g = hxx.

Below we focus on the second order equations (4.27) and (11.3), pointing

out contributions from bottom variation later.

11.1.2 Space discretization

Following the arguments given by Debussche and Printems [32] we apply the

Petrov-Galerkin discretization and finite element method. We use piecewise

linear shape functions and piecewise constant test functions. We consider wave

motion on the interval x ∈ [0, L] with periodic boundary conditions. Given

N ∈ N, then we use a mesh Mν of points xj = jν, j = 0, 1, . . . , N , where

ν = L/N . Let V 1
ν be a space of piecewise linear functions ϕj(x), such that

ϕj(0) = ϕj(L), defined as
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ϕj(x) =


1
ν (x− xj−1) if x ∈ [xj−1, xj ]
1
ν (xj+1 − x) if x ∈ [xj , xj+1]

0 otherwise.

(11.6)

As test functions we have chosen the space of piecewise constant functions

ψj(x) ∈ V 0
ν , where

ψj(x) =

{
1 if x ∈ [xj , xj+1)

0 otherwise.
(11.7)

An approximate solution and its derivatives may be written as an expan-

sion in the basis (11.6)

ηnν (x) =
∑N
j=1 a

n
j ϕj(x),

vnν (x) =
∑N
j=1 b

n
j ϕj(x),

wnν (x) =
∑N
j=1 c

n
j ϕj(x),

pnν (x) =
∑N
j=1 d

n
j ϕj(x),

qnν (x) =
∑N
j=1 e

n
j ϕj(x),

(11.8)

where anj , b
n
j , c

n
j , d

n
j , e

n
j are expansion coefficients. Therefore, in a weak formu-

lation we can write (11.1) as

(
ηn+1
ν − ηnν , ψi

)
+ τ

{(
∂xη

n+ 1
2

ν , ψi

)
+

3α

4

(
∂x

(
η
n+ 1

2
ν

)2

, ψi

)
(11.9)

+
β

6

(
∂xw

n+ 1
2

ν , ψi

)
− 1

8
α2

(
∂x

(
η
n+ 1

2
ν

)3

, ψi

)
+αβ

[
13

48

(
∂x

(
v
n+ 1

2
ν

)2

, ψi

)
+

5

12

(
∂x

(
η
n+ 1

2
ν w

n+ 1
2

ν

)
, ψi

)]
+

19

360
β2
(
∂x

(
q
n+ 1

2
ν

)
, ψi

)}
= 0,(

∂xη
n+ 1

2
ν , ψi

)
−
(
v
n+ 1

2
ν , ψi

)
= 0,(

∂xv
n+ 1

2
ν , ψi

)
−
(
w
n+ 1

2
ν , ψi

)
= 0,(

∂xw
n+ 1

2
ν , ψi

)
−
(
p
n+ 1

2
ν , ψi

)
= 0,(

∂xp
n+ 1

2
ν , ψi

)
−
(
q
n+ 1

2
ν , ψi

)
= 0,

for any i = 1, . . . , N , where for abbreviation ∂x is used for ∂
∂x . In (11.9) and

below scalar products are defined by appropriate integrals
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(f, g) =

∫ L

0

f(x)g(x)dx.

In the case of equation (4.31), the first equation of the set (11.9) has to

be supplemented inside the bracket { } by the terms

+
1

4
βδ

(
∂x

[
− 2

β

(
hn+ 1

2 η
n+ 1

2
ν

)
(11.10)

+η
n+ 1

2
ν gn+ 1

2 + hn+ 1
2w

n+ 1
2

ν

]
, ψi

)
.

Insertion of (11.8) into (11.9) yields a system of coupled linear equations

for coefficients anj , b
n
j , c

n
j , d

n
j , e

n
j . The solution to this system supplies an ap-

proximate solution to (4.27) given in the mesh points xj .

KdV equation

In order to demonstrate the construction of the matrices involved we limit at

this point our considerations to the first order equation (3.29). It means that

we drop temporarily in (11.9) terms of second order, that is, the terms with

α2, αβ, β2. Equations with p and q do not apply because η4x and η5x do not

appear in (3.29). This leads to equations

N∑
j=1

(an+1
j − anj )(ϕj , ψi) + τ

1

2

N∑
j=1

(bn+1
j + bnj )(ϕj , ψi) (11.11)

+τα
3

16

N∑
j=1

N∑
k=1

(an+1
j + anj )(an+1

k + ank )(ϕ′jϕk + ϕjϕ
′
k, ψi)

+τβ
1

12

N∑
j=1

(cn+1
j + cnj )(ϕj , ψi) = 0,

N∑
j=1

[
(an+1
j + anj )(ϕ′j , ψi)− (bn+1

j + bnj )(ϕj , ψi)
]

= 0,

N∑
j=1

[
(bn+1
j + bnj )(ϕ′j , ψi)− (cn+1

j + cnj )(ϕj , ψi)
]

= 0.

Define

C
(1)
ij = (ϕj , ψi), C

(2)
ij = (ϕ′j , ψi),

C
(3)
ijk = (ϕ′jϕk + ϕjϕ

′
k, ψi),

(11.12)

where ϕ′j = dϕ
dx (xj). Simple integration shows that
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C
(1)
ij =


1
2ν if i = j or i = j − 1

0 otherwise,
(11.13)

C
(2)
ij =


−1 if i = j

1 if i = j − 1

0 otherwise.

(11.14)

Similarly one obtains

C
(3)
ijk = C

(2)
ij δjk. (11.15)

The property (11.15) reduces the double sum in the term with τα 3
16 to the

single one of the square of (an+1
j +anj ). Insertion of (11.13)–(11.15) into (11.11)

gives

N∑
j=1

[
(an+1
j − anj )C

(1)
ij + τ

(
1

2
(bn+1
j + bnj )C

(1)
ij (11.16)

+α
3

16
(an+1
j + anj )2C

(2)
ij + β

1

12
(cn+1
j + cnj )C

(2)
ij

)]
= 0,

N∑
j=1

[
(an+1
j + anj )C

(2)
ij − (bn+1

j + bnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1
j + bnj )C

(2)
ij − (cn+1

j + cnj )C
(1)
ij

]
= 0.

