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Abstract This chapter describes a number of results obtained in the last sixty years in the
theory of non-zero-sum discrete-time stochastic games. We overview almost all basic streams
of research in this area such as: the existence of stationary Nash and correlated equilibria in
models on countable and general state spaces, the existence of subgame-perfect equilibria,
algorithms, stopping games and the existence of uniform equilibria. Our survey incorporates
several examples of games studied in operations research and economics. In particular, sep-
arate sections are devoted to intergenerational games, dynamic Cournot competition and
game models of resource extraction. The provided reference list embraces not only seminal
papers that commenced research in various directions but also exposes recent advances in
this field.
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uniform equilibrium · stopping game

1 Introduction

The fundamentals of modern theory of non-cooperative dynamic games were established in
the 1950s at the Princeton University. First Nash (1950) introduced the notion of equilibrium
for n-person static games and proved its existence using the fixed point theorem of Kakutani
(1941). Next Shapley (1953) presented the model of infinite time horizon stochastic zero-
sum game with positive stop probability. Fink (1964) and Takahashi (1964) extended his
model to non-zero-sum discounted stochastic games with finite state spaces and proved the
existence of equilibrium in stationary Markov strategies. Later on, Rogers (1969) and Sobel
(1971) obtained similar results for irreducible stochastic games with the expected limit-
average payoffs. Afterwards, the theory of discrete-time non-zero-sum stochastic games has
developed in various directions inspiring a lot of interesting applications. An overwiev of
selected basic topics in stochastic dynamic games with instructive examples can be found
in the books of Başar and Olsder (1995) and Haurie et al. (2012). An advanced material
is included in the monograph of Neyman and Sorin (2003) and in Mertens et al. (2015).

In this chapter we overview almost of all basic streams of research in the area of non-zero-
sum discrete-time stochastic games such as: the existence of stationary equilibria in models
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on both countable and general state spaces, the existence of subgame-perfect equilibria,
algorithms, stopping games, correlated and uniform equilibria. Our survey incorporates sev-
eral examples of games studied in operations research and economics. In particular, separate
sections are devoted to intergenerational games, dynamic Cournot competition and game
models of resource extraction. The provided reference list embraces not only seminal papers
that commenced research in various directions but also exposes recent advances in this field.

The paper is organised as follows. In Sect. 2 we describe some basic material needed for
an examination of non-zero-sum stochastic games with general state spaces. To make the
presentation less technical we restric attention to Borel space models. A great deal of the
results described in this chapter are stated in the literature in a more general framework.
However, the Borel state space models are enough for most applications. Sect. 2 includes
auxiliary results on set-valued mappings arising in a study of the existence of stationary
Nash/correlated equilibria and certain known results in the literature such as a random
version of the Carathéodory theorem or the Mertens measurable selection theorem. The
second part, on the other hand, is devoted supermodular games. Sect. 3 deals with the
concept of subgame-perfect equilibrium in games on a Borel state space and introduces dif-
ferent classes of strategies, in which subgame-perfect equilibria may be obtained. Sect. 4
includes the results on correlated equilibria with public signal proved for games on Borel
state spaces, whereas Sect. 5 presents the state-of the-art results on the existence of station-
ary equilibria (further called “stationary Markov perfect equilibria”) in discounted stochastic
games. The theory described in Sect. 5 found its applications to several examples examined
in operations research and economics. Namely, in Sect. 6 we provide models with special
but natural transition structures, for which there exist stationary equilibria. Sect. 7 recalls
the papers, where the authors proved the existence of an equilibrium for stochastic games
on denumerable state spaces. This section embraces the discounted models as well as mod-
els with the limit-average payoff criterion. Moreover, it is also shown that the discounted
game with a Borel state space can be approximated, under some assumptions, by simpler
games with countable state spaces. Sect. 8 overviews algorithms applied in non-zero-sum
stochastic games. In particular, it is shown how a formulation of a linear complementarity
problem can be helpful in solving games with discounted and limit-average payoff criteria
with special transition structure. In addition, we also mention the homotopy methods ap-
plied to this issue. Sect. 9 presents the games with finite state and action spaces, whilst Sect.
10 deals with games with product state spaces. In Sect. 11 we formulate results proved for
various intergenerational games. Our models incorporate paternalistic and non-paternalistic
altruistic economic growth models, games with one, finite or infinitely many descendants
as well as games on one and multi-dimensional commodity spaces. Finally, Sect. 12 gives a
short overview of stopping games beginning from the Dynkin extension of Neveu stopping
problem.

2 Preliminaries

In this section we recall essential notations and several facts, which are crucial for studying
Nash and correlated equilibria in non-zero-sum stochastic games with uncountable state
spaces. Here we follow preliminaries in Jaśkiewicz and Nowak (2016b). Let N = {1, . . . , n}
be the set of n-players. Let X, A1, . . . , An be Borel spaces. Assume that for each i ∈ N ,
x → Ai(x) ⊂ Ai is a lower measurable compact-valued action correspondence for player
i. This is equivalent to saying that the graph of this correspondence is a Borel subset of
X × Ai. Let A := A1 × · · · × An. We consider a non-zero-sum n-person game parametrised
by a state variable x ∈ X. The payoff or utility function for player i ∈ N is ri : X ×A→ R
and it is assumed that ri is bounded, ri(·, a) is Borel measurable for each a ∈ A, and
ri(x, ·) is continuous on A for each x ∈ X. Assuming that i ∈ N chooses a mixed strategy
νi ∈ Pr(Ai(x)), ν := (ν1, ..., νn), we denote the expected payoff to player i by

P i(x, ν) :=

∫
A1(x)

· · ·
∫
An(x)

ri(x, a1, ..., an)ν1(da1)× · · · × νn(dan).
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A strategy profile ν∗ = (ν∗1 , ..., ν
∗
n) is a Nash equilibrium in the game for a given state x ∈ X

if
P i(x, ν∗) ≥ P i(x, (νi, ν∗−i))

for every i ∈ N and νi ∈ Pr(Ai(x)). As usual (νi, ν
∗
−i) denotes ν∗ with ν∗i replaced by νi.

For any x ∈ X, we denote by N (x) be the set of all Nash equilibria in the considered game.
By Glicksberg (1952), N (x) 6= ∅. It is easy to see that N (x) is compact. Let NP(x) ⊂ Rn
be the set of payoff vectors corresponding to all Nash equilibria in N (x). By co, we denote
the convex hull operator in Rn.

Proposition 1 The mappings x → N (x), x → NP(x) and x → coNP(x) are compact-
valued and lower measurable.

For a detailed discussion of these reslults consult Nowak and Raghavan (1992); Himmel-
berg (1975); Klein and Thompson (1984). By Kuratowski and Ryll-Nardzewski (1965),
every set-valued mapping in Proposition 1 has a Borel measurable selection. By standard
results on measurable selctions (see Castaing and Valadier (1977)) and Carathéodory’s
theorem we obtain the following result.

Proposition 2 Let b : X → Rn be a Borel measurable selection of the mapping x →
coNP(x). Then there exist Borel measurable selections bi : X → Rn and Borel measurable
functions λi : X → [0, 1] (i = 1, ..., n+ 1) such that for each x ∈ X, we have

n+1∑
i=1

λi(x) = 1 and b(x) =

n+1∑
i=1

λi(x)bi(x).

Similarly as in Nowak and Raghavan (1992), from Filippov’s measurable implicit func-
tion theorem we conclude the following facts.

Proposition 3 Let p : X → Rn be a Borel measurable selection of the mapping x→ NP(x).
Then there exist a Borel measurable selection ψ of the mapping x→ N (x) such that

p(x) = (P 1(x, ψ(x)), ..., Pn(x, ψ(x))) for all x ∈ X.

Proposition 4 If b : X → Rn is a Borel measurable selection of the mapping x→ coNP(x),
then there exist Borel measurable selections ψi of the mapping x → N (x) and Borel mea-
surable functions λi : X → [0, 1] (i = 1, ..., n + 1) such that for each x ∈ X, we have∑n+1
i=1 λ

i(x) = 1 and

b(x) =

n+1∑
i=1

λi(x)(P 1(x, ψi(x)), ..., Pn(x, ψi(x))).

The following result plays an important role in studying Nash equilibria in stochastic
games with Borel state spaces and can be deduced from Theorem 2 in Mertens (2003).
An application of measurable implicit function theorem is also needed. It is related with
Lyapunov’s theorem on the range of non-atomic measures and also has some predecessors
in control theory, see Artstein (1989).

Proposition 5 Let µ be a non-atomic Borel probability measure on X. Assume that qj
(j = 1, ..., l) are Borel measurable transition probabilities from X to X and for every j and
x ∈ X, qj(·|x)� µ, i.e., qj(·|x) is dominated by µ. Let w0 : X → Rn be a Borel measurable
mapping such that w0(x) ∈ coNP(x) for each x ∈ X. Then there exists a Borel measurable
mapping v0 : X ×X → Rn such that v0(x, y) ∈ NP(x) for all x, y ∈ X and∫

X

w0(y)qj(dy|x) =

∫
X

v0(x, y)qj(dy|x), j = 1, . . . , l.

