ON STOCHASTIC FRACTIONAL VOLterra EQUATIONS IN HILBERT SPACE

ANNA KARCZEWSKA
Department of Mathematics, University of Zielona Góra
ul. Szafrana 4a, 65-516 Zielona Góra, Poland

CARLOS LIZAMA
Departamento de Matemática, Universidad de Santiago de Chile
Casilla 307-Correo 2, Santiago, Chile

Abstract. In this paper, stochastic Volterra equations, particularly fractional, in Hilbert space are studied. Sufficient conditions for existence of strong solutions are provided.

1. Introduction. Let \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\) be a stochastic basis and \(H\) a separable Hilbert space. In this paper we consider the stochastic Volterra equations in \(H\) of the form

\[
X(t) = X(0) + \int_0^t a(t - \tau)AX(\tau)d\tau + \int_0^t \Psi(\tau)dW(\tau), \quad t \geq 0.
\]

In (1), \(X(0)\) is an \(H\)-valued \(\mathcal{F}_0\)-measurable random variable and \(a \in L^1_{\text{loc}}(\mathbb{R}^+)\) is a scalar kernel. The operator \(A\) is closed linear unbounded in \(H\) with a dense domain \(D(A)\) equipped with the graph norm \(| \cdot |_{D(A)}\), i.e. \(|h|_{D(A)} := (|h|^2_H + |Ah|^2_H)^{1/2}\), where \(| \cdot |_H\) denotes the norm in \(H\). \(W\) is a cylindrical Wiener process (see e.g. [3] or [7] for the definition, properties and the stochastic integral with respect to that process) on another separable Hilbert space \(U\), with the covariance operator \(Q \in L(U)\). \(Q\) is a linear symmetric positive operator with \(\text{Tr} Q = +\infty\) and \(\Psi\) is an appropriate process defined below.

Equations (1) contain important special cases, e.g. heat, wave and integro-differential equations. Moreover, (1) are motivated by a wide class of model problems and correspond to abstract stochastic versions of several deterministic problems, mentioned, e.g. in [13] (see also the references therein).

In order to provide a sense for the integral \(\int_0^t \Psi(\tau)dW(\tau)\), the process \(\Psi(t)\), \(t \geq 0\), has to be an operator-valued process (see, e.g. [14]). We define the subspace \(U_0 := Q^{1/2}(U)\) of the space \(U\) endowed with the inner product \(\langle u, v \rangle_{U_0} := \langle Q^{-1/2}u, Q^{-1/2}v \rangle_U\). By \(L^0_2 := L_2(U_0, H)\) we denote the set of all Hilbert-Schmidt operators acting from \(U_0\) into \(H\); the set \(L^0_2\) equipped with the norm \(||C||_{L_2(U_0,H)} := \left(\sum_{k=1}^{+\infty} |Cu_k|^2_H \right)^{1/2} \), is a separable Hilbert space.

2000 Mathematics Subject Classification. Primary: 60H15, 60H20; Secondary: 60H05, 45D05.

Key words and phrases. Stochastic fractional Volterra equation, \(\alpha\)-times resolvent, strong solution, stochastic convolution, convergence of resolvent families.

Both authors are partially supported by Laboratorio de Análisis Estocástico, PBCT-ACT13.
By $\mathcal{N}^2(0, T; L^2_0)$, where $T < +\infty$ is fixed, we denote a Hilbert space of all L^2_0-predictable processes Ψ such that $\|\Psi\|_T < +\infty$, where

$$
\|\Psi\|_T := \left\{ E \left(\int_0^T \|\Psi(\tau)\|_{L^2_0}^2 \, d\tau \right) \right\}^{\frac{1}{2}} = \left\{ E \int_0^T \left[\text{Tr}(\Psi(\tau)Q^2)(\Psi(\tau)Q^2)^* \right] \, d\tau \right\}^{\frac{1}{2}}.
$$

If $\Psi \in \mathcal{N}^2(0, T; L^2_0)$, then the integral $\int_0^T \Psi(\tau) \, dW(\tau)$ makes sense.

Let us note that the results obtained below for cylindrical Wiener process (Tr $Q = +\infty$) hold for genuine Wiener process (Tr $Q < +\infty$), too. In the latter case, that is, if Q is a nuclear operator, $L(U, H) \subset L_2(U_0, H)$ and then the stochastic integral $\int_0^T \Psi(\tau) \, dW(\tau)$ is well defined (for details, see [13]).

