Cabling LANs and WANs

CCNA 1 v3 - Module 5

Cabling the LAN

Each media has advantages and disadvantages:

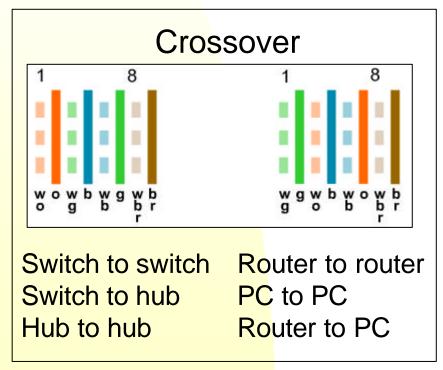
- Cable length
- Cost
- Ease of installation
- Susceptibility to interference

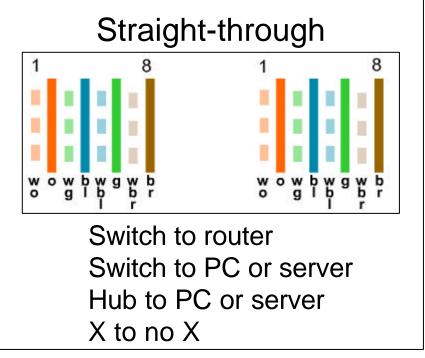
The most common is Category 5 UTP cable

Ethernet is the most widely used LAN technology

- first implemented by the DIX (Digital, Intel, Xerox) group
- Used as basis for IEEE 802.3 specification
 - ◆ 802.3u Fast Ethernet
 - 802.3z Gigabit Ethernet over Fiber
 - ◆ 802.3ab Gigabit Ethernet over UTP

Ethernet


Ethernet technologies can be used in a campus network in several different ways:


- 10 Mbps at the user level to provide good performance.
- 100 Mbps for clients or servers that require more bandwidth.
- Fast or Gigabit Ethernet between backbone devices.

	10BASE2	10BASE5	10BASE-T	100BASE-TX	100BASE-FX	1000BASE-CX	1000BASE-T	1000BASE-SX	1000BASE-LX
Media	50-ohm coaxial (Thinnet)	50-ohm coaxial (Thicknet)	EIA/TIA Category 3, 4, 5 UTP, two pair	EIA/TIA Category 5 UTP, two pair	62.5/125 multimode fiber	STP	EIA/TIA Category 5 UTP, four pair	62.5/50 micro multimode fiber	62.5/50 micro multimode fiber; 9-micron single-mode fiber
Maximum Segment Length	185 m (606.94 feet)	500 m (1640.4 feet)	100 m (328 feet)	100 m (328 feet)	400 m (1312.3 feet)	25 m (82 feet)	100 m (328 feet)	275 m (853 feet) for 62.5 micro fiber; 550 m (1804.5 feet) for 50 micro fiber	440 m (1443.6 feet) for 62.5 micro fiber; 550 m (1804.5 feet) for 50 micro fiber; 3 to 10 km (1.86 to 6.2 miles) on single-mode fiber
Topology	Bus	Bus	Star	Star	Star	Star	Star	Star	Star
Connector	BNC	Attachment unit interface (AUI)	ISO 8877 (RJ-45)	ISO 8877 (RJ-45)	Duplex media interface connector (MIC) ST or SC connector	ISO 8877 (RJ-45)	ISO 8877 (RJ-45)	SC connector	SC connector

UTP implementation

- EIA/TIA specifies an RJ-45 connector for UTP cable
- RJ stand for Registered Jack
- 45 refers to the specific wiring sequence
- A transceiver converts one type of connection to another Example: AUI to RJ-45, coax, or fiber optic connector

Repeaters

- A repeater regenerates and retimes network signals at the bit level to allow them to travel a longer distance
- 5-4-3 Rule for 10-Mbps Ethernet should be used to limit latency
- Too much latency on the LAN increases the number of late collisions and makes the LAN less efficient