Moreover, there exists a Borel measurable mapping φ : X ×X → Pr(A) such that φ(x, y) ∈
N (x) for all x, y ∈ X.
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Let L be a lattice contained in an Euclidean space Rk equipped with the component-
wise order ≥. For any x, y ∈ L, x ∨ y (x ∧ y) denotes the join (meet) of x and y. A function
φ : L→ R is supermodular if for any x, y ∈ L, it holds

φ(x ∨ y) + φ(x ∧ y) ≥ φ(x) + φ(y).

Clearly, if k = 1 then any function φ is supermodular. Let L1 ⊂ Rk, L2 ⊂ Rl be lattices.
A function ψ : L1 × L2 → R has increasing differences in (x, y) if for every x′ ≥ x in L1,
ψ(x′, y) − ψ(x, y) is non-decreasing in y. Let the set Ai of pure strategies of player i ∈ N
be a compact convex subset of an Euclidean space Rmi . An element ai of Ai is denoted
by ai = (ai1, ai2, . . . , aimi). We consider an n-person game G0 in which Ri : A → R is the
payoff function of player i ∈ N and A := A1 × · · · × An. As usual, any strategy profile
a = (a1, a2, . . . , an) can also be denoted as (ai, a−i) for i ∈ N.

Assume that every Ai is a lattice. The game G0 is called supermodular if for every
player i ∈ N and a−i, the function ai → Ri(ai, a−i) is supermodular and Ri has increasing
differences in (ai, a−i).

It is well-known that any supermodular game with continuous utility functions and com-
pact strategy sets Ai has a pure Nash equilibrium, see Topkis (1998) or Theorems 4 and 5
in Milgrom and Roberts (1990).

The game G0 is called smooth if every Ri can be extended from A to an open superset
Ao in such a way that its second order partial derivatives exist and are continuous on Ao.

A game G0 is called a smooth supermodular game if for every player i ∈ N,

(a) Ai is a compact interval in Rmi ,
(b) ∂2Ri

∂aij∂aik
≥ 0 on A for all 1 ≤ j < k ≤ mi,

(c) ∂2Ri
∂aij∂akl

≥ 0 on A for each k 6= i and all all 1 ≤ j ≤ mi, 1 ≤ l ≤ mk.

It is well-known that any game satisfying conditions (a)-(c) is supermodular. Conditions
(a) and (b) imply that Ri is a supermodular function with respect to ai for fixed a−i, while
conditions (a) and (c) imply that Ri has increasing differences in (ai, a−i). For a detailed
discussion of these issues see Topkis (1978, 1998) or Theorem 4 in Milgrom and Roberts
(1990).

In order to obtain a uniqueness of an equilibrium in a smooth supermodular game G0

one needs an additional assumption, often called a strict diagonal dominance condition,
see page 1271 in Milgrom and Roberts (1990) or Rosen (1965). As noted by Curtat
(1996), this condition can be described for smooth supermodular games as follows. Let
M i := {1, 2, . . . ,mi}.

(C1) For every i ∈ N and j ∈M i,

∂2Ri
∂a2ij

+
∑

l∈Mi\{j}

∂2Ri
∂aij∂ail

+
∑

k∈N\{i}

∑
l∈Mk

∂2Ri
∂aij∂akl

< 0.

From Milgrom and Roberts (1990) and page 187 in Curtat (1996), we obtain the
following auxiliary result.

Proposition 6 Any smooth supermodular game G0 satisfying condition (C1) has a unique
pure Nash equilibrium.

Assume now that the payoff functions Ri are parameterised by τ in some partially ordered
set T , i.e., Ri : A× T → R.

(C2) ∂2Ri
∂aij∂τ

≥ 0 for all 1 ≤ j ≤ mi, and i ∈ N.

It is known that the set of Nash equilibria in any supermodular game G0 is a lattice and
has the smallest and the largest elements. The following result follows from Theorem 7 in
Milgrom and Roberts (1990).

Proposition 7 Suppose that a smooth supermodular game satisfies (C2). Then, the largest
and smallest pure Nash equilibria are non-decreasing functions of τ.
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3 Subgame-perfect equilibria in stochastic games with general state space

We consider an n-person non-zero-sum discounted stochastic game G defined below.

• (X,B(X)) is a non-empty Borel state space with its Borel σ-algebra B(X).
• Ai is a Borel space of actions for player i ∈ N := {1, ..., n}.
• Ai(x) ⊂ Ai is a set of actions available to player i ∈ N in state x ∈ X. The correspon-

dence x→ Ai(x) is lower measurable and compact-valued. Define

A := A1 × . . .×An and A(x) = A1(x)× . . .×An(x), x ∈ X.

• ui : X × A → R is a Borel measurable bounded utility (or payoff) function for player
i ∈ N. It is assumed that ui(x, ·) is continuous on A for every x ∈ X.

• q : X×A×B(X)→ [0, 1] is a transition probability. We assume that q(D|x, ·) is continuous
on A for each x ∈ X and D ∈ B(X).

• β ∈ (0, 1) is a discount factor.

Every stage of the game begins with a state x ∈ X, and after observing x, the players
simultaneously choose their actions ai ∈ Ai(x) (i ∈ N) and obtain payoffs ui(x, a), where
a = (a1, ..., an). A new state x′ is realised from the distribution q(·|x, a) and new period
begins with payoffs discounted by β. Let H1 = X and Ht be the set of all plays ht =
(x1, a

1, ..., xt−1, a
t−1, xt), where ak = (ak1 , ..., a

k
n) ∈ A(xk), k = 1, ..., t − 1. A strategy for a

player is a sequence πi = (πit)t∈N of Borel measurable transition probabilities from Ht to
Ai such that πit(Ai(xt)) = 1 for each ht ∈ Ht. The set of strategies for player i ∈ N is
denoted by Πi. We put Π := Π1 × . . .×Πn. Let Fi (F 0

i ) be the set of all Borel measurable
mappings fi : X × X → Pr(Ai) (φi : X → Pr(Ai)) such that fi(x−, x) ∈ Pr(Ai(x))
(φi(x) ∈ Pr(Ai(x))) for each x−, x ∈ X. A stationary almost Markov strategy for player
i ∈ N is a constant sequence (πit)t∈N where πit = fi for some fi ∈ Fi and for all t ∈ N.
If xt is a state of the game on its t-stage with t ≥ 2, then player i chooses an action using
the mixed strategy fi(xt−1, xt). The mixed strategy used at an initial state x1 is fi(x1, x1).
The set of all stationary almost Markov strategies for player i ∈ N is identified with the
set Fi. A stationary Markov strategy for player i ∈ N is identified with a Borel measurable
mapping fi ∈ F 0

i . We say that πi = (πi1, πi2, ...) ∈ Πi is a Markov strategy for player i if
πit ∈ F 0

i for all t ∈ N.
Any strategy profile π = (π1, . . . , πm) ∈ Π together with an initial state x = x1 ∈ X de-

termines a unique probability measure Pπx on the spaceH∞ of all plays h∞ = (x1, a
1, x2, a

2, ...)
endowed with the product σ-algebra. The expected discounted payoff or utility function for
player i ∈ N is

J i,Tβ (s, π) = Eπx

(
T∑
t=1

βt−1ui(xt, a
t)

)
where T ≤ ∞.

We shall write J iβ(s, π), if T =∞.
A profile of strategies π∗ ∈ Π is called a Nash equilibrium, if

J i,Tβ (x, π∗) ≥ J i,Tβ (x, (π∗−i, πi)) for all x ∈ X, πi ∈ Πi and i ∈ N.

A stationary almost Markov (stationary Markov) perfect equilibrium is a Nash equilibrium
that belongs to the class of strategy profiles F := F1 × . . . × Fn (F 0 := F 0

1 × . . . × F 0
n). A

Markov perfect equilibrium, on the other hand, is a Nash equilibrium π∗, in which π∗it = fit
and fit ∈ F 0

i for every t ∈ N and every player i ∈ N. The strategies involved in such an
equilibrium are called “markovian”, “state-contigent” or “payoff-relevant”, see Maskin and
Tirole (2001). Clearly, every stationary Markov perfect equilibrium is also a Markov perfect
equilibrium.

Let π = (π1, . . . , πn) ∈ Π and ht ∈ Ht. By πi[ht] we denote the conditional strategy for
player i that can be applied from stage t onwards. Put π[ht] = (π1[ht], . . . , πn[ht]). Using
this notation, one can say that π∗ is a subgame-perfect equilibrium in the stochastic game if
for any t ∈ N and every partial history ht ∈ Ht, π∗[ht] is a Nash equilibrium in the subgame
starting at xt, where xt is the last coordinate in ht. This definition refers to the classical
idea of Selten (1975).
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Let B(X) be the space of all bounded Borel measurable real-valued functions on X and
Bn(X) := B(X)× · · · ×B(X) (n times). Similarly define B(X ×X) and Bn(X ×X). With
any x ∈ X and v = (v1, ..., vn) ∈ Bn(X), we associate the one-shot game Γv(x) in which the
payoff function to player i ∈ N is

U iβ(vi, x, a) := ui(x, a) + β

∫
X

vi(y)q(dy|x, a), a ∈ A(x). (1)

If ν = (ν1, ..., νn) ∈ Pr(A(x)), then

U iβ(vi, x, a1, ..., an)ν1(da1)× · · · × νn(dan)

and if f = (f1, ..., fn) ∈ F 0, then U iβ(vi, x, f) = U iβ(vi, x, ν) with ν = (f1(x), ..., fn(x)).