Define the 3N -dimensional vector of expansion coefficients

Xn =

An

Bn

Cn

 , (11.17)

where

An =


an1
an2
...

anN

 , Bn =


bn1
bn2
...

bnN

 , Cn =


cn1
cn2
...

cnN

 . (11.18)

In (11.16),An+1, Bn+1, Cn+1 represent the unknown coefficients andAn, Bn, Cn

the known ones. Note that the system (11.16) is nonlinear. The single nonlin-

ear term is quadratic in unknown coefficients. For the second order equations

(4.27) and (4.31) there are more nonlinear terms.
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In an abbreviated form the set (11.16) can be written as

Fi(X
n+1, Xn) = 0, i = 1, 2, . . . , 3N. (11.19)

Since this equation is nonlinear we can use the Newton method for each time

step. That is, we find Xn+1 by iterating the equation

(Xn+1)m+1 = (Xn+1)m + J−1(Xn+1)m = 0, (11.20)

where J−1 is the inverse of the Jacobian of F (Xn+1, Xn) (11.19). Choos-

ing (Xn+1)0 = Xn we obtain the approximate solution to (11.19), (Xn+1)m

in m = 3 − 5 iterations with very good precision. The Jacobian itself is a

particular (3N × 3N) sparse matrix with the following block structure

J =

 (Aa) (Ab) (Ac)

(C2) −(C1) (0)

(0) (C2) −(C1)

 , (11.21)

where each block (·) is a two-diagonal sparse (N ×N) matrix. The matrix Aa

is given by

Aa =



a1
1 0 0 · · · 0 a1

N−1 a
1
N

a2
1 a2

2 0 · · · 0 0 a2
N

0 a3
2 a3

3 0 · · · 0 0
...

...
...

. . .
...

...
...

0 0 · · · aN−3
N−4 a

N−3
N−3 0 0

0 0 · · · 0 an−2
N−3 a

N−2
N−2 0

aN1 0 · · · 0 0 aN−1
N anN


. (11.22)

In (11.22) the nonzero elements of Aa are given by

aij =
∂ Fi

∂ an+1
j

, (11.23)

where F is given by (11.19). The elements in the upper right and lower left

corners result from periodic boundary conditions. Matrices Ab and Ac have

the same structure as Aa, with only elements aij having to be replaced by

bij = ∂ Fi

∂ bn+1
j

and cij = ∂ Fi

∂ cn+1
j

, respectively.

Matrices C1 and C2 are constant. They are defined as

Ck =



C
(k)
11 0 · · · C

(k)
11 C

(k)
1N

C
(k)
21 C

(k)
22 · · · 0 C

(k)
2N

...
...

. . .
...

...

0 0 · · · C(k)
N−1N−1 0

C
(k)
N1 0 · · · C

(k)
N−1N C

(k)
NN


, (11.24)
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where k = 1, 2.

Extended KdV equation (KdV2)

For the second order equation (4.27) there are more nonlinear terms. These

are terms with α2 and αβ. According to the Petrov–Galerkin scheme we get

for the term with α2

∂x

(
ηn+ 1

2

)3

=
1

8

∂x N∑
j=1

(
an+1
j + anj

)
ϕj

3

(11.25)

=
1

8
∂x

N∑
j=1

N∑
k=1

N∑
l=1

[an+1
j + anj ][an+1

k + ank ][an+1
l + anl ]ϕjϕkϕl

=
1

8

N∑
j=1

N∑
k=1

N∑
l=1

[an+1
j + anj ][an+1

k + ank ][an+1
l + anl ]

×
(
ϕ′jϕkϕl + ϕjϕ

′
kϕl + ϕjϕkϕ

′
l

)
.

Denote

C
(4)
ijkl =

([
ϕ′jϕkϕl + ϕjϕ

′
kϕl + ϕjϕkϕ

′
l

]
, ψi
)
. (11.26)

Similarly as for C
(3)
ijk in (11.15) the following property holds

C
(4)
ijkl = C

(2)
ij δjk δkl. (11.27)

In a similar way, for terms with αβ we obtain

∂x

(
vn+ 1

2

)2

=
1

4
∂x

 N∑
j=1

(
bn+1
j + bnj

)
ϕj

N∑
k=1

(
bn+1
k + bnk

)
ϕk


=

1

4

N∑
j=1

N∑
k=1

[bn+1
j + anj ][bn+1

k + bnk ]
(
ϕ′jϕk + ϕjϕ

′
k

)
and

∂x

(
ηn+ 1

2wn+ 1
2

)
=

1

4
∂x

 N∑
j=1

(
an+1
j + anj

)
ϕj

N∑
k=1

(
an+1
k + ank

)
ϕk


=

1

4

N∑
j=1

N∑
k=1

[an+1
j + anj ][bn+1

k + bnk ]
(
ϕ′jϕk + ϕjϕ

′
k

)
.

The scalar products appearing in the terms proportional to α2 and αβ are

already defined:
((
ϕ′jϕk + ϕjϕ

′
k

)
, ψi
)

= C
(3)
ijk.
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Due to properties (11.27) and (11.15) triple and double sums reduce to

single ones. With these settings the second order KdV equation (11.9) gives

the following system of equations

N∑
j=1

{
(an+1
j − anj )C

(1)
ij + τ

[
1

2
(bn+1
j + bnj )C

(1)
ij (11.28)

+

(
α

3

16
(an+1
j + anj )2 + β

1

12
(cn+1
j + cnj )

−α2 1

64
(an+1
j + anj )3 + αβ

13

192
(bn+1
j + bnj )2

+αβ
5

96
(an+1
j + anj )(cn+1

j + cnj ) +β2 19

720
(en+1
j + enj )

)
C

(2)
ij

]}
= 0,

N∑
j=1

[
(an+1
j + anj )C

(2)
ij − (bn+1

j + bnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1
j + bnj )C

(2)
ij − (cn+1

j + cnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(cn+1
j + cnj )C

(2)
ij − (dn+1

j + dnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1
j + bnj )C

(2)
ij − (en+1

j + enj )C
(1)
ij

]
= 0,

where i = 1, 2, . . . , N .

In this case the vector of expansion coefficients Xn is 5N -dimensional

Xn =


An

Bn

Cn

Dn

En

 , (11.29)

where An, Bn and Cn are already defined in (11.18) and

Dn =


dn1
dn2
...

dnN

 , En =


en1
en2
...

enN

 . (11.30)

The Jacobian becomes now (5N ×5N) dimensional. Its structure, however, is

similar to (11.21), that is
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J =


(Aa) (Ab) (Ac) (0) (Ae)

(C2) −(C1) (0) (0) (0)

(0) (C2) −(C1) (0) (0)

(0) (0) (C2) −(C1) (0)

(0) (0) (0) (C2) −(C1)

 , (11.31)

where the matrices (Aa), (Ab), (Ac) are defined as previously and (Ae)ij =
∂Fi

∂en+1
j

. Now Fi represents the set (11.28) which contains four nonlinear terms.