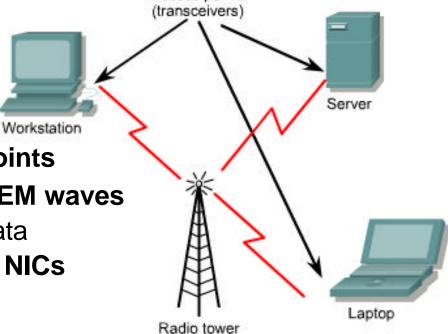
Hubs

- Hubs are actually multiport repeaters
- Change the network topology from a linear bus to a star
- Three basic types:
- Passive no boost, no clean and no power
- 2. Active needs power to amplify the incoming signal
- 3. Intelligent (Smart)- microprocessor chip and diagnostic capabilities

 NESCOT CATC

Wireless

Much less cabling


RF, IR, laser, satellite, microwaves

The only cabling can be to the **Access Points**

The transmitter converts source data to EM waves

The **receiver** converts waves back into data

All devices in WLAN must have Wireless NICs

Access points

IR weaknesses:

- 'Line of sight' limitation (newer technologies combat this)
- Signal weakening or obstruction by people or humidity

RF technology works between rooms or even buildings RF weaknesses:

- Single frequency is subject to outside interference and obstructions
- Single frequency is easily monitored by others making it insecure

FHSS and DSSS are Spread Spectrum technologies which add security and immunity to noise by using multiple frequencies

Bridges

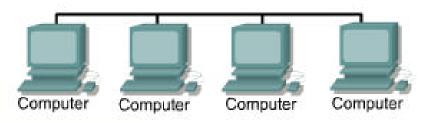
Bridges and switches operate at the Data Link layer.

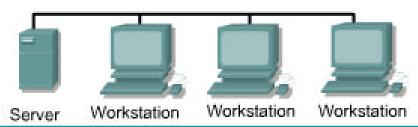
Destination MAC address is looked up in the bridge table to determine whether to filter, flood, or copy the frame onto another segment.

Switches

A switch has many ports with many network segments connected to them. A switch chooses the port to which the destination device is connected.

Alleviates congestion in LANs by reducing the size of collision domains, reducing traffic and increasing bandwidth.


Two basic operations:

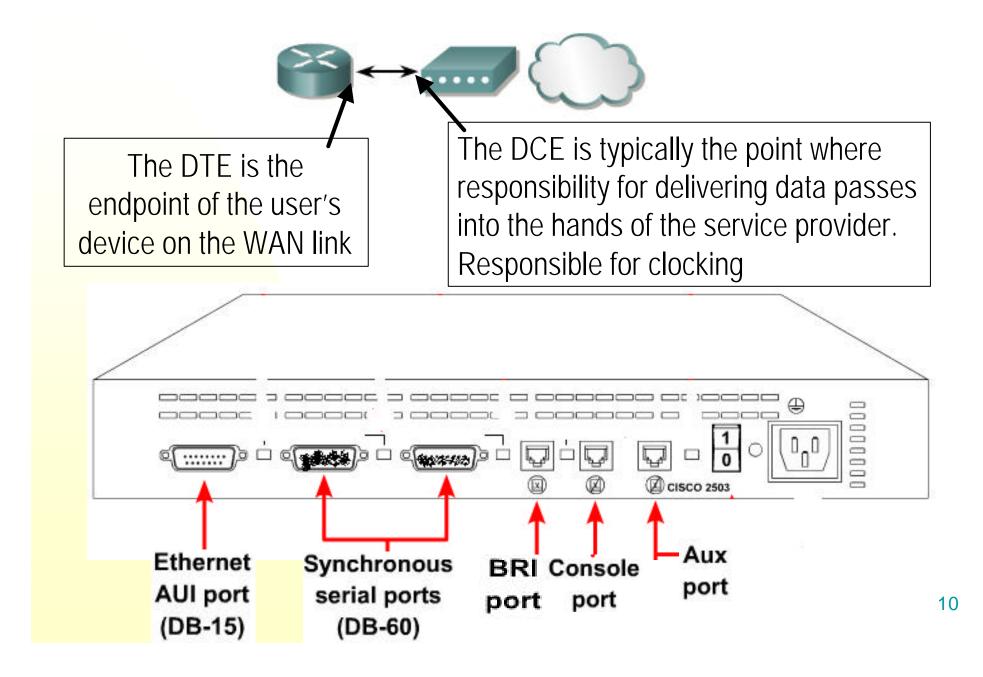

- Switching data frames.
- Build and maintain switching tables and search for loops.