Further, U iβ(vi, x, (µi, f−i)) = U iβ(vi, x, ν) with νi = µi, νj = fj(x) for j 6= i. Under our
assumptions, a → U iβ(vi, , a) is continuous on A(x) for every vi ∈ B(X), x ∈ X, i ∈ N. Let
Nv(x) be the set of all Nash equilibria in the game Γv(x). By NPv(x) we denote the set
of payoff vectors corresponding to all equilibria in Nv(s). Let Mv be the set of all Borel
measurable selections of the set-valued mapping x → Nv(x). We know from Proposition 1
thatMv 6= ∅.

Consider a T -stage game (2 ≤ T <∞). Assume that the (T − 1)-stage subgame starting
at any state x2 ∈ X has a Markov perfect equilibrium, say π∗T−1. Let v

∗
T−1 be the vector

payoff function in Bn(X) determined by π∗T−1. Then we can get some f∗ ∈ Mv∗T−1
and

define π∗T := (f∗, π∗T−1). It is obvious that π∗T is a Markov perfect equilibrium in the T -stage
game. This fact was proved by Rieder (1979) and we state it below.

Theorem 1 Every finite stage non-zero-sum discounted stochastic game satisfying the above
conditions has a subgame-perfect equilibrium. For any ε > 0, there exists an ε-equilibrium
πε in Markov strategies, i.e.,

J iβ(x, πε) + ε ≥ J iβ(x, (πi, π
ε
−i)) for all x ∈ X, πi ∈ Πi and i ∈ N.

Note that ε-equilibrium in the second part of this theorem has no subgame-perfection
property.

We now make an additional assumption.

(A1) The transition probability q is norm continuous in actions, i.e., for each x ∈ X, ak → a0

in A(x) as k →∞, it follows that

sup
D∈B(X)

|q(D|x, ak)− q(D|x, a0)| → 0.

Condition (A1) is quite restrictive, but it is satisfied, if q has a continuous in actions
conditional density with respect to some probability measure on X.

Theorem 2 Every discounted non-zero-sum stochastic game G satisfying (A1) has a subgame-
perfect equilibrium.

Theorem 2 was proved in a more general form by Mertens and Parthasarathy (2003),
where the payoffs and discount factors may depend on time and the state space is a general
measurable space. A special case was considered by Mertens and Parthasarathy (1991), who
assumed that the action sets are finite and state independent and transitions are dominated
by some probability measure on X. The proofs given in Mertens and Parthasarathy (1991)
and Mertens and Parthasarathy (2003) are based upon studying a specified fixed point
property of an operator defined in the class of measurable selections of compact set-valued
mappings from the state space to the payoff space. The fixed point obtained in that class
is used to define in a recursive way a subgame-perfect equilibrium that consists of history
dependent strategies (unbounded memory is assumed). For further comments on possible
extensions of Theorem 2 the reader is referred to Mertens (2002) and Mertens et al. (2015).
A modified proof of their results was provided by Solan (1998), who analysed accumulation
points of ε-equilibria (as ε→ 0) obtained in Theorem 1.
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Assume that Ai(x) = Ai for each x ∈ X and i ∈ N and that every space Ai is compact.
Let X and A1, . . . , An be given the discrete topology. According to Maitra and Sudderth
(2007), a function g : H∞ → R is DS-continuous on H∞ if it is continuous on H∞ endowed
with the product topology. It is easy to see that g is DS-continuous on H∞ if and only if,
for any ε > 0 and y = (y1, y2, ...) ∈ H∞ there exists m such that |g(y)− g(y′)| < ε for each
y′ = (y′1, y

′
2, ...) ∈ H∞ such that yl = y′l for 1 ≤ l ≤ m. Suppose that gi : H∞ → R is a

bounded Borel measurable payoff function for player i ∈ N. For any strategy profile π ∈ Π
and every initial state x = x1, the expected payoff to player i is Eπx (gi). The subgame-perfect
equilibrium can be defined for this game in the usual way. Maitra and Sudderth (2007) (see
Theorem 1.2) obtained a general theorem on the existence of subgame-perfect equilibria for
stochastic games.

Theorem 3 Let the payoff functions gi, i ∈ N, be bounded, Borel measurable, DS-continuous
on H∞ and let the action spaces Ai be finite. Then the game has a subgame-perfect equilib-
rium.

The proof of Theorem 3 applies some techniques from gambling theory described in
Dubins and Savage (1976), i.e., approximations of DS-continuous functions by “finitary
functions”. Theorem 3 extends a result due to Fudenberg and Levine (1983). An example
given in Harris et al. (1995) shows that Theorem 3 is false, if the action spaces are compact
metric and the transition probability q is weakly continuous.

The next result was proved by Maitra and Sudderth (2007) (see Theorem 1.3) for
“additive games” and sounds as follows.

Theorem 4 Assume that every action space is compact and the transition probability sat-
isfies (A1). Assume that gi(h∞) =

∑∞
t=1 rit(xt, a

t) and this series converges uniformly on
H∞. If, in addition, every function rit is bounded, rit(·, a) is Borel measurable on X for
each a ∈ A := A1×· · ·×An, and rit(x, ·) is continuous on A for each x ∈ X, then the game
has a subgame-perfect equilibrium.

It is worthy to emphasise that stationary Markov perfect equilibria may not exist in games
considered in this section. Namely, Levy (2013) gave a counterexample of a discounted gams
with uncountable state space, finite action sets and deterministic transitions. Then, Levy
and McLennan (2015) showed that stationary Markov perfect equilibria may not exist even
if the action spaces are finite, X = [0, 1] and the transition probability has a density function
with respect to some measure µ ∈ Pr(X). A very simple modification of the example given
in Levy and McLennan (2015) shows that a new game (with X = [0, 2]) need not have
a stationary Markov perfect equilibrium, when the measure µ (dominating the transition
probability q) is non-atomic.

4 Correlated equilibria with public signals in games with Borel state spaces

Correlated equilibria for normal form games were first studied by Aumann (1974, 1987). In
this section we describe an extensive-form correlated equilibrium with public randomisation
inspired by the work of Forges (1986). A further discussion of correlated equilibria and
communication in games can be found in Forges (2009). The sets of all equilibrium payoffs
in extended form games that include a general communication device are characterised by
Solan (2001).

We now extend the sets of strategies available to the players in the sense that we allow
them to correlate their choices in some natural way. Suppose that (ξt)t∈N is a sequence
of so-called signals, drawn independently from [0, 1] according to the uniform distribution.
Suppose that at the beginning of each period t of the game the players are informed not only
of the outcome of the preceding period and the current state xt, but also of ξt.. Then, the
information available to them is a vector ht = (x1, ξ1, a

1, ..., xt−1, ξt−1, a
t−1, xt, ξt), where

xτ ∈ X, ξτ ∈ [0, 1], aτ ∈ A(xτ ), 1 ≤ τ ≤ t− 1. We denote the set of such vectors by Ht. An
extended strategy for player i is a sequence πi = (πit)t∈N, where πit is a Borel measurable
transition probability from Ht to Ai such that πit(Ai(xt)|ht) = 1 for each ht ∈ Ht. An
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extended stationary strategy for player i ∈ N can be identified with a Borel measurable
mapping f : X × [0, 1] → Pr(Ai) such that f(Ai(x)|x, ξ) = 1 for all (x, ξ) ∈ X × [0, 1].
Assuming that the players use extended strategies we actually assume that they play the
stochastic game with the extended state space X × [0, 1]. . The law of motion, say p, in the
extended state space model is obviously the product of the original law of motion q and the
uniform distribution η on [0, 1]. More precisely, for any x ∈ X, ξ ∈ [0, 1], a ∈ A(x), Borel
sets C ⊂ X and D ⊂ [0, 1], p(C × D|x, ξ, a) = q(C|x, a)η(D). For any profile of extended
strategies π = (π1, ..., πn) of the players, the expected discounted payoff to player i ∈ N is a
function of the initial state x1 = x and the first signal ξ1 = ξ and is denoted by J iβ(x, ξ, π).
We say that f∗ = (f∗1 , ..., f

∗
n) is a Nash equilibrium in the β-discounted stochastic game in

the class of extended strategies if for each initial state x1 = x, i ∈ N and every extended
strategy πi of player i, we have∫ 1

0

J iβ(x, ξ, f∗)dξ ≥
∫ 1

0

J iβ(x, ξ, (πi, f
∗
−i))dξ.

The Nash equilibrium in extended strategies is also called a correlated equilibrium with
public signals. The reason is that after the outcome of any period of the game, the players
can coordinate their next choices by exploiting the next (known to all of them, i.e., public)
signal and using some coordination mechanism telling which (pure or mixed) action is to
be played by everyone. In many applications, we are particularly interested in stationary
equilibria. In such a case the coordination mechanism can be represented by a family of
n+ 1 Borel measurable functions λj : X → [0, 1] such that

∑n+1
j=1 λ

j(x) = 1 for each x ∈ X.
A stationary correlated equilibrium can be constructed then by using a family of n + 1
stationary strategies f1i , ..., f

n+1
i given for every player i, and the following coordination

rule. If the game is in state xt = x on stage t and a random number ξt = ξ is selected, then
player i ∈ N is suggested to use fki (·|x) where k is the least index for which

∑k
j=1 λ

j(x) ≥ ξ.
The functions λj and f ji induce an extended stationary strategy f∗i for every player i as
follows

f∗i (·|x, ξ) := f1i (·|x) if ξ ≤ λ1(x), x ∈ X,

and

f∗i (·|x, ξ) := fki (·|x) if
k−1∑
j=1

λ1(x) < ξ ≤
k∑
j=1

λ1(x)

for x ∈ X, 2 ≤ k ≤ n + 1. Because the signals are independent and uniformly distributed
in [0, 1], it follows that at any period of the game and for any current state x, the number
?λj(x) can be interpreted as the probability that player i is suggested to use f ji (·|x) as a
mixed action.