In this paper, we use the so-called resolvent approach to the Volterra equation (1) (for details we refer to [13]).

First, we recall some definitions connected with deterministic version of (1), that is, the equation

$$
u(t) = \int_0^t a(t - \tau) A \nu(\tau) \, d\tau + f(t), \quad t \geq 0,
$$

(2)

where f is an H-valued function. In (2), the kernel function $a(t)$ and the operator A are the same like previously.

Definition 1. A family $(S(t))_{t \geq 0}$ of bounded linear operators in H is called resolvent for (2) if the following conditions are satisfied:

1. $S(t)$ is strongly continuous on \mathbb{R}_+ and $S(0) = I$;
2. $S(t)$ commutes with the operator A;
3. the following resolvent equation holds

$$
S(t)x = x + \int_0^t a(t - \tau) A S(\tau)x \, d\tau
$$

(3)

for all $x \in D(A), \ t \geq 0$.

We will assume in the sequel that the resolvent family $(S(t))_{t \geq 0}$ to (2) exists.

Let us emphasize that the family $(S(t))_{t \geq 0}$ does not create in general any semigroup and that $S(t), \ t \geq 0$, are generated by the pair $(A, a(t))$, that is, the operator A and the kernel function $a(t), \ t \geq 0$.

A consequence of the strong continuity of $S(t)$ is that $\sup_{t \leq T} \|S(t)\| < +\infty$ for any $T \geq 0$.

Definition 2. We say that the function $a \in L^1(0, T)$ is completely positive on $[0, T]$, if for any $\mu \geq 0$, the solutions of the equations

$$
s(t) + \mu (a * s)(t) = 1 \quad \text{and} \quad r(t) + \mu (a * r)(t) = a(t)
$$

(4)

satisfy $s(t) \geq 0$ and $r(t) \geq 0$ on $[0, T]$.

The class of completely positive kernels, introduced in [2], arise naturally in applications, see [13]. For instance, the functions $a(t) \equiv 1$, $a(t) = t$, $a(t) = e^{-t}$, $t \geq 0$, are completely positive.

Definition 3. Suppose $S(t), \ t \geq 0$, is a resolvent. $S(t)$ is called exponentially bounded if there are constants $M \geq 1$ and $\omega \in \mathbb{R}$ such that

$$
\|S(t)\| \leq M e^{\omega t}, \quad \text{for all} \ t \geq 0 ;
$$

Let us note that contrary to C_0-semigroups, not every resolvent family needs to be exponentially bounded; for counterexamples we refer to [4].

In the paper, the key role is played by the following, not yet published, result providing a convergence of resolvents.

Theorem 1. Let A be the generator of a C_0-semigroup in H and suppose the kernel function a is completely positive. Then (A, a) admits an exponentially bounded resolvent $S(t)$. Moreover, there exist bounded operators A_n such that (A_n, a) admit resolvent families $S_n(t)$ satisfying $\|S_n(t)\| \leq Me^{w_0 t}$ ($M \geq 1$, $w_0 \geq 0$) for all $t \geq 0$, $n \in \mathbb{N}$, and

$$S_n(t)x \to S(t)x \quad \text{as} \quad n \to +\infty \quad (5)$$

for all $x \in H$, $t \geq 0$.

Additionally, the convergence is uniform in t on every compact subset of \mathbb{R}_+.

Proof. The first assertion follows directly from [12, Theorem 5] (see also [13, Theorem 4.2]). Since A generates a C_0-semigroup $T(t)$, $t \geq 0$, the resolvent set $\rho(A)$ contains the ray $[w, \infty)$ and

$$\|R(\lambda, A)^k\| \leq \frac{M}{(\lambda - w)^k} \quad \text{for} \quad \lambda > w, \quad k \in \mathbb{N},$$

where $R(\lambda, A) = (A - \lambda I)^{-1}$, $\lambda \in \rho(A)$.

Define

$$A_n := nAR(n, A) = n^2R(n, A) - nI, \quad n > w \quad (6)$$

denote the *Yosida approximation* of A, where $R(n, A) = (nI - A)^{-1}$. For details, see e.g. [11].