Switches operate at much higher speeds than bridges and can support new functionality, such as virtual LANs.

Peer-to-Peer

Client/Server

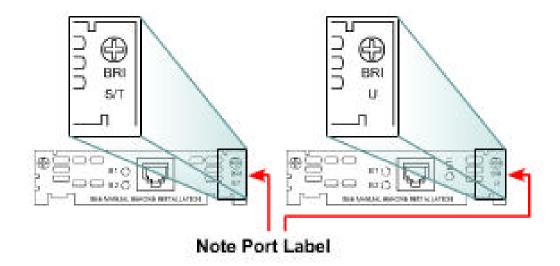
Advantages of Pe	er-to-Peer	Advantages of Client/Server		
Less expensive to imp	lement	Provides better security		
Does not require addit	ional software	Centralised administration		
Does not require admi	nistrator	Central backup		
Disadvantages of F	eer-to-Peer	Disadvantages of Client/Server		
Disadvantages of F		Expensive software		
	e networks	_		
Does not scale to large	e networks	Expensive software		


Cabling the WAN - Physical Layer

- Serial connections support WAN services such as dedicated leased lines that run PPP or Frame Relay.
- ISDN offers dial-on-demand or dial backup
 ISDN BRI has two 64 kbps B channels for data + one 16 kbps D channel for signaling and link-management.
 - PPP is typically used to carry data over the B channels.
- Residential DSL T1/E1 speed over telephone line
- Cable services use existing coaxial cable TV line
 Cable provides high-speed connectivity matching or exceeding that of DSL.

Cisco HDLC	ррр	Frame Relay	ISDN BRI (with PPP)	DSL Modem	Cable Modem
EIA/ X.21 V.35 High	TIA-232 TIA-449 V.24 Speed S	Serial	RJ-45 Note: ISDN BRI cable pinouts are different than the pinouts for Ethernet	RJ-11 Note: Works over telephone line	BNC Note: Works over Cable TV line

9


Routers and Serial Connections

Routers and ISDN BRI Connections

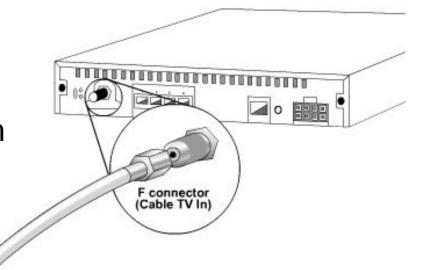
With ISDN BRI, two types of interfaces may be used:

- BRI S/T BRI interface without internal NT1
- 2. BRIU BRI interface with integrated NT1

NT1 is located between the router and the ISDN switch
NT1 connects four-wire wiring to the two-wire local loop
NT1 can be External devices or integrated into the router.

To interconnect the ISDN BRI port to the service-provider device, use a UTP Category 5 straight-through cable.

Caution: ISDN BRI uses voltages that can seriously damage non-ISDN devices.


DSL and Cable Connections

- The Cisco 827 ADSL router has one ADSL interface.
- Uses a phone cable with RJ-11 connectors
- DSL works over standard telephone lines using pins 3 and 4 on a standard RJ-11 connector.

Cisco 827-4V router

- The Cisco uBR905 high-speed access on Cable TV to SOHO
- F-connector and BNC connector connect the router and cable system
- Splitter/directional coupler separates TV and computer signals

To cable source

Review Questions

- Q What is the console port used for?
- A To configure the router
- Q What is microsegmentation?
- A Using switches to break up the collision domain
- Q What is the OSI Layer 1?
- A Physical layer
- Q What device can be active, passive or intelligent?
- A Hub
- Q What does 2B + D define?
- A ISDN 2x64kbps Bearer + 1x16kbps Delta channels