TCP/IP Protocol Suite and IP Addressing

CCNA 1 v3 – Module 9

10/11/2005

NESCOT CATC

Introduction to TCP/IP

U.S. DoD created the TCP/IP model. Provides **reliable** data transmission to any destination under any circumstance.

TCP/IP model has become the **Internet standard**.

TCP/IP v4 was standardized in 1981.

IPv4 addresses are 32 bits long dotted decimal.

0	0	1	0	0	0	0	1		1	0	0	0	0	1	1	0		1	1	0	0	0	0	0	1		0	0	0	0	0	0	1	1
			3	3				83				13	14				35				1	93				3				1	3			

IPv6 (IPng) standardized in **1992** by IETF.

IPv6 addresses are **128 bits** long written in hexadecimal with colons separating 16-bit fields. Leading zeros can be omitted in each field.

Example: **3FF**E:1900:6545:3:230:F804:7EBF:12C2

Application Layer

Handles high-level protocols, issues of **representation**, **encoding**, and **dialog control**. Protocols at this level include:

FTP File Transfer Protocol	Reliable, connection-oriented service using TCP to transfer files between systems. Supports bi-directional binary and ASCII file transfers.
TFTP Trivial File Transfer Protocol	Connectionless service using UDP. Used on routers to transfer configuration files and IOS images. Faster than FTP.
NFS Network File System	Distributed file system developed by Sun Microsystems. Allows file access to remote storage devices.
SMTP Simple Mail Transfer Protocol	Administers the transmission of e-mail over computer networks. Only provides support for plaintext.
Telnet Terminal emulation	Provides capability to remotely access another computer. Enables user to log in to remote host and execute commands.
SNMP Simple Network Management Protocol	Used to monitor and control network devices, to manage configurations, statistics collection, performance, and security
DNS Domain Name System	Used on Internet for translating domain names and their publicly advertised network nodes into IP addresses

Transport Layer

- Provides transport services from the source host to the destination host.
- Constitutes a **logical connection** between two endpoints.
- Two protocols:
- **1.** Transmission Control Protocol connection oriented
- 2. User Datagram Protocol connectionless
- Transport services include all the following services:

TCP and UDP	TCP only							
Segmen	ing upper-layer application data							
Sending segments	from one end device to another end device							
	Establishing end-to-end operations							
	Flow control provided by sliding windows							
	Reliability provided by sequence numbers and acknowledgments							

Internet Layer

Best path determination and packet switching occur at this layer.

The following protocols operate at the TCP/IP Internet layer:

IP	Internet Protocol provides connectionless, best-effort delivery routing of packets. IP is not concerned with the content of the packets but looks for path to destination.						
ICMP	Internet Control Message Protocol provides control and messaging capabilities						
ARP	Address Resolution Protocol determines the data link layer address (MAC address) for known IP addresses						
RARP	Reverse Address Resolution Protocoldetermines IPaddresses when the MAC address is known.						

- IP defines packets and addressing scheme, transfers data between Internet layer and network access layer and routes packets to remote hosts.
- Calling IP an unreliable protocol simply means that IP does not perform error checking and correction. These are handled by upper layer protocols.

Network Access Layer

- Also called the **host-to-network** layer.
- Concerned with making a **physical link** to the **network media**.
- Includes LAN and WAN technology details, and all the details contained in the OSI physical and data-link layers.
- **Drivers** for software applications and **modem cards** operate here.
- Protocols such as Serial Line Interface Protocol and Point to Point Protocol provide modems network access.
- Intricate interplay of hardware, software, and transmission-medium.
- Maps IP addresses to MAC addresses.
- Encapsulates IP packets into frames.

Network Access layer protocols include:

Ethernet, Fast Ethernet, SLIP, PPP, FDDI, ATM, Frame-Relay, SMDS, ARP, Proxy ARP, RARP.

IP Addressing

- Addresses allow one computer to locate another computer on a network.
- Each computer in a TCP/IP network must be given a unique IP address
 IP addresses operate at <u>Layer 3</u>.
- Each IP address is written as four parts separated by dots.
 Each part of the address is called an <u>octet</u> because it is made up of <u>eight bits</u>.
- Dotted decimal notation is easier for people to understand than <u>binary ones and zeros</u>.