Then

$$\|e^{tA_n}\| = e^{-nt}\|e^{n^2R(n, A)t}\| \leq e^{-nt}\sum_{k=0}^{\infty} \frac{n^{2k}t^k}{k!} \|R(n, A)^k\|$$

$$\leq Me^{(n + \frac{n^2}{\lambda - w})t} = Me^{\frac{n\lambda}{\lambda - w}}.$$

Hence, for $n > 2w$ we obtain

$$\|e^{A_n t}\| \leq Me^{2w t}. \quad (7)$$

Taking into account the above estimate and the complete positivity of the kernel function a, we can follow the same steps as in [12, Theorem 5] to obtain that there exist constants $M_1 > 0$ and $w_1 \in \mathbb{R}$ (independent of n, due to (7)) such that

$$\|[H_n(\lambda)]^{(k)}\| \leq \frac{M_1}{(\lambda - w_1)^{k+1}} \quad \text{for} \quad \lambda > w_1,$$

where $H_n(\lambda) := (\lambda - \lambda \hat{a}(\lambda)A_n)^{-1}$. Here and in the sequel the hat indicates the Laplace transform. Hence, the generation theorem for resolvent families implies that for each $n > 2w$, the pair (A_n, a) admits resolvent family $S_n(t)$ such that

$$\|S_n(t)\| \leq M_1 e^{w_1 t}. \quad (8)$$

In particular, the Laplace transform $\hat{S}_n(\lambda)$ exists and satisfies

$$\hat{S}_n(\lambda) = H_n(\lambda) = \int_0^{\infty} e^{-\lambda t}S_n(t)dt, \quad \lambda > w_1.$$
Now recall from semigroup theory that for all \(\mu \) sufficiently large we have

\[
R(\mu, A_n) = \int_0^\infty e^{-\mu t} e^{A_n t} \, dt
\]

as well as,

\[
R(\mu, A) = \int_0^\infty e^{-\mu t} T(t) \, dt.
\]

Since \(\hat{a}(\lambda) \to 0 \) as \(\lambda \to \infty \), we deduce that for all \(\lambda \) sufficiently large, we have

\[
H_n(\lambda) := \frac{1}{\lambda \hat{a}(\lambda)} R(\frac{1}{\hat{a}(\lambda)}, A_n) = \frac{1}{\lambda \hat{a}(\lambda)} \int_0^\infty e^{-1/\lambda(\hat{a}(\lambda)) t} e^{A_n t} \, dt,
\]

and

\[
H(\lambda) := \frac{1}{\lambda \hat{a}(\lambda)} R(\frac{1}{\hat{a}(\lambda)}, A) = \frac{1}{\lambda \hat{a}(\lambda)} \int_0^\infty e^{-1/\lambda(\hat{a}(\lambda)) t} T(t) \, dt.
\]

Hence, from the identity

\[
H_n(\lambda) - H(\lambda) = \frac{1}{\lambda \hat{a}(\lambda)} [R(\frac{1}{\hat{a}(\lambda)}, A_n) - R(\frac{1}{\hat{a}(\lambda)}, A)]
\]

and the fact that \(R(\mu, A_n) \to R(\mu, A) \) as \(n \to \infty \) for all \(\mu \) sufficiently large (see, e.g. [11, Lemma 7.3]), we obtain that

\[
H_n(\lambda) \to H(\lambda) \quad \text{as} \quad n \to \infty .
\]

Finally, due to (8) and (9) we can use the Trotter-Kato theorem for resolvent families of operators (cf. [9, Theorem 2.1]) and the conclusion follows. \(\square \)

Remark 1. (a) The convergence (5) is an extension of the result due to Clément and Nohel [2].

(b) The above theorem gives a partial answer to the following open problem for a resolvent family \(S(t) \) generated by a pair \((A, a)\): do there exist bounded linear operators \(A_n \) generating resolvent families \(S_n(t) \) such that \(S_n(t)x \to S(t)x \). In particular case \(a(t) \equiv 1, A_n \) are provided by the Hille-Yosida approximation of \(A \) and additionally \(S_n(t) = e^{tA_n} \).

2. **Probabilistic results.** In the sequel we shall use the following Probability Assumptions, abbr. (PA):

1. \(X(0) \) is an \(H \)-valued, \(\mathcal{F}_0 \)-measurable random variable;
2. \(\Psi \in N^2(0, T; L^2) \) and the interval \([0, T]\) is fixed.