(A2) Let µ ∈ Pr(X). There exists a conditional density function ρ for q with respect to µ such
that if ak → a0 in A(x), x ∈ X, as k →∞, then

lim
k→∞

∫
X

|ρ(x, ak, y)− ρ(x, a0, y)|µ(dy) = 0.

Theorem 5 Any discounted stochastic game G satisfying (A2) has a stationary correlated
equilibrium with public signals.

Theorem 5 was proved by Nowak and Raghavan (1992). First it is shown by making
use of theorem in Glicksberg (1952) that the correspondence v → Mv has a fixed point,
i.e., there exists w∗ ∈ Bn(X) such that w∗(x) ∈ coNPw∗(x) for all x ∈ X. Then, applying
Propositions 2 and 4 one can prove the existence of a stationary correlated equilibrium
with public signals for the game with the payoff functions U iβ(w∗i , x, a) defined in (1). A
verification that f∗ obtained in this way is indeed a Nash equilibrium in the game with the
extended state space X × [0, 1] relies on using standard Bellman equations for discounted
dynamic programming, see Blackwell (1965) or Puterman (1994). Observe also that the
set of all atoms Da for µ is countable. A refinement of the above result is Theorem 2 in
Jaśkiewicz and Nowak (2016a), where it is shown that public signals are important only
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in states belonging to the set X \ Da. A similar result on correlated equilibria was given
in Nowak and Jaśkiewicz (2005) for semi-Markov games with Borel state spaces and the
expected average payoffs. This result, in turn, was obtained under geometric drift conditions
(GE1)-(GE3) formulated in Sect. 5 in Jaśkiewicz and Nowak (2016b).

Condition (A2) can be replaced in the proof (with minor changes) by assumption (A1)
on norm continuity of q with respect to actions. A similar result to Theorem 5 was given by
Duffie et al. (1994), where it was assumed that for any x, x′ ∈ X, a ∈ A(x), a′ ∈ A(x′), we
have

q(·|x, a)� q(·|x′, a′) and q(·|x′, a′)� q(·|x, a).

In addition, Duffie et al. (1994) required the continuity of the payoffs and transitions with
respect to actions. Thus, the result in Duffie et al. (1994) is weaker than Theorem 5. However,
they established also the ergodicity of the Markov chain induced by a stationary correlated
equilibrium. Their proof is different from that of Nowak and Raghavan (1992). Subgame-
perfect correlated equilibria were also studied by Harris et al. (1995) for games with weakly
continuous transitions and general continuous payoff functions on the space of infinite plays
endowed with the product topology. Harris et al. (1995) gave an example showing that
public signals play an important role. They proved that the subgame-perfect equilibium
path correspondence is upper hemicontinuous. Later, Reny and Robson (2002) provided a
shorter and simpler proof of existence that focuses on considerations of equilibrium payoffs
rather than paths. Some comments on correlated equilibria for games with finitely many
states or different payoff evaluation will be given in the sequel.

5 Stationary equilibria in discounted stochastic games with Borel state spaces

In this section, we introduce the following condition.

(A3) There exist l Borel measurable functions αj : X×A→ [0, 1] such that
∑l
j=1 αj(x, a) = 1

for every (x, a) ∈ X ×A and Borel measurable transition probabilities qj : X ×B(X)→
[0, 1] such that

q(·|x, a) =

l∑
j=1

αj(x, a)qj(·|x), (x, a) ∈ X ×A.

Moreover, every qj(·|x) is dominated by some µ ∈ Pr(X).

We can now state a result due to Jaśkiewicz and Nowak (2016a).

Theorem 6 Assume that game G satisfies (A3).Then, G has a stationary almost Markov
perfect equilibrium.

We outline the proof of Theorem 6 for non-atomic measure µ. The general case needs
an additional notation. Firstly, we show that there exists a Borel measurable mapping
w∗ ∈ Bn(X) such that w∗(x) ∈ coNPw∗(x) for all x ∈ X. This result is obtained by
applying a generalisation of the Kakutani fixed point theorem due to Glicksberg (1952).
(Note that closed balls in Bn(X) are compact in the weak-star topology due to Banach-
Alaoglu’s theorem.) Secondly, applying Proposition 5 we conclude that there exists some
v∗ ∈ Bn(X ×X) such that∫

X

w∗(y)qj(dy|x) =

∫
X

v∗(x, y)qj(dy|x), j = 1, . . . , l.

Hence, by (A3) we infer that∫
X

w∗(y)q(dy|x, a) =

∫
X

v∗(x, y)q(dy|x, a), (x, a) ∈ X ×A.

Moreover, we know that v∗(x, y) ∈ NPv∗(y) for all states x and y. Furthermore, making
use of a measurable implicit function theorem (as in Proposition 5) we claim that v∗(x, y) is
the vector of equilibrium payoffs corresponding to some stationary almost Markov strategy
profile. Finally, we utilise the system of n Bellman equations to provide a characterisation of
stationary equilibrium and to deduce that this profile is indeed a stationary almost Markov
perfect equilibrium. For the details the reader is referred to Jaśkiewicz and Nowak (2016a).
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Corollary 1 Consider a game where the set A is finite and the transition probability q is
Borel measurable. Then, the game has a stationary almost Markov perfect equilibrium.

Proof We show that the game meets (A3). Let m ∈ N be such that A = {a1, . . . , am}. Now,
for j = 1, . . . ,m, define

αj(s, a) :=

{
1, if a ∈ A(x), a = aj

0, otherwise,
and qj(·|x) :=

{
q(·|x, a), if a ∈ A(x), a = aj

µ(·), otherwise.

Then, q(·|s, a) =
∑l
j=1 gj(s, a)qj(·|s) for l = m and the conclusion follows from Theorem 6.

Remark 1 Corollary 1 extends the result of Mertens and Parthasarathy (1991), where it is
additionally assumed that Ai(x) = Ai for all x ∈ X, i ∈ N and that µ is non-atomic, see
Comment on p. 147 in Mertens and Parthasarathy (1991) or Theorem VII.1.8 on p. 398 in
Mertens et al. (2015). If µ admits some atoms, then they proved the existence of a subgame-
perfect equilibrium in which the strategy of player i ∈ N is of the form (fi1, fi2, ...) with
fit ∈ F 0

i for each t ∈ N. Thus, the equilibrium strategy of player i ∈ N is stage-dependent.

Remark 2 It is worthy to emphasise that equilibria established in Theorem 6 are subgame-
perfect. A related result to Theorem 6 is given in Barelli and Duggan (2014). The as-
sumption imposed on the transition probability in their paper is weaker, but an equilibrium
is shown to exist in a class of stationary semi-Markov strategies, where the players take
into account the current state, previous state and the actions chosen by the players in the
previous state.

Remark 3 As already mentioned in Sect. 3, Levy and McLennan (2015) constructed a
stochastic game that does not have a stationary Markov perfect equilibrium. In their model,
each set Ai is finite, Ai(x) = Ai for every i ∈ N, x ∈ X and the transition law is a convex
combination of a probability measure (depending the current state) and the Dirac measure
concentrated at some state. Such a model satisfies the absolute continuity condition. Hence,
their example confirms that one cannot expect to obtain an equilibrium in stationary Markov
strategies even for games with finite action spaces. Therefore, Corollary 1 is meaningful.

Remark 4 By Urysohn’s metrisation theorem (see Theorem 3.40 in Aliprantis and Border
(2006)), every action space Ai can be embedded homeomorphically in the Hilbert cube.
The action correspondences remain measurable and compact-valued after the embedding.
Therefore, one can assume without loss of generality as in Jaśkiewicz and Nowak (2016a)
that the action spaces are compact metric.

A stochastic game with additive reward and additive transitions (ARAT for short) sat-
isfies some separability condition for the actions of the players. To simplify presentation we
assume that N = {1, 2}. The payoff function for player i ∈ N is of the form

ui(x, a1, a2) = ui1(x, a1) + ui2(x, a2),

where x ∈ X, a1 ∈ A1(x), a2 ∈ A2(x) and similarly

q(·|x, a1, a2) = q1(·|x, a1) + q2(·|x, a2),

where q1 and q2 are some Borel measurable subtransition probabilities dominated by some
µ ∈ Pr(X).

The following result was proved in Jaśkiewicz and Nowak (2015a).