Every IP address has two parts:

1. Network

2. Host

IP addresses are divided into classes A,B and C to define large, medium, and small networks.

The Class D address class was created to enable multicasting.

IETF reserves Class E addresses for its own research.

8

Address Class	High-Order Bits	First Octet Address Range	Number of Bits in the Network Address	Number of Networks	Number of Hosts per Network
Class A	0	0-127	8	126	16,777,216
Class B	10	128-191	16	16,384	65,536
Class C	110	192-223	24	2,097,152	254
Class D	1110	224-239	28	N/A	N/A

Certain host addresses are reserved and cannot be assigned to devices on a network:

Network address - Used to identify the network itself

- An IP address that has binary 0s in all host bit positions is reserved for the network address
- Broadcast address Used for broadcasting packets to all the devices on a network
- Broadcast IP addresses end with binary 1s in the entire host part of the address.

9

IP Private Addresses

- IANA manages the remaining supply of Public IP addresses to ensure that duplication does not occur. Public IP addresses are unique and must be obtained from an ISP or a registry.
- Private IP addresses are a solution to the problem of the exhaustion of public IP addresses. Addresses that fall within these ranges are not routed on the Internet backbone:

Class	RFC 1918 internal address range
Α	10.0.0.0 to 10.255.255.255
В	172.16.0.0 to 172.31.255.255
С	192.168.0.0 to 192.168.255.255

 Connecting a network using private addresses to the Internet requires translation of the private addresses to public addresses (NAT).

Subnetting

Example: All three segments are part of the Class B network: Address space 131.108.0.0 Default network mask 255.255.0.0

Individual subnets are created: Subnet mask 255.255.255.0

- Subnetting a network means to use the subnet mask to break a large network up into smaller, more efficient and manageable subnets.
- With subnetting, the network is not limited to Class A, B, or C masks
- To create a subnet address, borrow bits from the host field and designate them as the subnet field.
- There are three parts to subnet addresses:
- 1. Network
- 2. Subnet
- 3. Host

Obtaining an IP Address

Two methods to assign IP addresses:

- 1. Static
 - Manually configured on the host by Network Administrator
 - Can be used for hosts on **small**, **infrequently changing networks**
 - Assign to printers, servers, and routers
- 2. Dynamic
 - Host discovers its IP address by asking another network device
 - Using RARP, BOOTP or DHCP

RARP

- Reverse ARP associates a known MAC address with an IP address.
- RARP requests are broadcast onto the LAN and are responded to by the RARP server (usually a router).
- RARP uses the same packet format as ARP.
- Workstation running RARP have codes in ROM that start the process. 12

BOOTP

Bootstrap Protocol only requires a single packet exchange to obtain IP

information.

BOOTP packets can include:

- IP address
- Router address
- Server address
- Vendor-specific information.

Network administrator creates a file specifying parameters for each device. Each host must have a **BOOTP profile** with an IP address assignment. No two profiles can have the same IP address. BOOTP uses **UDP** to carry messages.

BootP process:

- 1. Host sends a broadcast IP packet destination 255.255.255.255.
- BOOTP server receives the broadcast and then sends back a broadcast.
- 3. Client finds its own MAC address in the destination address field of the server's broadcast and accepts the IP address and other information.

DHCP

Dynamic Host Configuration Protocol is BOOTP's successor.

Host can obtain IP address dynamically **without** a network administrator having to set up **individual profiles**.

Range of IP addresses is defined on a DHCP server.

Four part process:

DHCP Offer includes IP address, default-gateway, subnet mask and lease information.

DHCP allows users to be mobile.

DHCP leases an IP address to a device and then reclaims that IP address for another user after the first user releases it.

DHCP offers a one to many ratio of IP addresses.

ARP

Address Resolution Protocol maps IP to MAC addresses.

ARP automatically obtains MAC addresses on **local** segment.

Proxy ARP provides the MAC address of an intermediate device for transmission **outside** the **LAN**.

ARP tables are stored in RAM and maintained automatically on each device.

When a network device wants to send data across the network, it uses information from the ARP table.

There are two ways that devices can gather MAC addresses:

- 1. **Monitoring** traffic occuring on the local network segment.
- Broadcasting an ARP request

15