KdV2B equation

For the extended KdV with non-flat bottom we have to include into (11.28)

three additional terms contained in the last line of formula (4.31). Expanding

the bottom function h(x) and its second derivative h2x(x) in the basis {ϕj(x)}

h(x) =

N∑
j=1

H0
j ϕj(x), h2x(x) =

N∑
j=1

H2
j ϕj(x) (11.32)

we can write the terms mentioned above in the following form

∂x

(
hηn+ 1

2

)
=

1

2

N∑
j=1

N∑
k=1

H0
j

(
an+1
k + ank

) (
ϕ′jϕk + ϕjϕ

′
k

)
, (11.33)

∂x

(
h2xη

n+ 1
2

)
=

1

2

N∑
j=1

N∑
k=1

H2
j

(
an+1
k + ank

) (
ϕ′jϕk + ϕjϕ

′
k

)
, (11.34)

∂x

(
hη

n+ 1
2

2x

)
=

1

2

N∑
j=1

N∑
k=1

H0
j

(
cn+1
k + cnk

) (
ϕ′jϕk + ϕjϕ

′
k

)
. (11.35)

Since ((
ϕ′jϕk + ϕjϕ

′
k

)
, ψi
)

= C(3)(i, j, k) = C(2)(i, j) δjk,

terms proportional to βδ can be reduced to single sums like those proportional

to α2, αβ and β2 discussed in previous subsections. Finally, taking the bot-

tom terms into account, one obtains (4.31) as a system of coupled nonlinear

equations (i = 1, 2, . . . , N)
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N∑
j=1

{
(an+1
j − anj )C

(1)
ij + τ

[
1

2
(bn+1
j + bnj )C

(1)
ij +

(
α

3

16
(an+1
j + anj )2 (11.36)

+β
1

12
(cn+1
j + cnj )− α2 1

64
(an+1
j + anj )3 + β2 19

720
(en+1
j + enj )

+αβ

(
13

192
(bn+1
j + bnj )2 +

5

96
(an+1
j + anj )(cn+1

j + cnj )

)
−1

4
δH0

j

(
an+1
k +ank

)
+

1

8
βδH2

j

(
an+1
k +ank

)
−1

8
βδH0

j(c
n+1
j +cnj )

)
C

(2)
ij

]}
= 0,

N∑
j=1

[
(an+1
j + anj )C

(2)
ij − (bn+1

j + bnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1
j + bnj )C

(2)
ij − (cn+1

j + cnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(cn+1
j + cnj )C

(2)
ij − (dn+1

j + dnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1
j + bnj )C

(2)
ij − (en+1

j + enj )C
(1)
ij

]
= 0.

In this case the sizes and structures of the vector Xn and all matrices remain

the same as in (11.29)-(11.31). However the matrix elements of matrices Aa

and Ac are now different from those in the subsection 11.1.2, due to new terms

in (11.36) related to the bottom function.

11.2 Simulations

It was demonstrated in [32] that the method described in the previous section

works reasonably well for the KdV equation (3.33). We aimed to apply the fi-

nite element method in order to numerically solve the second order equations

with a flat bottom (4.27) and with an uneven bottom (4.31). There exist

two kinds of solutions to KdV equations: soliton (in general, multi-soliton)

solutions and periodic solutions called cnoidal waves, see, e.g., [33, 144]. In

subsections 11.2.1 and 11.2.2 we present some examples of numerical simu-

lations for soliton solutions, whereas in the subsection 11.2.3 we give some

examples for cnoidal solutions.
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Fig. 11.1. Time evolution of the initial KdV soliton according to the KdV2 equation

(4.27). Profiles are obtained by numerical solution of the set of equations (11.28).

Dashed lines represent the undisturbed fluid surface.

11.2.1 KdV2 equation

In figure 11.1 we present several steps of the time evolution of the soliton wave

(at t = 0 it is the KdV soliton) according the the extended KdV equation

(4.27) and numerical scheme (11.28) on the interval x ∈ [0, L] with L = 72.

The mesh size is N = 720, with a time step τ = ν2, ν = L/N , and parameters

α = β = 0.1. Plotted are the calculated profiles of the wave η(x, tk) where

tk = 5 · k, k = 0, 1, ..., 10. In order to avoid overlaps of profiles at different

time instants, each subsequent profile is shifted up by 0.15 with respect to

the previous one. This convention is used in figures 11.2 and 11.3, as well.

Here and in the next figures, the dashed lines represent the undisturbed fluid

surface. As the initial condition we chose the standard KdV soliton centered

at x0 = 18. That is, in the applied units,

η(x, t = 0) = A sech2

[√
3

2
(x− x0)

]
.

Note, that in simulations presented below the amplitude of the soliton is

chosen to be equal 1. In figures 11.2-11.4 we use the same initial conditions.

The soliton motion shown in figure 11.1 is in agreement with the numerical

results obtained with the finite difference method in [78,79]. With parameters,
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α = β = 0.1 the resulting distortion of the KdV soliton due to second order

terms in (4.27), (11.28) is in the form of a small amplitude wavetrain created

behind the main wave.

11.2.2 KdV2B equation
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Fig. 11.2. Time evolution of the initial KdV soliton governed by the KdV2B equa-

tion (4.31) when the bottom has one hump. Here and in the following figures the

dotted line shows the position of (the) undisturbed bottom.

We may question whether the FEM numerical approach to the extended

KdV (11.36) is precise enough to reveal the details of soliton distortion caused

by a varying bottom. The examples plotted in figures 11.2-11.4 show that it is

indeed the case. In all the presented calculations the amplitude of the bottom

variations is δ = 0.2. The bottom profile is plotted as a black line below zero

on a different scale than the wave profile.

In figure 11.2 the motion of the KdV soliton over a wide bottom hump of

Gaussian shape is presented. Here, the bottom function is

h(x) = exp

[
−
(
x− 36

7

)2
]
.