Theorem 7 If µ is a non-atomic probability measure and the action sets A1 and A2 are
finite, then the ARAT stochastic game has a Nash equilibrium in pure stationary almost
Markov strategies.
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The separability of actions as in ARAT games can be easily generalised to n-person
case. Assumptions of similar type are often used in differential games, see Başar and Olsder
(1995). ARAT stochastic games with Borel state and finite action spaces were first studied
by Himmelberg et al. (1976), who showed the existence of stationary Markov equilibria for
µ-almost all initial states with µ ∈ Pr(X). Their result was strengthened by Nowak (1987),
who considered compact metric action spaces and obtained stationary equilibria for all initial
states. Pure stationary Markov perfect equilibria may not exist in ARAT stochastic games
if µ has atoms; see Example 3.1 (a game with 4 states) in Raghavan et al. (1985) or
counterexample (a game with 2 states) in Jaśkiewicz and Nowak (2015a). Küenle (1999)
studied ARAT stochastic games with Borel state space and compact metric action spaces and
established the existence of non-stationary history-dependent pure Nash equilibria. In order
to construct subgame-perfect equilibria he used the well-known idea of threats (frequently
used in repeated games). The result of Küenle (1999) is stated for two-person games only.
Theorem 7 can be proved for n-person games as well under similar additivity assumption.
An almost Markov equilibrium is obviously subgame-perfect.

Stationary Markov perfect equilibria exist in discounted stochastic games with state
independent transitions (SIT games) studied by Parthasarathy and Sinha (1989). They
assumed that Ai(x) = Ai for all x ∈ X and i ∈ N, the action sets Ai are finite, and
q(·|x, a) = q(·|a) are non-atomic for all a ∈ A. A more general class of games with additive
transitions satisfying (A3) but with all qj independent of state x ∈ X (AT games) was
examined by Nowak (2003b). A stationary Markov perfect equilibrium f∗ ∈ F 0 was shown
to exist in that class of stochastic games.

Let X = Y × Z where Y and Z are Borel spaces. In a noisy stochastic game considered
by Duggan (2012) the states are of the form x = (y, z) ∈ X, where z is called a noise
variable. The payoffs depend measurably on x = (y, z). They are continuous in actions and
the transition probability q is defined as follows

q(D|x, a) =

∫
Y

∫
Z

1D(y′, z′)q2(dz′|y′)q1(dy′|x, a), a ∈ A(x), D ∈ B(Y × Z).

Moreover, it is assumed that q1 is dominated by some µ1 ∈ Pr(Y ) and q2 is absolutely
continuous with respect to some non-atomic measure µ2 ∈ Pr(Z). Additionally, q1(·|x, a) is
norm continuous in actions a ∈ A, for each x ∈ X. This form of q implies that conditional on
y′ the next shock z′ is independent of the current state and actions. In applications, (y, z)
may represent a pair: the price of some good and the realisation of random demand. By
choosing actions, the players can determine (stochastically) the next period price y′, which
in turn, has some influence on the next demand shock. Other applications are discussed in
Duggan (2012), the following result was proved.

Theorem 8 Every noisy stochastic game has a stationary Markov perfect equilibrium.

LetX be a Borel space, µ ∈ Pr(X) and let G ⊂ B(X) be a sub-σ-algebra. A setD ∈ B(X)
is said to be a (conditional) G-atom if µ(D) > 0 and for any Borel set B ⊂ D there exists
some B0 ∈ G such that µ(B4(D ∩ D0)) = 0. Assume that the transition probability q is
dominated by some probability measure µ and ρ denotes a conditional density function.
Following He and Sun (2016), we say that a discounted stochastic game has a decomposable
coarser transition kernel if there exists a sub-σ-algebra G ⊂ B(X) such that B(X) has no
G-atom and there exist Borel measurable non-negative functions ρj and dj (j = 1, ..., l) such
that, for every x ∈ X, a ∈ A, each function ρj(·, x, a) is G-measurable and the transition
probability density ρ is of the form

ρ(y, x, a) =

l∑
j=1

ρj(y, x, a)dj(y), x, y ∈ X, a ∈ A.

Using a theorem of Dynkin and Evstigneev (1977) on conditional expectations of measurable
correspondences and a fixed point property proved in Nowak and Raghavan (1992), He and
Sun (2016) established the following result.
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Theorem 9 Every discounted stochastic game having decomposable coarser transition ker-
nel with respect to a non-atomic probability measure µ on X has a stationary Markov perfect
equilibrium.

A slight extension of the above theorem, given in He and Sun (2016), contains as special
cases the results proved in Parthasarathy and Sinha (1989), Nowak (2003b) and Nowak
and Raghavan (1992). However, from He and Sun (2016) does not follow the form of the
equilibrium strategy obtained in Nowak and Raghavan (1992). The result of He and Sun
(2016) also embraces the class of noisy stochastic games examined in Duggan (2012). In
this case, it suffices to take G ⊂ B(Y ×Z) that consists of the sets D×Z, Z ∈ B(Y ). Finally,
we wish to point out that ARAT discounted stochastic games as well as games considered
in Jaśkiewicz and Nowak (2016a) (see Theorem 6) are not contained in the class of models
mentioned in Theorem 9.

Remark 5 A key tool in proving the existence of a stationary Markov perfect equilibrium
in a discounted stochastic game that has no ARAT structure is Lyapunov’s theorem on
the range of non-atomic vector measure. Since Lyapunov’s theorem is false for infinitely
many measures, the counterexample of Levy’s eight-person game had a reason to come.
(see Levy and McLennan (2015)). There is another reason for which the existence of an
equilibrium in the class of stationary Markov strategies F 0 is difficult to obtain. One can
recognise strategies from the sets F 0

i as “Young measures” and consider a natural in that
class weak-star topology, see Valadier (1994). Young measures are often called relaxed
controls in control theory. With the help of Example 3.16 from Elliott et al. (1973), one can
easily construct a stochastic game with X = [0, 1], finite action spaces and trivial transition
probability q being a Lebesgue measure onX, where the expected discounted payoffs J iβ(x, f)

are discontinuous on F 0 endowed with the product topology. The continuity of f → J iβ(x, f)
(for fixed initial state) can only be proved for ARAT games. Generally, it is difficult to obtain
compact families of continuous strategies. This property requires very strong conditions in
order to get, for instance, equicontinuous family of functions (see Sect. 6).

6 Special classes of stochastic games with uncountable state space and their
applications in economics

In a number of applications of discrete-time dynamic games in economics the state space
is an interval in an Euclidean space. An illustrative example is the “fish war” studied by
Levhari and Mirman (1980), where the state space X = [0, 1], Ai(x) = [0, x/n] for each
i ∈ N . Usually, X is interpreted as the set of common property renewable resources. If xt
is a resource stock at the beginning of period t ∈ N and player i ∈ N extracts ait ∈ Ai(xt)
for consumption, then the new state is xt+1 =

(
x−

∑n
j=1 ajt

)α
with α ∈ (0, 1). The game

is symmetric in the sense that the utility function of player i ∈ N is: ui(x, a) := ln ai with
a = (a1, ..., an) being a pure strategy profile chosen by the players in state x ∈ X. Levhari
and Mirman (1980) constructed a symmetric stationary Markov perfect equilibrium for
2-player β-discounted game that consists of linear strategies. For arbitrary n-player case
the equilibrium strategy profile is fβ = (fβ1 , ..., f

β
n ) where fβi (x) = (1−αβ)x

n+(1−n)αβ , x ∈ X,

i ∈ N , see Nowak (2006c). Levhari and Mirman (1980) concluded that, in equilibrium,
the fish population will be smaller than the population that would have resulted if the
players cooperated and maximised their joint utility. The phenomenon of overexploitation of
a common property resource is known in economics as the “tragedy of the commons.” Dutta
and Sundaram (1993) showed that there may exist equilibria (that consist of discontinuous
consumption functions), in which the common resource is underexploited, so that the tragedy
of the commons need not occur. If β → 1, then fβ → f∗ = (f∗1 , ..., f

∗
n) where f∗i (x) =

(1−α)x
n+(1−n)α , x ∈ X, i ∈ N. As shown in Nowak (2008), f∗ is a Nash equilibrium in the
class of all strategies of the players in the fish war game under the overtaking optimality
criterion. Such a criterion was examined in economics by Ramsey (1928), von Weizsäcker
(1965), Gale (1967), and its application to repeated games was pointed out by Rubinstein
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(1979). Generally, finding an equilibrium under the overtaking optimality criterion in the
class of all strategies is a difficult task, see Carlson and Haurie (1996).

Dutta and Sundaram (1992) considered a stochastic game of resource extraction with
state space X = [0,∞), Ai(x) = [0, x/n] for each i ∈ N, x ∈ X and the same non-
negative utility function u for each player. Their model includes both the dynamic game
with deterministic transitions studied by Sundaram (1989a,b) and the stochastic game with
non-atomic transition probabilities considered by Majumdar and Sundaram (1991). Now
we formulate the assumptions used by Dutta and Sundaram (1992). For any y, z ∈ X,
Q(y|z) := q([0, y]|z) and for any y > 0, Q(y−|z) := limy′↑y Q(y′|z).

(D1) For any x ∈ X, a = (a1, ..., an) ∈ A(x) and i ∈ N, ui(x, a) = u(ai) ≥ 0. The util-
ity function u is strictly concave, increasing and continuously differentiable. Moreover,
lima↓0 u

′(a) =∞.
(D2) Q(0|0) = 1 and for each z > 0 there exists a compact interval I(z) ⊂ (0,∞) such that

q(I(z)|z) = 1.
(D3) There exists z1 > 0 such that if 0 < z < z1, then Q(z−|z) = 0, i.e., q([z,∞)|z) = 1.
(D4) There exists ẑ > 0 such that for each z ≥ ẑ, Q(z|z) = 1, i.e., q([0, z]|z) = 1.
(D5) If zm → z as m→∞, then q(·|zm)→ q(·|z) in the weak topology on Pr(X).
(D6) If z < z′, then for each y > 0, Q(y−|z) ≥ Q(y|z′).