The following types of definitions of solutions to (1) are possible, see [8].

Definition 4. Assume that (PA) hold. An \(H \)-valued predictable process \(X(t), t \in [0, T] \), is said to be a strong solution to (1), if \(X \) has a version such that \(P(X(t) \in D(A)) = 1 \) for almost all \(t \in [0, T] \); for any \(t \in [0, T] \)

\[
\int_0^t |a(t - \tau)AX(\tau)|_H \, d\tau < +\infty, \quad P-a.s.
\]

and for any \(t \in [0, T] \) the equation (1) holds \(P \)-a.s.

Let \(A^* \) be the adjoint of \(A \) with a dense domain \(D(A^*) \subset H \) and the graph norm \(| \cdot |_{D(A^*)} \) defined as follows: \(|h|_{D(A^*)} := (|h|_H^2 + |A^*h|_H^2)^{1/2} \) for \(h \in D(A^*) \).
Definition 5. Let (PA) hold. An \(H \)-valued predictable process \(X(t), \ t \in [0,T] \), is said to be a \textbf{weak solution} to (1), if \(P(\int_0^T |a(t-\tau)X(\tau)|_H d\tau < +\infty) = 1 \) and if for all \(\xi \in D(A^*) \) and all \(t \in [0,T] \) the following equation holds
\[
\langle X(t), \xi \rangle_H = \langle X(0), \xi \rangle_H + \left(\int_0^t a(t-\tau)X(\tau) d\tau, A^*\xi \right)_H \\
+ \left(\int_0^t \Psi(\tau)dW(\tau), \xi \right)_H, \ P-a.s.
\]

Definition 6. Assume that \(X(0) \) is \(\mathcal{F}_0 \)-measurable random variable. An \(H \)-valued predictable process \(X(t), \ t \in [0,T] \), is said to be a \textbf{mild solution} to the stochastic Volterra equation (1), if \(E\left(\int_0^T |S(t-\tau)\Psi(\tau)|^2_{L^2} d\tau\right) < +\infty \) for \(t \leq T \) and, for arbitrary \(t \in [0,T] \),
\[
X(t) = S(t)X(0) + \int_0^t S(t-\tau)\Psi(\tau) dW(\tau), \ P-a.s. \tag{11}
\]

The integral appearing in (11) will be called \textbf{stochastic convolution} and denoted by
\[
W^\Psi(t) := \int_0^t S(t-\tau)\Psi(\tau) dW(\tau), \quad t \geq 0, \tag{12}
\]
where \(\Psi \in \mathcal{N}^2(0;L^0_2) \).

We will show in the sequel that the convolution \(W^\Psi \) is a weak solution to (1) and next we will provide sufficient conditions under which \(W^\Psi \) is a strong solution to (1), as well.

Let us recall (from \[3\] and \[8\]) some properties of the convolution \(W^\Psi(t), t \geq 0 \).

Proposition 1. (see, e.g. \[3\] Proposition 4.15)
Assume that \(A \) is a closed linear unbounded operator with the dense domain \(D(A) \subset H \) and \(\Phi(t), \ t \in [0,T] \) is an \(L_2(U_0,H) \)-predictable process. If \(\Phi(t)(U_0) \subset D(A) \), \(P-a.s. \) for all \(t \in [0,T] \) and
\[
P \left(\int_0^T ||\Phi(s)||^2_{L^2} ds < \infty \right) = 1, \quad P \left(\int_0^T ||A\Phi(s)||^2_{L^2} ds < \infty \right) = 1,
\]
then
\[
P \left(\int_0^T \Phi(s) dW(s) \in D(A) \right) = 1
\]
and
\[
A \int_0^T \Phi(s) dW(s) = \int_0^T A\Phi(s) dW(s), \ P-a.s.
\]

For the proofs of Propositions \[2\] and \[4\] we refer to \[8\].

Proposition 2. Assume that \(\Phi \) admits resolvent operators \(S(t), t \geq 0 \). Then, for arbitrary process \(\Psi \in \mathcal{N}^2(0,T;L^0_2) \), the process \(W^\Psi(t), t \geq 0 \), given by (12) has a predictable version.