In the scaled variables the undisturbed surface of the water (dashed lines) is

at y = 0. The soliton profiles shown in figure 11.2 are almost the same as the
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profiles obtained with the finite differences method (FDM) used in [78, 79].

There are small differences due to a smaller precision of our FEM calculations.

The FEM allows for the use of larger time steps then FDM. However, in the

FEM the computing time grows fast with the increase in the number N of

the mesh, since calculation of the inverse of the Jacobian (5N × 5N) matrices

becomes time-consuming.
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Fig. 11.3. Time evolution of the initial KdV soliton governed by the KdV2B equa-

tion (4.31) when the bottom has two narrow humps.

Figure 11.3 displays the motion of the KdV soliton above a double humped

Gaussian shaped bottom defined by

h(x) = exp

[
−
(
x− 30

6
√

2

)2
]

+ exp

[
−
(
x− 48

6
√

2

)2
]
.

Here both Gaussians are rather narrow, and therefore deviations of the wave

shape from the ideal soliton are smaller than those in figure 11.2.

In figure 11.4 we see the influence of a bottom well with horizontal size

extending the soliton’s wavelength. The bottom function is chosen as

h(x) = 1− 1

2
[tanh(x− 28) + tanh(44− x)].

Figure 11.4 shows that during the motion above smooth obstacles two effects

appear. First, some additional ’waves’ of small amplitude, but moving faster
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Fig. 11.4. Time evolution of the initial KdV soliton governed by the KdV2B equa-

tion (4.31) when the bottom has a well.

than the main solitary wave appear. Second, a wave of smaller amplitude and

smaller velocity appears behind the main wave. Both these properties were

observed and described in detail in previous chapters.

11.2.3 Motion of cnoidal waves

The cnoidal solutions to KdV equation are expressed by the Jacobi elliptic

cn2 function. The explicit formula for cnoidal solutions is, see, e.g., [33]

η(x, t) = η2 +Hcn2

(
x− ct
∆

∣∣∣∣m) , (11.37)

where

η2 =
H

m

(
1−m− E(m)

K(m)

)
, ∆ = h

√
4mh

3H
, (11.38)

and

c =
√
gh

[
1 +

H

mh

(
1− m

2
− 3E(m)

2K(m)

)]
. (11.39)

The solution (11.37)-(11.39) is written in dimensional quantities, where H is

the wave height, h is mean water depth, g is the gravitational acceleration and

m is an elliptic parameter. K(m) and E(m) are complete elliptic integrals of
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the first kind and the second kind, respectively. The value of m ∈ [0, 1] governs

the shape of the wave.

For m → 0 the cnoidal solution converges to the cosine function. For

m→ 1 the cnoidal wave exhibits peaked crests and flat troughs, such that for

m = 1 the distance between crests increases to infinity and the cnoidal wave

converges to a soliton solution.

For (4.31) and (4.27) we have to express the formulas (11.37)-(11.39) in

dimensionless variables.
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Fig. 11.5. Time evolution of the initial KdV cnoidal wave governed by the KdV2

equation (4.27) and numerical scheme (11.28).

Figure 11.5 shows the time evolution of the cnoidal wave according to

the KdV2 equation (4.27), that is, the second order KdV equation with the

flat bottom. The parameters of the simulation are: α = β = 0.14, m =

1−10−16. With this value of m the wavelength of the cnoidal wave is equal to

d ≈ 75.1552 in dimensionless units, and calculations were performed on the

interval of that length, x ∈ [0, 75.1552] with a periodic boundary condition.

The mesh size was taken as N = 752. The initial position of the wave peak

was chosen at the center of chosen interval, that is x0 = 37.5776. The explicit

form of the initial condition in this case was η(x, t = 0) = −0.0189862 +

0.368486 cn2
(
x−x0

1.90221

∣∣m). Profiles of the wave are plotted at time instants
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Fig. 11.6. Time evolution of the initial KdV cnoidal wave governed by the KdV2B

equation (4.31).

tk = 10 · k, where k = 0, 1, ..., 8. Since the amplitudes of cnoidal waves are

smaller than 1, the vertical shift for the sequential profiles in figures 11.5-11.7

is chosen to be 0.075.

In figure 11.6 we display the motion of the cnoidal wave over the bottom

which is flat in the center of the interval but with an extended hump at the

borders. In this simulation the value of parameters α, β,m and x interval are

the same as in the figure 11.5. In this case the bottom is flat in the center

of the x-interval and raises towards its borders according to the function

h(x) = 1 + 1
2 [tanh(2(x − 15) − 1

2 ) − tanh(2(x − 60) − 1
2 )]. Therefore, the

evolution was calculated according to equation (4.31) and numerical scheme

(11.36). Profiles of the wave are plotted at time instants tk = 10 · k, where

k = 0, 1, ..., 8. Figure 11.6 shows that during the wave motion over the obstacle

a kind of slower wave with smaller amplitude is created following the main

peak.

In figure 11.7 we present the initially cnoidal wave moving over an ex-

tended, almost flat hump centered at the border of the x-interval. In this

simulation m = 1 − 10−8. The intial condition is given by η(x, t = 0) =

0.0359497 + 0.368486 cn2( x−x0

1.90221 |m) with x0 = 20.1571. Because m is smaller

than in the previous cases, the wavelength d of the cnoidal wave is also smaller,

d ≈ 40.3241. Calculations were made on the interval x ∈ [0, 2d] with N = 807.
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Fig. 11.7. Time evolution of the initial KdV cnoidal wave governed by the extended

KdV equation (4.31). The bottom function is here h(x) = 1 + 1
2
[tanh(2(x − 15) −

1
2
)− tanh(2(x− 65)− 1

2
)].

Profiles of the wave are plotted at time instants tk = 10·k, where k = 0, 1, ..., 8.

Figure 11.7 shows qualitatively similar features to those in figure 11.6.
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Fig. 11.8. Precision of numerical calculations for KdV equation in the fixed frame

as a function of mesh size.
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11.2.4 Precision of numerical calculations

The KdV equation (3.29) or (3.33) is unique since it possesses an infinite

number of invariants, see, e.g., [36, 113]. As we have already written, the

lowest invariant, I1 =
∫ +∞
−∞ ηdx, represents the conservation law for the mass

(volume) of the liquid. The second, I2 =
∫ +∞
−∞ η2dx, is related to momentum

conservation, and the third, I3 =
∫ +∞
−∞ (η3 − 1

3η
2
x)dx, is related to energy

conservation. However, as pointed by [4, 8, 80] and in Chapters 8-9 of this

book, the relations between I2 and momentum and I3 and energy are more

complex.