Assumption (D6) is a “strong stochastic dominance” condition that requires larger invest-
ments to obtain probabilistically higher stock levels. It plays together with the assumption
that the players have identical utility functions a crucial role in the proof of Theorem 1 in
Dutta and Sundaram (1992) that can be stated as follows.

Theorem 10 Every discounted stochastic game satisfying conditions (D1)-(D6) has a pure
stationary Markov perfect equilibrium.

Remark 6 The equilibrium strategies obtained by Dutta and Sundaram (1992) are identical
for all the players and the corresponding equilibrium functions are non-decreasing and upper
semicontinuous on X. One can observe that the assumptions on the transition probability
functions include the usual deterministic case with an increasing continuous production
function. Transition probabilities considered in other papers on equilibria in stochastic games
are assumed to satisfy much stronger continuity conditions, e.g., the norm continuity in
actions.

The issue of proving an existence of a Nash equilibrium in a stochastic game of resource
extraction with different utility functions for the players seems to be difficult. Partial results
were reported by Amir (1996a), Nowak (2003b), Balbus and Nowak (2008) and Jaśkiewicz
and Nowak (2015b), where specific transition structures were assumed. Below we give an
example, where the assumptions are relatively simple for formulating.

(S1) X = [0,∞) and Ai(x) = [0, bi(x)] with
∑n
j=1 bj(x) ≤ x for all x ∈ X, where each bj is a

continuous increasing function.
(S2) ui : [0,∞)→ R is a non-negative increasing twice differentiable utility function for player

i ∈ N such that ui(0) = 0.
(S3) We assume that if a = (a1, ..., an) ∈ A(x) and s(a) =

∑n
i=1 ai, then

q(·|x, a) = h(x− s(a))q0(·|x) + (1− h(s− s(a)))δ0(·),

where h : X → [0, 1] is an increasing twice differentiable function such that h′′ < 0
and h(0) = 0, δ0 is the Dirac measure concentrated at the point 0 ∈ X. Moreover,
q0((0,∞)|x) = 1 for each x > 0, q0({0}|0) = 1 and q0(·|x) has a density function ρ(x, ·)
with respect to a σ-finite measure µ defined on X. The function x→ ρ(x, y) is continuous
for each y ∈ X.

The following result is a special case of Theorem 2 in Jaśkiewicz and Nowak (2015b).

Theorem 11 Every discounted stochastic game satisfying assumptions (S1)-(S3) has a pure
stationary Markov perfect equilibrium.



14 A. Jaśkiewicz and A.S. Nowak

The proof of Theorem 11 uses the fact that the auxiliary game Γv(x) has a unique Nash
equilibrium for any vector v = (v1, ..., vn) of non-negative continuation payoffs vi such that
vi(0) = 0. . The uniqueness follows from page 1476 in Balbus and Nowak (2008) or can be
deduced from the classical theorem of Rosen (1965) (see also Theorem 3.6 in Haurie et al.
(2012)). The game Γv(x) is not supermodular since for increasing continuation payoffs vi
such that vi(0) = 0, we have ∂2Uiβ(vi,x,a)

∂ai∂aj
< 0, for i 6= j. A stronger version of Theorem 11

and related results one can find in Jaśkiewicz and Nowak (2015b).
Transition probabilities presented in (S3) were first used in Balbus and Nowak (2004).

They dealt with the symmetric discounted stochastic games of resource extraction and
proved that the sequence of Nash equilibrium payoffs in the n-stage games converges mono-
tonically as n→∞. Stochastic games of resource extraction without the symmetry condition
were first examined by Amir (1996a), who considered so-called “convex transitions”. More
precisely, he assumed that the conditional cumulative distribution function Q(y|z) is strictly
convex with respect to z ∈ X for every fixed y > 0. He proved the existence of pure stationary
Markov perfect equilibria, which are Lipschitz continuous functions in the state variable. Al-
though the obtained result is strong, a careful analysis of various examples suggests that the
convexity assumption made by Amir (1996a) is satisfied very rarely. Usually, the cumulative
distribution Q(y|z) is neither convex nor concave with respect to z. A further discussion on
this condition is provided in Remarks 7-8 in Jaśkiewicz and Nowak (2015b). The function
Q(y|z) induced by the transition probability q of the form considered in (S3) is strictly con-
cave in z = x− s(a) only when q0 is independent of x ∈ X. Transition probabilities that are
“mixtures” of finitely many probability measures on X were considered in Nowak (2003b)
and Balbus and Nowak (2008). A survey of various game theoretic approaches to resource
extraction models can be found in Van Long (2011).

Also in many other examples, the game Γv(x) has non-empty compact set of pure Nash
equilibria. Therefore, a counterpart of Theorem 6 can also be formulated for the class of
pure strategies of the players. We now describe some examples taken from Jaśkiewicz and
Nowak (2016a).

Example 1 (Dynamic Cournot oligopoly) Let X = [0, x̄] and let x ∈ X represent a realisation
of a random demand shock that is modified at each period of the game. Player i ∈ N
(oligopolist) sets a production quantity ai ∈ Ai(x) = [0, 1]. If P (x,

∑n
j=1 aj) is the inverse

demand function, ci(x, ai) is the cost function for player i, then

ui(s, a) := aiP (x,

n∑
j=1

aj)− ci(x, ai), a = (a1, ..., an).

A simple example of the inverse demand function is

P (x,

n∑
j=1

aj) = x(n−
n∑
j=1

aj).

The function ai → aiP (s,
∑m
j=1 aj) is usually concave. Assume that

q(·|x, a) = (1− a)q1(·|x) + aq2(·|x), a :=
1

n

n∑
j=1

aj ,

where q1(·|x) and q2(·|x) are for all x ∈ X dominated by some probability measure µ on X.
In order to provide an interpretation of q we observe that

q(·|x, a) = q1(·|x) + a(q2(·|x)− q1(·|x)). (2)

Let
Eq(x, a) :=

∫
X

yq(dy|x, a) and Eqj (x) :=

∫
X

yqj(dy|x)

be the mean values of the distributions q(·|x, a) and qj(·|x), respectively. By (2), we have
Eq(x, a) := Eq1(x) + a(Eq2(x)−Eq1(x)). Assume that Eq1(x) ≥ x ≥ Eq2(x). This condition
implies that

Eq2(x)− Eq1(x) ≤ 0.
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Thus, the expectation of the next demand shock Eq(x, a) decreases if the total sale na in
the current state x ∈ X increases. Observe that the game Γv(x) is concave, if ui(x, (·, a−i))
is concave on Ai(x) for all i ∈ N, ai → aiP (x,

∑n
j=1 aj) is concave and the cost function

ci(x, ·) is convex. From Nash (1950), it follows that the game Γv(x) has a pure equilibrium
point. However, the set of Nash equilibria in Γv(x) may contain many points. A modification
of the proof of Theorem 1 given in Jaśkiewicz and Nowak (2016a) implies that this game
has a pure stationary almost Markov perfect equilibrium.

Example 2 (Cournot competition with substituting goods in differentiated markets) This
model is inspired by a dynamic game with complementary goods studied by Curtat (1996).
Related static games were already discussed in Spence (1976) and Vives (1990). There are
n firms on the market and firm i ∈ N produces a quantity ai ∈ Ai(x) = [0, 1] of a differenti-
ated product. The inverse demand function is given by a twice differentiable function Pi(a),

where a = (a1, . . . , an). The goods are substitutes, i.e., ∂Pi(a)∂aj
< 0 for all i, j ∈ N, see Spence

(1976). In other words, consumption of one good will decrease consumption of the others.
We assume that X = [0, 1]n, where i-th coordinate xi ∈ [0, 1] is a measure of the cumulative
experience of firm i ∈ N. If ci(xi) is the marginal cost for firm i ∈ N , then

ui(x, a) := ai [Pi (a)− ci(xi)] , a = (a1, ..., an), x = (x1, ..., xn) ∈ X. (3)

The transition probability of the next state (experience vector) is of the form:

q(·|x, a) = h(

n∑
j=1

(xj + aj))q2(·|x) + (1− h(

n∑
j=1

(xj + aj)))q1(·|x), (4)

where

h(

n∑
j=1

(xj + aj)) =

∑n
j=1 xj +

∑n
j=1 aj

2n
(5)

and q1(·|x), q2(·|x) are for each x ∈ X dominated by some probability measure µ on X.
In Curtat (1996) it is assumed that q1 and q2 are independent of x ∈ X and also that q2
stochastically dominates q1. Then, the underlying Markov process governed by q captures
the ideas of learning-by-doing and spillover (see page 197 in Curtat (1996)). Here, this
stochastic dominance condition can be dropped, although it is quite natural. It is easy to see
that the game Γv(x) is concave, if ui(x, (·, a−i)) is concave on [0, 1]. Clearly, this is satisfied,
if for each i ∈ N, we have

2
∂Pi(a)

∂ai
+
∂2Pi(a)

∂a2i
ai < 0.

If the goods are substitutes, this condition holds, when ∂2Pi(a)
∂a2i

≤ 0 for all i ∈ N. The game
Γv(x) may have multiple pure Nash equilibria. Using the methods from Jaśkiewicz and
Nowak (2016a), one can show that any concave game discussed here has a pure stationary
almost Markov perfect equilibrium.