Proposition 3. Assume that \(\Psi \in \mathcal{N}^2(0,T;L^0_2) \). Then the process \(W^\Psi(t), t \geq 0 \), defined by (12) has square integrable trajectories.
Proposition 4. If $\Psi \in \mathcal{N}^2(0, T; L^2_0)$, then the stochastic convolution W^Ψ fulfills the equation
\[
\langle W^\Psi(t), \xi \rangle_H = \int_0^t \langle a(t - \tau)W^\Psi(\tau), A^*\xi \rangle_H + \int_0^t \langle \xi, \Psi(\tau)dW(\tau) \rangle_H, \quad P - a.s.
\]
for any $t \in [0, T]$ and $\xi \in D(A^*)$.

Proposition 4 shows that the convolution W^Ψ is a weak solution to (1) (see [8]) and enables us to formulate the following results.

Proposition 5. Let A be the generator of C_0-semigroup in H and suppose that the function a is completely positive. If Ψ and $A\Psi$ belong to $\mathcal{N}^2(0, T; L^2_0)$ and in addition $\Psi(t)(U_0) \subset D(A)$, P-a.s., then the following equality holds
\[
W^\Psi(t) = \int_0^t a(t - \tau)AW^\Psi(\tau)d\tau + \int_0^t \Psi(\tau)dW(\tau), \quad P - a.s. \tag{13}
\]

Proof. Because formula (13) holds for any bounded operator, then it holds for the Yosida approximation A_n of the operator A, too, that is
\[
W^\Psi_n(t) = \int_0^t a(t - \tau)A_nW^\Psi_n(\tau)d\tau + \int_0^t \Psi(\tau)dW(\tau),
\]
where
\[
W^\Psi_n(t) := \int_0^t S_n(t - \tau)\Psi(\tau)dW(\tau)
\]
and
\[
A_nW^\Psi_n(t) = A_n\int_0^t S_n(t - \tau)\Psi(\tau)dW(\tau).
\]
Recall that by assumption $\Psi \in \mathcal{N}^2(0, T; L^2_0)$. Because the operators $S_n(t)$ are deterministic and bounded for any $t \in [0, T]$, $n \in \mathbb{N}$, then the operators $S_n(t - \cdot)\Psi(\cdot)$ belong to $\mathcal{N}^2(0, T; L^2_0)$, too. In consequence, the difference
\[
\Phi_n(t - \cdot) := S_n(t - \cdot)\Psi(\cdot) - S(t - \cdot)\Psi(\cdot) \tag{14}
\]
belongs to $\mathcal{N}^2(0, T; L^2_0)$ for any $t \in [0, T]$ and $n \in \mathbb{N}$. This means that
\[
\mathbb{E}\left(\int_0^t |\Phi_n(t - \tau)|_{L^2_0}^2d\tau\right) < +\infty \tag{15}
\]
for any $t \in [0, T]$.

Let us recall (see [7]) that the cylindrical Wiener process $W(t)$, $t \geq 0$, can be written in the form
\[
W(t) = \sum_{j=1}^{+\infty} f_j \beta_j(t), \tag{16}
\]
where $\{f_j\}$ is an orthonormal basis of U_0 and $\beta_j(t)$ are independent real Wiener processes. From (16) we have
\[
\int_0^t \Phi_n(t - \tau)dW(\tau) = \sum_{j=1}^{+\infty} \int_0^t \Phi_n(t - \tau)f_jd\beta_j(\tau). \tag{17}
\]
Then, from (15)
\[
\mathbb{E}\left[\int_0^t \left(\sum_{j=1}^{+\infty} |\Phi_n(t - \tau)f_j|_H^2\right)d\tau\right] < +\infty \tag{18}
\]
for any \(t \in [0, T] \). Next, from (17), properties of stochastic integral and (18) we obtain for any \(t \in [0, T] \), that

\[
\mathbb{E} \left| \int_0^t \Phi_n(t - \tau) \, dW(\tau) \right|^2_H = \mathbb{E} \left| \sum_{j=1}^{+\infty} \int_0^t \Phi_n(t - \tau) \, f_j \, d\beta_j(\tau) \right|^2_H \\
\leq \mathbb{E} \left[\sum_{j=1}^{+\infty} \int_0^t |\Phi_n(t - \tau) \, f_j|^2_H \, d\tau \right] < +\infty.
\]