Approximate conservation of these invariants often serves as a test of the

precision of numerical simulations. However, this is not the case for the second

order KdV type equations (4.31) and (4.27). It was noted in [80] that I1 is

an invariant of equations (4.31) and (4.27) but I2 and I3 are not invariants.

Therefore, only I1 can be used as a test for the precision of numerical calcula-

tions of waves moving according to the second order extended KdV equations.

In all the presented calculations the precision of the numerical values of I1

was consistently high (the values I1(t)−I1(0)
I1(0) ≤ 10−6).

Wave motion according to KdV and extended (second order) KdV equa-

tions is usually calculated in the reference frame moving with the natural ve-

locity c = 1 in scaled dimensionless variables (in original variables c =
√
gh).

The KdV and extended KdV equations for a moving reference frame are ob-

tained by the transformation x̂ = (x − t), t̂ = t which removes the term

ηx from the equation (4.27). Then the soliton velocity in the fixed frame is

proportional to 1 + α
2 whereas in the moving frame it is proportional to α

2 .

Therefore, for the value of α = 0.1 the distance covered by a soliton in the

moving frame is α
2 /(1+ α

2 ) = 1
21 times shorter than the distance covered in the

fixed frame for the same duration. Then, with the same number of the mesh

points N the mesh size ν can be more than 20 times smaller assuring a much

higher precision of calculation in the moving frame at the same operational

cost. For instance [32] obtained a good precision for motion of KdV soliton

with the FEM method using N = 200, ν = 0.01 and time step τ = ν on the

interval x ∈ [0, 2].

Precision of FEM method in the fixed frame can be tested by calculation

of a root mean square (RMS) of deviations of wave profile obtained numeri-

cally from those obtained from the analytic solution. Denote by ηanali (t) and

ηnumi (t) the values of the solutions at given mesh point i an time instant t,

analytic and numerical, respectively. Then the RMS is expressed as
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RMS(ν, t) =

(
1

N

N∑
i=1

(ηanali (t)− ηnumi (t))2

)1/2

. (11.40)

We checked our implementation of the FEM on the interval x ∈ [0, 20]

using several different sizes ν of the mesh and several time values. Figure 11.8

displays the RMS (11.40) values for t = 10. It shows that deviations from the

analytic solution decrease substantially with decreasing ν. Small ν assures a

very high precision in numerical simulations, however, at the expense of large

computation time. Other tests (not shown here) in which ν was fixed and RMS

was calculated as a function of time showed that for τ = ν2 RMS increases

with time linerly and very slowly.

When the bottom is not flat simulations have to be done in the fixed refer-

ence frame. For our purposes, we needed to choose the x intervals of the order

of 70 or 80. Even for ν = 0.1 the size of Jacobian matrices (11.31) reaches

(4000×4000) and its inversion is time consuming. In a compromise between

numerical precision and reasonable computing times, we made our simulations

with ν = 0.1. This choice resulted in about one week of computing time for a

single run on the cluster. Despite of the insufficient precision the results pre-

sented in figures 1-7 reproduce details of evolution known from our previous

studies, obtained with the finite difference method. These details, resulting

from second order terms in extended KdV (4.27), are seen in figure 11.1 as

a wavetrain of small amplitude created behind the main one (compare with

figure 2 in [79]). A similar wavetrain behind the main one was observed in

numerical simulations by [108], see e.g., figure 2 therein. For waves moving

with the presence of bottom obstacle these secondary waves behind the main

one are amplified by interaction with the bottom and new faster secondary

waves appear (see, e.g., figures 2-4). We already observed these effects, see

figures 6 and 7 in [79].

Conclusions

The main conclusions of this chapter can be summarized as follows.

• A weak formulation of the finite element method (FEM) for extended

KdV equation (4.27) can be effectively used for numerical calculations of

the time evolution of both soliton and cnoidal waves when calculations are

done in a moving frame.

• Since numerical calculations for equation (4.31) have to be performed in

a fixed frame, the presented FEM method is not as effective as the FDM
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method used by us and our co-workers in previous papers because the

computer time necessary for obtaining sufficiently high precision becomes

impractical. On the other hand, the presented results (though not as pre-

cise as FDM ones) exhibit all secondary structures generated by higher

order terms of the equations.

11.3 Stochastic KdV type equations

In this section we report on numerical solutions to stochastic versions of second

order KdV type equations (4.27) and (4.31) obtained in [83]. In a first step let

us recall the finite element method (FEM) used by Debussche and Printems

in [32]. Their method was good enough for the the stochastic Korteweg-de

Vries equation of the form [32, equation 1.2]

ut + uux + ε uxxx = γ ξ̇. (11.41)

In Eq. (11.41) the noise term ξ(x, t) is a Gaussian process with correlations

E ξ̇(x, t) ξ̇(y, s) = c(x− y) δ(t− s) (11.42)

and γ is the amplitude of the noise. Equation (11.41) with r.h.s. equal zero

is the Korteweg-de Vries equation written in a moving reference system with

coordinates scaled in a particular way. This form was convenient for the au-

thors in order to apply the finite element method (FEM) in their numerical

simulation.

In the case of periodic boundary conditions, the noise term ξ has to be

introduced differently. Since the Brownian motions are nowhere differentiable,

we have to introduce the mathematical form of (11.41).

The Itô form of (11.41) can be written as follows

du+

(
u
∂u

∂x
+ ε

∂3u

∂x3

)
dt = γ Φ dW. (11.43)

In (11.43), W is a Wiener process on L2(0, T ), T <∞, of the form

W (t, x) =

∞∑
i=0

βi(t) ei(x), (11.44)

where {ei}i∈N is an orthonormal basis of L2(0, T ) and {βi}i∈N is a sequence

of independent real valued Brownian motions. In (11.43), Φ is an appropriate

linear map from L2(0, T ) to L2(0, T ). For more details, see [32].
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11.3.1 Numerical approach

Our aim was to extend the approach used in [32] in order to solve numerically

stochastic version of the KdV2B equation (4.31)

ηt + ηx + α
3

2
ηηx + β

1

6
η3x (11.45)

− 3

8
α2η2ηx + αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+

19

360
β2η5x

+ βδ

(
− 1

2β
(hη)x +

1

4
(h2xη)x −

1

4
(hη2x)x

)
= γ ξ̇.