Supermodular static games were extensively studied by Milgrom and Roberts (1990)
and Topkis (1998). This class of games finds its applications in dynamic economic models
with complementarities. Our next illustration refers to Example 2, but with products that
are complements. The state space and action spaces for firms are the same as in Example 2.
We endow both X and A = [0, 1]n with the usual component-wise ordering. Then, X and
A are complete lattices. We assume that the transition probability is defined as in (4) and
q1(·|x) and q2(·|x) are for all x ∈ X dominated by some probability measure µ on S. The
payoff function for every firm is given in (3).

Example 3 (Cournot oligopoly with complementary goods in differentiated markets) Let h be
given as in (5). Suppose that the payoff function in the game Γv(x) satisfies the following
condition:

∂2U iβ(vi, x, a)

∂ai∂aj
≥ 0 for j 6= i.
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Then, by Theorem 4 in Milgrom and Roberts (1990), the game Γv(x) is supermodular.
Note that within our framework, it is sufficient to prove that for ui(x, a), defined in (3), it
holds that ∂2ui(s,a)

∂ai∂aj
≥ 0, j 6= i. But

∂2ui(x, a)

∂ai∂aj
= ai

∂2Pi(a)

∂ai∂aj
+
∂Pi(a)

∂aj
, j 6= i

and they are likely to be non-negative, if the goods are complements, i.e., ∂Pi(a)
∂aj

≥ 0 for
j 6= i, see Vives (1990). From Theorem 5 in Milgrom and Roberts (1990), it follows that
the game Γv(x) has a pure Nash equilibrium. Therefore, the arguments used in Jaśkiewicz
and Nowak (2016a) imply that the stochastic game has a pure stationary almost Markov
perfect equilibrium.

Remark 7 The game described in Example 3 is also studied in Curtat (1996), but with
additional restrictive assumptions that q1 and q2 are independent of x ∈ X. Then, the
transition probability q has so-called increasing differences in (x, a). This fact implies that
the functions U iβ(vi, ·, ·) satisfy the assumptions of Proposition 7. Other assumption imposed
by Curtat (1996) states that the payoff functions ui(x, a) are increasing in a−i and, more
importantly, satisfy the so-called strict diagonal dominance condition for each x ∈ X. For
details the reader is referred to Curtat (1996) and Rosen (1965). This additional condition
entails the uniqueness of a pure Nash equilibrium in every auxiliary game Γv(x) under
consideration, see Proposition 6. The advantage is that Curtat (1996) can directly work
with Lipschitz continuous strategies for the players and find a stationary Markov perfect
equilibrium in that class using Schauder’s fixed point theorem. Without the strict diagonal
dominance condition, Γv(x) may have many pure Nash equilibria and his approach of Curtat
cannot be applied. The coefficients of the convex combination in (4) are affine functions of
a ∈ A. This requirement can slightly be generalised, see for instance Example 4 in Jaśkiewicz
and Nowak (2016a). If q1 or q2 depends on x ∈ X, then the increasing differences property
of q does not hold and the method of Curtat (1996) does not work. Additional comments
on supermodular stochastic games can be found in Amir (2003).

The result in Curtat (1996) on the existence of stationary Markov perfect equilibria
for supermodular discounted stochastic games is based upon the lattice theoretic arguments
and on complementarity and monotonicity assumptions. The state and action spaces are
assumed to be compact intervals in an Euclidean space, and the transition probability is
assumed to be norm continuous in state and actions variables. Moreover, the strict diagonal
dominance condition (see (C1) in Sect. 2) applied to the auxiliary one-shot games Γv(x) for
any increasing Lipschitz continuous continuation vector payoff v plays a crucial role. Namely,
this assumption together with others implies that NPv(x) is a singleton. In addition, the
function x → NPv(x) is increasing and Lipschitz continuous. Thus, his proof relies on
showing that there exists an increasing Lipschitz continuous vector payoff function v∗ such
that v∗(x) = NPv∗(x) for all x ∈ X and then using a theorem on the Lipschitz property of
the unique equilibrium in Γv∗ . .

Horst (2005) provided a different and more unified approach to stationary Markov
perfect equilibria that can be applied beyond the setting of supermodular games. Instead of
imposing monotonicity conditions on the players’ utility functions he considered stochastic
games in which the interaction between different players is weak enough. For instance, certain
“production games” satisfy this property. The method of his proof is based on a selection
theorem of Montrucchio (1987) and the Schauder fixed point theorem applied to the space
of Lipschitz continuous strategy profiles of the players. The assumptions accepted in Horst
(2005) are rather complicated. For example, they may enforce a number of players in the
game or the upper bound for a discount factor. Such limitations do not occur in the approach
of Curtat (1996).

Balbus et al. (2014) considered supermodular stochastic games with an absorbing state
and the transition probabilities of the form q(·|x, a) = g(x, a)q0(·|x) + (1 − g(x, a))δ0(·).
Under some strong monotonicity conditions on the utility functions and transitions they
showed that the Nash equilibrium payoffs in the n-stage games monotonically converge as
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n → ∞. This fact yields the existence of pure stationary Markov perfect equilibrium. A
related result is given in Balbus et al. (2013b) for a similar class of dynamic games. The
state space X in Balbus et al. (2014) is one-dimensional and their results do not apply
to the games of resource extraction discussed earlier. If, on the other hand, the transition
probability is a “mixture” of finitely many probability measures, then a stationary Markov
perfect equilibrium can be obtained, in certain models, by solving a system of non-linear
equations. This method was discussed in Sect. 5 of Nowak (2007). The next example is
not a supermodular game in the sense of Balbus et al. (2014), but it belongs to the class
of production games examined by Horst (2005). Generally, there are only few examples of
games with continuum states, for which Nash equilibria can be given in a closed form.

Example 4 Let X = [0, 1], Ai(x) = [0, 1] for all x ∈ X and i ∈ N = {1, 2}. We consider the
symmetric game where the stage utility of player i is

ui(x, a1, a2) = a1 + a2 + 2xa1a2 − a2i . (6)

The state variable x in (6) is a complementarity coefficient of the players’ actions. The
transition probabilities are of the form

q(·|x, a1, a2) :=
x+ a1 + a2

3
µ1(·) +

3− x− a1 − a2
3

µ2(·).

We assume that µ1 has the density ρ1(y) = 2y and µ2 has the density ρ2(y) = 2 − 2y,
y ∈ X. Note that µ1 stochastically dominates µ2. From the definition of q, it follows that
higher states x ∈ X or high actions a1, a2 (efforts) of the players induce a distribution of
the next state having higher mean value. Assume that v∗ = (v∗1 , v

∗
2) is an equilibrium payoff

vector in the β-discounted stochastic game. As shown in Example 1 of Nowak (2007), it
is possible to construct a system of non-linear equations with unknown z1 and z2, whose
solution z∗1 , z

∗
2 is z∗i =

∫
X
v∗i (y)µi(dy). This fact, in turn, gives the possibility to find a

symmetric stationary Markov perfect equilibrium (f∗1 , f
∗
2 ) and v∗1 = v∗2 . It is of the form

f∗i (x) = 1+z∗

4−2x . x ∈ X, i ∈ N, where

z∗ =
−8− 6p(β − 1)−

√
(8 + 6p(β − 1))2 − 36

6
and p =

9 + 2β ln 2− 2β

β((1− β)(6 ln 2− 3)
.

Moreover, we have

v∗i (x) = (pβ + x)z∗ +
(1 + z∗)2(3− x)

2(2− x)2
.

Ericson and Pakes (1995) provided a model of firm and industry dynamics that allows for
entry, exit and uncertainty generating variability in the fortunes of firms. They considered
the ergodicity of the stochastic process resulting from a Markov perfect industry equilibrium.
A dynamic competition in an oligopolistic industry with investment, entry, and exit was also
extensively studied by Doraszelski and Satterthwaite (2010). Computational methods for a
class of games studied by Ericson and Pakes (1995) are presented in Doraszelski and Pakes
(2007). Further applications of discounted stochastic games with countably many states
to models in industrial organisation, including models of industry dynamics, are given in
Escobar (2013).

Shubik and Whitt (1973) considered a non-stochastic model of sequential strategic
market game, where the state includes current stocks of capital. At each period of the game
one unit of a consumer good is put up for sale and players bid some amounts of fiat money
for it. A stochastic counterpart of this game was first presented in Secchi and Sudderth
(2005). In Więcek (2009), a general structure of equilibrium policies in 2-person game was
obtained, where bids gradually decrease with increase of the discount factor. Więcek (2012)
proved that a Nash equilibrium, where all the players use aggressive strategies, emerges in
the game for any value of the discount factor as the number of players goes to infinity.
This fact corresponds to a similar result for a deterministic economy given in Shubik and
Whitt (1973) as well as is consistent with existing results about economies with continuum
of players. Other applications of non-zero-sum stochastic games to economic models can also
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be found in Duggan (2012) and He and Sun (2016). Although the concept of mean field
equilibrium in dynamic games is not directly inspired by Nash, the influence of the theory
of non-cooperative stochastic games on this area of research is obvious. Also the notion of
supermodularity is used in studying the mean field equilibria in dynamic games. The reader
is referred to Adlakha and Johari (2013) where some applications to computer science and
operations research are given.