By Theorem 1, the convergence (5) of resolvent families is uniform in \(t \) on every compact subset of \(\mathbb{R}_+ \), particularly on the interval \([0, T]\). Then, for any fixed \(j \),

\[
\int_0^T |[S_n(T - \tau) - S(T - \tau)] \, \Psi(\tau) \, f_j|^2_H \, d\tau \longrightarrow 0, \quad \text{as} \quad n \to \infty. \tag{19}
\]

So, using (18) and (19) we can write

\[
\sup_{t \in [0, T]} \mathbb{E} \left| \int_0^t \Phi_n(t - \tau) \, dW(\tau) \right|^2_H = \sup_{t \in [0, T]} \mathbb{E} \left| \int_0^t [S_n(t - \tau) - S(t - \tau)] \, \Psi(\tau) \, dW(\tau) \right|^2_H \\
\leq \mathbb{E} \left[\sum_{j=1}^{+\infty} \int_0^T |[S_n(T - \tau) - S(T - \tau)] \, \Psi(\tau) \, f_j|^2_H \, d\tau \right] \longrightarrow 0
\]

as \(n \to +\infty \).

Hence, by the Lebesgue dominated convergence theorem

\[
\lim_{n \to +\infty} \sup_{t \in [0, T]} \mathbb{E} \left| W_n^\Psi(t) - W^\Psi(t) \right|^2_H = 0. \tag{20}
\]

By assumption, \(\Psi(t)(U_0) \subset D(A) \), \(P \) - a.s. Because \(S(t)(D(A)) \subset D(A) \), then \(S(t - \tau)\Psi(\tau)(U_0) \subset D(A) \), \(P \) - a.s., for any \(\tau \in [0, t] \), \(t \geq 0 \). Hence, by Proposition 1, \(P(W_n^\Psi(t) \in D(A)) = 1 \).

For any \(n \in \mathbb{N} \), \(t \geq 0 \), we can estimate

\[
|A_n W_n^\Psi(t) - AW^\Psi(t)|^2_H \leq 3|N_{n,1}(t) + N_{n,2}(t)|,
\]

where

\[
N_{n,1}(t) := |A_n W_n^\Psi(t) - A_n W^\Psi(t)|_H, \\
N_{n,2}(t) := |A_n W^\Psi(t) - AW^\Psi(t)|_H.
\]

Using the convergence of resolvents (5) and the Yoshida approximation properties, we can follow the same steps as above for proving

\[
\lim_{n \to +\infty} \sup_{t \in [0, T]} \mathbb{E}(N_{n,1}(t)) \to 0
\]

and

\[
\lim_{n \to +\infty} \sup_{t \in [0, T]} \mathbb{E}(N_{n,2}(t)) \to 0.
\]

Therefore, we can deduce that

\[
\lim_{n \to +\infty} \sup_{t \in [0, T]} \mathbb{E}|A_n W_n^\Psi(t) - AW^\Psi(t)|^2_H = 0,
\]

and then (13) holds. \(\square \)
Theorem 2. Suppose that assumptions of Proposition 3 hold. Then the equation (1) has a strong solution. Precisely, the convolution \(W^\Psi \) given by (12) is the strong solution to (1).

Proof. In order to prove Theorem 2 we have to show only the condition (10). Let us note that the convolution \(W^\Psi \) has integrable trajectories. Because the closed unbounded linear operator \(A \) becomes bounded on \((D(A), \| \cdot \|_{D(A)}) \), see [4] Chapter 5, we obtain that \(AW^\Psi (\cdot) \in L^1 ([0, T]; H) \), P-a.s. Hence, properties of convolution provide integrability of the function \(a(T-\tau)AW^\Psi (\tau) \) with respect to \(\tau \), what finishes the proof.

3. Fractional Volterra equations. As we have already written, [2] contains some class of equations. For instance when \(a(t) = \frac{t^{\alpha-1}}{1^{(\alpha)}} \), \(\alpha > 0 \), we obtain integro-differential equations studied by many authors, see e.g. [1] and references therein. These facts lead us to the fractional stochastic Volterra equations of the form

\[
X(t) = X(0) + \int_0^t g_\alpha(t-\tau)AX(\tau)d\tau + \int_0^t \Psi(\tau)dW(\tau), \quad t \geq 0,
\]

where \(g_\alpha(t) = \frac{t^{\alpha-1}}{1^{(\alpha)}} \), \(\alpha > 0 \). Let us emphasize that for \(\alpha \in (0, 1) \), \(g_\alpha \) are completely positive, but for \(\alpha > 1 \), \(g_\alpha \) are not completely positive.