Note that this equation, in contrast to KdV equation, has to be solved in

the fixed coordinate system because transformation to a moving frame would

make the bottom function time dependent.

Setting δ = 0 in (11.45) one obtains second order stochastic KdV type

equation (that is the equation for the flat bottom)

ηt + ηx + α
3

2
ηηx + β

1

6
η3x −

3

8
α2η2ηx (11.46)

+ αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+

19

360
β2η5x = γ ξ̇.

which can be solved within the same algorithm.

The details of numerical scheme for solution of equations (4.27), (4.31)

were described in section 11.1 (see, also [83]). Therefore in this section we

only briefly summarize that description emphasizing the stochastic part. We

focus on (11.45) because in our scheme (11.46) is the particular case of (11.45)

when δ = 0.

We adopt the same, as in section 11.1, Crank-Nicholson scheme for time

evolution using the time step τ . Introducing the following variables

v = ηx, w = vx, p = wx, q = px, g = hxx (11.47)

we can write fifth order differential equation (11.45) as the coupled set of first

order differential equations
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ηn+1 − ηn − Φ
(
Wn+1 −Wn

)
+ τ

∂

∂x

[
ηn+ 1

2 +
3α

4

(
ηn+ 1

2

)2

+
β

6
wn+ 1

2 (11.48)

−1

8
α2
(
ηn+ 1

2

)3

+ αβ

(
13

48

(
vn+ 1

2

)2

+
5

12

(
ηn+ 1

2wn+ 1
2

))
+

19

360
β2
(
qn+ 1

2

)
+

1

4
βδ

(
− 2

β

(
hn+ 1

2 ηn+ 1
2

)
+ηn+ 1

2 gn+ 1
2 + hn+ 1

2wn+ 1
2

)]
= 0,

∂

∂x
ηn+ 1

2 − vn+ 1
2 = 0,

∂

∂x
vn+ 1

2 − wn+ 1
2 = 0,

∂

∂x
wn+ 1

2 − pn+ 1
2 = 0,

∂

∂x
pn+ 1

2 − qn+ 1
2 = 0,

where

ηn+ 1
2 = 1

2

(
ηn+1 + ηn

)
, vn+ 1

2 = 1
2

(
vn+1 + vn

)
,

wn+ 1
2 = 1

2

(
wn+1 + wn

)
, pn+ 1

2 = 1
2

(
pn+1 + pn

)
,

qn+ 1
2 = 1

2

(
qn+1 + qn

)
, hn+ 1

2 = 1
2

(
hn+1 + hn

)
,

gn+ 1
2 = 1

2

(
gn+1 + gn

)
.

(11.49)

In (11.48), ηn = η(x, nτ), ηn+1 = η(x, (n+ 1)τ) and so on.

Finite element method

Since solutions to the stochastic equation are not expected to be smooth,

we follow the arguments given in [32] and apply Petrov-Galerkin space dis-

cretization and the finite element method like in Section 11.1. We use the

same piecewise linear shape function and piecewise constant test functions

with the same definition of the mesh. So the shape functions ϕj(x) and the

test functions ψj(x) are define by (11.6) and (11.7), respectively.

Approximate solution and its derivatives may be expanded in the basis

(11.6) according to (11.50)

ηnν (x) =

N∑
j=1

anj ϕj(x), vnν (x) =

N∑
j=1

bnj ϕj(x),

wnν (x) =

N∑
j=1

cnj ϕj(x), pnν (x) =

N∑
j=1

dnj ϕj(x),

qnν (x) =

N∑
j=1

enj ϕj(x).

(11.50)
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Therefore in a weak formulation we can write (11.48) as(
ηn+1
ν − ηnν , ψi

)
−
(
Φ
(
Wn+1
ν −Wn

ν

)
, ψi
)

(11.51)

+τ

{(
∂xη

n+ 1
2

ν , ψi

)
+

3α

4

(
∂x

(
η
n+ 1

2
ν

)2

, ψi

)
+
β

6

(
∂xw

n+ 1
2

ν , ψi

)
−1

8
α2

(
∂x

(
η
n+ 1

2
ν

)3

, ψi

)
+

19

360
β2
(
∂x

(
q
n+ 1

2
ν

)
, ψi

)
+αβ

[
13

48

(
∂x

(
v
n+ 1

2
ν

)2

, ψi

)
+

5

12

(
∂x

(
η
n+ 1

2
ν w

n+ 1
2

ν

)
, ψi

)]
+

1

4
βδ

(
∂x

[
− 2

β

(
hn+ 1

2 η
n+ 1

2
ν

)
+η

n+ 1
2

ν gn+ 1
2 + hn+ 1

2w
n+ 1

2
ν

]
, ψi

)}
= 0,(

∂xη
n+ 1

2
ν , ψi

)
−
(
v
n+ 1

2
ν , ψi

)
= 0,(

∂xv
n+ 1

2
ν , ψi

)
−
(
w
n+ 1

2
ν , ψi

)
= 0,(

∂xw
n+ 1

2
ν , ψi

)
−
(
p
n+ 1

2
ν , ψi

)
= 0,(

∂xp
n+ 1

2
ν , ψi

)
−
(
q
n+ 1

2
ν , ψi

)
= 0,

for any i = 1, . . . , N , where abbreviation ∂x is used for ∂
∂x . Here and in the

following,

(f, g) =

∫ L

0

f(x)g(x)dx

denotes the scalar product of functions.

In order to obtain a noise in space, at each time step n and each node j a

random number κν,τj,n is computed according to a normal law and such that it

forms a sequence of independent random variables. Then we can set

Φ
(
Wn+1
ν −Wn

ν

)
=
√
τ

N∑
j=1

1

||φj ||L2(0,T )

κν,τj,n φj =
√
τ Nφ

N∑
j=1

κν,τj,n φj , (11.52)

where notation Nφ =
1

||φj ||L2(0,T )

was introduced for abbreviation.