Now, the pairs \((A,g_\alpha(t))\) generate \(\alpha \)-times resolvents \(S_\alpha(t), \ t \geq 0 \) which are analogous to resolvents defined in section 1 for more details, see [1].

Remark 2. Observe that the \(\alpha \)-times resolvent family corresponds to a \(C_0 \)-semigroup in case \(\alpha = 1 \) and a cosine family in case \(\alpha = 2 \). (Let us recall, e.g. from [3], that a family \(C(t), t \geq 0 \), of linear bounded operators on \(H \) is called cosine family if for every \(t, s \geq 0 \), \(t > s \): \(C(t+s) + C(t-s) = 2C(t)C(s). \)) In consequence, when \(1 < \alpha < 2 \) such resolvent families interpolate \(C_0 \)-semigroups and cosine functions. In particular, for \(A = \Delta \), the integro-differential equations corresponding to such resolvent families interpolate the heat equation and the wave equation, see, e.g. [6].

We consider two cases:

(A1): \(A \) is the generator of \(C_0 \)-semigroup and \(\alpha \in (0, 1) \);

(A2): \(A \) is the generator of a strongly continuous cosine family and \(\alpha \in (0, 2) \).

In this part of the paper, the results concerning a weak convergence of \(\alpha \)-times resolvents play the key role. Using the very recent result due to Li and Zheng [10], we can formulate the approximation theorems for fractional Volterra equations.

Theorem 3. Let \(A \) be the generator of a \(C_0 \)-semigroup \((T(t))_{t \geq 0}\) in \(H \) such that \(\| T(t) \| \leq M e^{-t}, \ t \geq 0 \). Then, for each \(0 < \alpha < 1 \) there exist bounded operators \(A_n \) and \(\alpha \)-times resolvent families \(S_{\alpha,n}(t) \) for \(A_n \) satisfying \(\| S_{\alpha,n}(t) \| \leq M C e^{(2\alpha)^{1/\alpha} t} \), for all \(t \geq 0 \), \(n \in \mathbb{N} \), and

\[
S_{\alpha,n}(t)x \to S_{\alpha}(t)x \quad \text{as} \quad n \to +\infty
\]

for all \(x \in H, t \geq 0 \). Moreover, the convergence is uniform in \(t \) on every compact subset of \(\mathbb{R}_+ \).

Outline of the proof. The first assertion follows from [1] Theorem 3.1], that is, for each \(0 < \alpha < 1 \) there is an \(\alpha \)-times resolvent family \((S_{\alpha}(t))_{t \geq 0}\) for \(A \) given by

\[
S_{\alpha}(t)x = \int_0^\infty \varphi_{t,\alpha}(s)T(s)x ds, \quad t > 0,
\]

where \(\varphi_{t,\alpha} \) is the \(\alpha \)-times resolvent kernel.
where \(\varphi_{t,\gamma}(s) := t^{-\gamma}\Phi_{\gamma}(st^{-\gamma}) \) and \(\Phi_{\gamma}(z) \) is the Wright function defined as
\[
\Phi_{\gamma}(z) := \sum_{n=0}^{\infty} \frac{(-z)^n}{n!(-\gamma n + 1 - \gamma)}, \quad 0 < \gamma < 1.
\]
Define
\[
A_n := nAR(n, A) = n^2R(n, A) - nI, \quad n > w,
\]
the Yosida approximation of \(A \).
Since each \(A_n \) is bounded, it follows that for each \(0 < \alpha < 1 \) there exists an \(\alpha \)-times resolvent family \((S_{\alpha,n}(t))_{t \geq 0} \) for \(A_n \) given as
\[
S_{\alpha,n}(t) = \int_0^\infty \varphi_{t,\alpha}(s)e^{sA_n}ds, \quad t > 0.
\]
We recall that the Laplace transform of the Wright function corresponds to \(E_{\gamma}(z) \) where \(E_{\gamma} \) denotes the Mittag-Leffler function. In particular, \(\Phi_{\gamma}(z) \) is a probability density function. It follows that for \(t \geq 0 \):
\[
\|S_{\alpha,n}(t)\| \leq \int_0^\infty \varphi_{t,\alpha}(s)||e^{sA_n}||ds \\
\leq M\int_0^\infty \varphi_{t,\alpha}(s)e^{2\alpha s}ds = M\int_0^\infty \Phi_{\alpha}(\tau)e^{2\omega\alpha \tau}d\tau = ME_\alpha(2\omega t^{\alpha}).
\]

The continuity in \(t \geq 0 \) of the Mittag-Leffler function and its asymptotic behavior, imply that for \(\omega \geq 0 \) there exists a constant \(C > 0 \) such that
\[
E_\alpha(\omega t^{\alpha}) \leq Ce^{\omega^{1/\alpha}t}, \quad t \geq 0, \alpha \in (0, 2).
\]

This gives
\[
\|S_{\alpha,n}(t)\| \leq MCe^{(2\omega)^{1/\alpha}t}, \quad t \geq 0.
\]

Now we recall the fact that \(R(\lambda, A_n)x \to R(\lambda, A)x \) as \(n \to \infty \) for all \(\lambda \) sufficiently large (e.g. [11] Lemma 7.3), so we can conclude from [10] Theorem 4.2] that
\[
S_{\alpha,n}(t)x \to S_\alpha(t)x \quad as \quad n \to +\infty
\]
for all \(x \in H \), uniformly for \(t \) on every compact subset of \(\mathbb{R}_+ \).

An analogous convergence for \(\alpha \)-times resolvents can be proved in another case, too.

Theorem 4. Let \(A \) be the generator of a \(C_0 \)-cosine family \((T(t))_{t \geq 0} \) in \(H \). Then, for each \(0 < \alpha < 2 \) there exist bounded operators \(A_n \) and \(\alpha \)-times resolvent families \(S_{\alpha,n}(t) \) for \(A_n \) satisfying \(\|S_{\alpha,n}(t)\| \leq MCe^{(2\omega)^{1/\alpha}t} \), for all \(t \geq 0 \), \(n \in \mathbb{N} \), and \(S_{\alpha,n}(t)x \to S_\alpha(t)x \) as \(n \to +\infty \) for all \(x \in H \), \(t \geq 0 \). Moreover, the convergence is uniform in \(t \) on every compact subset of \(\mathbb{R}_+ \).

Now, we are able to formulate the result analogous to that in section [2]

Theorem 5. Assume that (A1) or (A2) holds. If \(\Psi \) and \(A\Psi \) belong to \(N^2(0, T; L^0) \) and in addition \(\Psi(t)(U_0) \subset D(A) \), P-a.s., then the equation [7] has a strong solution. Precisely, the convolution
\[
W^\Psi_\alpha(t) := \int_0^t S_\alpha(t - \tau)\Psi(\tau)dW(\tau)
\]
is the strong solution to [7].
Outline of the proof. First, analogously like in section 2 we show that the convolution $W_\alpha^\Psi(t)$ fulfills the following equation

$$W_\alpha^\Psi(t) = \int_0^t g_\alpha(t-\tau) A W_\alpha^\Psi(\tau) d\tau + \int_0^t \Psi(\tau) dW(\tau).$$ \hspace{1cm} (24)

Next, we have to show the condition

$$\int_0^T |g_\alpha(T-\tau) A W_\alpha^\Psi(\tau)|_H d\tau < +\infty, \ P - a.s., \ \alpha > 0,$$ \hspace{1cm} (25)

that is, the condition (10) adapted for the fractional Volterra equation (22).

The convolution $W_\alpha^\Psi(t)$ has integrable trajectories, that is, $W_\alpha^\Psi(\cdot) \in L^1([0,T];H)$, P-a.s. The closed linear unbounded operator A becomes bounded on $(D(A), \cdot|_{D(A)})$, see [14, Chapter 5]. Hence, $A W_\alpha^\Psi(\cdot) \in L^1([0,T];H)$, P-a.s. Therefore, the function $g_\alpha(T-\tau) A W_\alpha^\Psi(\tau)$ is integrable with respect to τ, what completes the proof.

Acknowledgements. The authors thank the referee for a careful reading of the manuscript and useful remarks.

REFERENCES

Received September 2006; revised February 2007.

E-mail address: A.Karczewska@im.uz.zgora.pl
E-mail address: clizama@lauca.usach.cl