Insertion (11.8) and (11.52) into (11.51) yields a system of coupled linear

equations for coefficients anj , b
n
j , c

n
j , d

n
j , e

n
j . Solution of this system supplies an

approximate solution of (4.27) given in the mesh points xj .
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Denote



C
(1)
ij = (ϕj , ψi),

C
(2)
ij = (ϕ′j , ψi),

C
(3)
ijk = (ϕ′jϕk + ϕjϕ

′
k, ψi),

C
(4)
ijkl =

([
ϕ′jϕkϕl + ϕjϕ

′
kϕl + ϕjϕkϕ

′
l

]
, ψi
)
,

(11.53)

where ϕ′j = dϕ
dx (xj). Simple integration shows that

C
(1)
ij =


1
2ν if i = j or i = j − 1

0 otherwise,
(11.54)

C
(2)
ij =


−1 if i = j

1 if i = j − 1

0 otherwise.

(11.55)

A little more complicated calculation yields

C
(3)
ijk = C

(2)
ij δjk and C

(4)
ijkl = C2

ij δjk δkl. (11.56)

Properties (11.56) allow reducing double and triple sums arising in non-

linear terms in (11.51) to single ones.

The final system of nonlinear equations for coefficients an+1
j , bn+1

j ,cn+1
j ,

dn+1
j , en+1

j of expansion of the solution in the basis {φi} has the form (for

details of derivation, see [83])
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N∑
j=1

{(
an+1
j − anj +

√
τ Nφκ

ν,τ
j,n

)
C

(1)
ij + τ

[
1

2
(bn+1
j + bnj )C

(1)
ij (11.57)

+

(
α

3

16
(an+1
j + anj )2 + β

1

12
(cn+1
j + cnj )− α2 1

64
(an+1
j + anj )3

+αβ

[
13

192
(bn+1
j + bnj )2 +

5

96
(an+1
j + anj )(cn+1

j + cnj )

]
+β2 19

720
(en+1
j + enj )

)
C

(2)
ij

]}
= 0,

N∑
j=1

[
(an+1
j + anj )C

(2)
ij − (bn+1

j + bnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1
j + bnj )C

(2)
ij − (cn+1

j + cnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(cn+1
j + cnj )C

(2)
ij − (dn+1

j + dnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1
j + bnj )C

(2)
ij − (en+1

j + enj )C
(1)
ij

]
= 0,

where i = 1, 2, . . . , N .

Define 5N -dimensional vector of expansion coefficients (11.50)

Xn =


An

Bn

Cn

Dn

En

 , (11.58)

where

An =


an1
an2
...

anN

 , Bn =


bn1
bn2
...

bnN

 , Cn =


cn1
cn2
...

cnN

 ,

Dn =


dn1
dn2
...

dnN

 , and En =


en1
en2
...

enN

 .
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In (11.57), An+1, Bn+1, Cn+1, Dn+1, En+1 represent the unknown coef-

ficients whereas An, Bn, Cn, Dn, En the known ones. Note that the system

(11.57) is a nonlinear one.

In an abbreviated form the set (11.57) can be written as

Fi(X
n+1, Xn) = 0, i = 1, 2, . . . , 5N. (11.59)

Since this equation is nonlinear we can use Newton method at each time step.

That is, we find Xn+1 by iterating the equation

(Xn+1)m+1 = (Xn+1)m + J−1(Xn+1)m = 0, (11.60)

where J−1 is the inverse of the Jacobian of the F (Xn+1, Xn) (11.59). Choos-

ing (Xn+1)0 = Xn we usually obtain the approximate solution to (11.59),

(Xn+1)m in m = 3 − 5 iterations with very good precision. The Jacobian it-

self is a particular sparse matrix (5N×5N) with the following block structure

J =


(Aa) (Ab) (Ac) (0) (Ae)

(C2) −(C1) (0) (0) (0)

(0) (C2) −(C1) (0) (0)

(0) (0) (C2) −(C1) (0)

(0) (0) (0) (C2) −(C1)

 , (11.61)

where each block (·) is a two-diagonal sparse (N ×N) matrix. The matrix Aa

is given by

Aa =



a1
1 0 0 · · · 0 a1

N−1 a
1
N

a2
1 a2

2 0 · · · 0 0 a2
N

0 a3
2 a3

3 0 · · · 0 0
...

...
...

. . .
...

...
...

0 0 · · · aN−3
N−4 a

N−3
N−3 0 0

0 0 · · · 0 an−2
N−3 a

N−2
N−2 0

aN1 0 · · · 0 0 aN−1
N anN


. (11.62)

In (11.62) the nonzero elements of (Aa) are given by

aij =
∂ Fi

∂ an+1
j

, (11.63)

where Fi, i = 1, . . . , N is given by the first equation of the set (11.57). Ele-

ments in the upper right and lower left corners come from periodic boundary

conditions. Matrices (Ab), (Ac), (Ae) have the same structure as (Aa), only

elements aij have to be replaced, respectively, by
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bij =
∂ Fi

∂ bn+1
j

, cij =
∂ Fi

∂ cn+1
j

and eij =
∂ Fi

∂ en+1
j

.

Matrix (Ad) vanishes since there is no fourth order derivative in the extended

KdV equation and dn does not appear in F .

Matrices C1 and C2 are constant. They are defined as Ck, k = 1, 2

Ck =



C
(k)
11 0 · · · C

(k)
11 C

(k)
1N

C
(k)
21 C

(k)
22 · · · 0 C

(k)
2N

...
...

. . .
...

...

0 0 · · · C(k)
N−1N−1 0

C
(k)
N1 0 · · · C

(k)
N−1N C

(k)
NN


, (11.64)

where C
(k)
ij are defined in (11.54) and (11.55).

11.3.2 Results of simulations

In this section, some examples of numerical calculations of soliton waves with

stochastic forces are presented. Simulations were performed by solving the

set of equations (11.57) step by step. The main aim was to compare time

evolution of waves described by second order KdV-type equation with the

bottom dependent term with stochastic forces to those obtained without these

forces (obtained in [83] and presented in the previous section). In order to do

this several cases of time evolution are presented in the following convention.

For each particular case of the bottom function h(x) a sequence of three

figures is presented in which the amplitude of the stochastic force is 0, 0.001

and 0.002, respectively. In this way, the influence of an increasing stochastic

term on the wave evolution is exhibited. In all presented cases δ = 0.2, that

is, the amplitude of the bottom variation is 20% of the average water depth.

In order to avoid overlaps of the wave profiles at different time instants, the

consecutive profiles are shifted vertically by 0.15.

Soliton waves

In figures 11.9-11.10 we compare time evolution of the wave (initialy a KdV

soliton) when the bottom function represents a wide Gaussian hump,

h1(x) = exp

(
− (x− 40)2

72

)
.
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Fig. 11.9. Time evolution of the initial KdV soliton governed by the extended KdV

equation (4.31) obtained with FEM method, by numerical solution of the set of

equations (11.57) with γ = 0. Dashed lines represent the undisturbed fluid surface.
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Fig. 11.10. The same as in figure 11.9 but with a moderate amplitude of stochastic

force, γ = 0.001 (left) and with a larger one γ = 0.002 (right).

In figures 11.11-11.12 we compare time evolution of the wave (initialy a

KdV soliton) when the bottom function represents a double Gaussian hump,

h2(x) =

[
exp

(
− (x− 30)2

4

)
+ exp

(
− (x− 48)2

4

)]
.

In figures 11.13-11.14 we compare time evolution of the initial KdV soliton

when the bottom function represents an extended hump,

h3(x) =

(
tanh(x− 27)− tanh(x− 45)

2

)
.

In figures 11.15-11.16 time evolution of the initial KdV soliton is compared

for different amplitude of the stochastic term when the bottom function rep-

resents a valley, h4(x) = −h3(x).
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Fig. 11.11. The same as in figure 11.9 but for a double Gaussian hump bottom

function.
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Fig. 11.12. The same as in figure 11.11 but with a moderate amplitude of stochastic

force, γ = 0.001 (left) and with a larger one γ = 0.002 (right).

In all the examples presented, with different shapes of bottom functions,

one observes the same general trend. When the amplitude of the stochastic

force is relatively small (γ = 0.001), some small structures originated from

second order terms in the evolution equation (4.31) can be still visible. Simul-

taneously, the main soliton wave is disturbed only a little by the stochastic

term.

When the amplitude of the stochastic force increases, through γ = 0.0015

which case is not shown here, to γ = 0.002, the structures from second order

terms begin to be more and more obscured by the noise and are not visible at

γ = 0.002. The main wave, however, appears to be strongly resistant to the

noise and preserves its soliton character.
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Fig. 11.13. The same as in figure 11.9 but for the bottom function in the form of

an extended hump.
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Fig. 11.14. The same as in figure 11.13 but with a moderate amplitude of stochastic

force, γ = 0.001 (left) and with a larger one γ = 0.002 (right).

This character is preserved also for times much longer than in presented

examples. To see that we needed, however, to adapt our different code, based

on the finite difference method, to the stochastic case. That code proved to

be very efficient in numerical calculations presented in [78–80]. The reasons

why the finite difference method is more effective than finite element method

presented here are explained in detail in the next section.

Cnoidal waves

In figures 11.17-11.18 we present examples of time evolution of cnoidal wave

with m = 1−10−16 (the same as this shown in figure 11.6) for stochastic noise

with the strength γ = 0, 0.001 and 0.0015.
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Fig. 11.15. The same as in figure 11.9 but for the bottom function in the form of

an extended valley.
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Fig. 11.16. The same as in figure 11.15 but with a moderate amplitude of stochastic

force, γ = 0.001 (left) and with a larger one γ = 0.002 (right)

In figures 11.19-11.20 we display time evolution of the wave, initialy cnoidal

solution of KdV equation with m = 1 − 10−8 for γ = 0, 0.001 and 0.0015. In

this case the bottom function is h(x) = 1+ 1
2 [−tanh(2(x−15)− 1

2 )+tanh(2(x−
65) − 1

2 )] and the wavelength of the cnoidal wave is d ≈ 40.324, the same as

in figure 11.7.

11.3.3 Conclusions

The main conclusions obtained from our numerical simulations of the time

evolution of KdV-type waves with respect to second order equations with

bottom terms are the following.

• Both solitary and cnoidal solutions of KdV equations are extremely robust

structures for many possible distortions. In [78–80] we showed the resis-
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Fig. 11.17. Time evolution, according to eq. (4.31), of the cnoidal wave for the

bottom function in the form of an extended valley. The x interval is equal to the

wavelength of the cnoidal wave with m=1-10−16.
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Fig. 11.18. The same as in figure 11.17 but with a moderate amplitude of stochastic

force, γ = 0.001 (left) and with a larger one γ = 0.0015 (right).

tance of these waves to second order terms in extended KdV equation,

including terms from an uneven bottom.

• In this chapter, we showed that inclusion of a stochastic force into second

order KdV-type equation does not disturb much the shape of the main

wave even for a large amplitude of the noise, although the noise can com-

pletely obscure the secondary wave structures. It seems, however, that the

main wave is the most robust for solitary waves (which is a limiting case

of cnoidal waves when m tends to 1). That robustness with respect to

stochastic noise diminishes when parameter m decreases below 1.

• Finite element method, though sufficient for numerical study of stochastic

KdV equation in [32] is not so well suited for the higher order KdV type
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Fig. 11.19. Time evolution, according to eq. (4.31), of the cnoidal wave for the

bottom function in the form of a wide hump. The x interval is equal to the double

wavelength of the cnoidal wave with m=1-10−8.
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Fig. 11.20. The same as in figure 11.19 but with a moderate amplitude of stochastic

force, γ = 0.001 (left) and with a larger one γ = 0.0015 (right).

equation, and particularly less satisfactory when the bottom is not flat.

For the KdV equation considered in a moving frame (11.41) the wave

motion is slow and vital time evolution can be calculated using not very

long space and time intervals. This property allowed the authors of [32]

to use relatively low number N = 200 of the mesh size to obtain relevant

results. Consequently, since KdV is a third order differential equation, the

size of the Jacobian matrix used in the numerical scheme, (3N × 3N)

is still low and allows for fast calculations. The KdV2 equation (4.27),

which is a differential equation of fifth order, can be studied both in a

moving reference frame and in a fixed frame. In the first case the size of

the Jacobian increases to (5N × 5N) and when N is of the same order the
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results can still be obtained in reasonable computing time. The KdV2B

equation which takes into account bottom variation (4.31), however, has

to be solved in the fixed frame. Then, since waves move much faster, in

order to obtain a good description of the wave evolution, substantially

longer space intervals have to be used. For a resolution of fine structures

of the wave relatively dense mesh has to be applied so N is usually an

order of magnitude larger than in the case of moving reference frame.

Then computer time for inversion of the Jacobian becomes very large, and

detail calculations are not practical. In these cases, the finite difference

method used in [78, 79], adapted for the stochastic equation, proves to be

more efficient.
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