7 Special classes of stochastic games with countably many states

Assume that the state space X is countable. Then every F 0
i can be recognised as a compact

convex subset of a linear topological space. A sequence (fki )k∈N converges to fi ∈ F 0
i if,

for every x ∈ X, fki (·|x) → fi(·|x) in the weak-star topology on the space of probability
measures on Ai(x). The weak or weak-star convergence of probability measures on metric
spaces is fully described in Aliprantis and Border (2006) or Billingsley (1968). Since X is
countable, every space F 0

i is sequentially compact (it suffices to use the standard diagonal
method for selecting convergent subsequences) and, therefore, F 0 is sequentially compact
when endowed with the product topology. If X is finite and the sets of actions are finite, then
F 0 can actually be viewed as a convex compact subset of an Euclidean space. In the finite
state space case it is easy to prove that the discounted payoffs J iβ(x, f) are continuous on F 0.
If X is countable and the payoff functions are uniformly bounded, q(y|x, a) is continuous
in a ∈ A(x) for all x, y ∈ X, then showing the continuity of J iβ(x, f) on F 0 requires a
little more work, see Federgruen (1978). From the Bellman equation in discounted dynamic
programming (see Puterman (1994)), it follows that f∗ = (f∗1 , ..., f

∗
n) is a stationary Markov

perfect equilibrium in the discounted stochastic game if and only if there exist bounded
functions v∗i : X → R such that for each x ∈ X and i ∈ N we have

v∗i (x) = max
νi∈Pr(Ai(x))

U iβ(v∗i , x, (νi, f
∗
−i)) = U iβ(v∗i , x, f

∗). (7)

From (7), it follows that v∗i (x) = J iβ(x, f∗). Using the continuity of the expected discounted
payoffs in f ∈ F 0 and (7), one can define the best response correspondence in the space of
strategies, show its upper semicontinuity and conclude from the fixed point theorem due to
Glicksberg (1952) (or due to Kakutani (1941) in case of in the finite state and action space)
that the game has a stationary Markov perfect equilibrium f∗ ∈ F 0. This fact was proved
for finite state space discounted stochastic games by Fink (1964) and Takahashi (1964).
An extension to games with countable state spaces were reported in Parthasarathy (1973)
and Federgruen (1978).

The fundamental results in the theory of regular Nash equilibria in normal form games
concerning genericity (see Harsanyi (1973a)) and purification (see Harsanyi (1973b)) were
extended to dynamic games by Doraszelski and Escobar (2010). A discounted stochastic
game having equilibria that are all regular in the sense of Doraszelski and Escobar (2010)
has a compact equilibrium set that consists of isolated points. Hence, it follows that the
equilibrium set is finite. They proved that the set of discounted stochastic games (with
finite sets of states and actions) having Markov perfect equilibria that all are regular is open
and has full Lebesgue measure. Related results was given by Haller and Lagunoff (2000) but
their definition of regular equilibrium is different and may not be purifiable.

The payoff function for player i ∈ N in the limit-average stochastic game can be defined
as

J̄ i(x, π) := lim inf
T→∞

Eπx

(
1

T

T∑
t=1

ui(xt, a
t)

)
, x ∈ X, π ∈ Π.

The equilibrium solutions for this class of games are defined similarly as in the discounted
case. The existence of stationary Markov perfect equilibria for games with finite state and
action spaces and the limit-average payoffs was proved independently by Rogers (1969) and
Sobel (1971). They assumed that the Markov chain induced by any strationary strategy
profile and the transition probability q is irreducible. It is shown under this irreducibility
condition that the equilibrium payoffs w∗i of the players are independent of the initial state.
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Moreover, it is shown that there exists a sequence of equilibria (fk)k∈N for βk-discounted
games (with βk → 1 as k →∞) such that w∗ = limk→∞(1−βk)J iβk(x, fk). Later, Federgruen
(1978) extended these results to limit-average stochastic games with countably many states
satisfying some uniform ergodicity conditions. Other cases of similar type were mentioned
by Nowak (2003a). Below we provide a result due to Altman et al. (1997), which has some
potential for applications in queueing models. The stage payoffs in their approach may be
unbounded. We start with formulation their assumptions.

Let m : X → [1,∞) be a function for which the following conditions hold.

(A4) For each x, y ∈ X, i ∈ N, the functions ui(x, ·) and q(y|x, a) are continuous on A(x).
Moreover,

sup
x∈X

max
a∈A(x)

|ui(x, a)|/m(x) <∞ and lim
k→∞

∑
y∈X
|q(y|x, ak)− q(y|x, a)|m(y) = 0

for any ak → a ∈ A(x).
(A5) There exist a finite set Y ⊂ X and γ ∈ (0, 1) such that∑

y∈X\Y

q(y|x, a)m(y) ≤ γm(x) for all x ∈ X, a ∈ A(x).

(A6) The function f → n(f) is continuous with respect to deterministic stationary strategy
profiles f.

Property (A5) is called m-uniform geometric recurrence, see Altman et al. (1997). For
any f ∈ F 0, n(f) denotes the number of closed classes in the Markov chain induced by
the transition probability q(y|x, f). Condition (A6) is quite restrictive and implies that the
number of positive recurrent classes is a constant function of the stationary strategies. In
case of Markov chains induced by stationary strategy profiles are all unichain, the limit-
average payoff functions are constant, i.e., independent of the initial state. For a detailed
discussion we refer the reader to Altman et al. (1997) and the references cited therein.

Theorem 12 If conditions (A4)-(A6) are satisfied, then the limit-average payoff n-person
stochastic game has a stationary Markov perfect equilibrium.

The above result follows from Theorem 2.6 in Altman et al. (1997), where it is also
shown that under (A4)-(A6) any limit of stationary Markov equilibria in β-discounted games
(as β → 1) is an equilibrium in the limit-average game. Stochastic games with countably
many states are usually studied under some recurrence or ergodicity conditions. Without
these conditions n-person non-zero-sum limit-average payoff stochastic games with countable
state spaces are very difficult to study. Nevertheless, the results obtained in the literature
have some interesting applications, especially to queueing systems, see for example Altman
(1996); Altman et al. (1997).

Now assume that X is a Borel space and µ is a probability measure on X. Consider an
n-person discounted stochastic game G, where Ai(x) = Ai for all i ∈ N and x ∈ X, the
payoff functions are uniformly bounded and continuous in actions.

(A7) the transition probability q has a conditional density function ρ, which is continuous in
actions and such that ∫

X

max
a∈A

ρ(x, a, y)µ(dy) <∞.

Let C(A) be the Banach space of all real-valued continuous functions on the compact
space A endowed with the supremum norm ‖ · ‖∞. By L1(X,C(A)) we denote the Banach
space of all C(A)-valued measurable functions φ onX such that ‖φ‖1 :=

∫
X
‖φ(y)‖∞µ(dy) <

∞. Let {Xk}k∈N0
be a measurable partition of the state space (N0 ⊂ N), {ui,k}k∈N0

be a
family of functions ui,k ∈ C(A), and {ρk}k∈N0 be a family of functions ρk ∈ L1(X,C(A))
such that ρk(x)(a, y) ≥ 0 and

∫
X
ρk(x)(a, y)µ(dy) = 1 for each k ∈ N0, a ∈ A. Consider a

game G̃ where the payoff function for player i is ũi(x, a) = uk(a) if x ∈ Xk.The transition
density is ρ̃(x, a, y) = ρk(x)(a, y) if x ∈ Xk. Let F̃ 0

i be the set of all fi ∈ F 0
i that are
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constant on every set Xk. Put F̃ 0 := F̃ 0
1 × · · · × F̃ 0

n . The game G̃ resembles a game with
countably many states and if the payoff functions ũi are uniformly bounded, then G̃ with
the discounted payoff criterion has an equilibrium in F̃ 0. Denote by J̃ iβ(x, π) the discounted
expected payoff to player i ∈ N in the game G̃. It is well known that C(A) is separable.
The Banach space L1(X,C(A)) is also separable. Note that x → ui(x, ·) is a measurable
mapping from X to C(A). By, (A7) the mapping x → ρ(x, ·, ·) from X to L1(X,C(A)) is
also measurable. Using these facts Nowak (1985) stated the following result.

Theorem 13 Assume that G satisfies (A7). For any ε > 0, there exists a game G̃ such that
|J iβ(x, π) − J̃ iβ(x, π)| < ε/2 for all x ∈ X, i ∈ N and π ∈ Π. Moreover, the game G has a
stationary Markov ε-equilibrium.

A related result on approximation of discounted non-zero-sum games and existence of ε-
equilibria was given by Whitt (1980), who used stronger uniform continuity conditions and
used a different technique. Approximations of discounted and also limit-average stochastic
games with general state spaces and unbounded stage functions were studied in Nowak and
Altman (2002). The weighted norm approach is used and in the limit-average case some
geometric ergodicity conditions are imposed. An extension with simpler and more transpar-
ent proof for semi-Markov games satisfying a geometric drift condition and a majorisation
property, similar to (GE1)-(GE3) in Sect. 5 in Jaśkiewicz and Nowak (2016b), was given in
Jaśkiewicz and Nowak (2006).

8 Algorithms for non-zero-sum-stochastic games

In this section, we assume that the state space X and the sets of actions Ai are finite. In the
2-player case, we put for notational convenience A1(x) = A1, A2(x) = A2 and a = a1 ∈ A1,
b = a2 ∈ A2. Further, for any If fi ∈ F 0

i , i = 1, 2, we set

q(y|x, f1, f2) :=
∑
a∈A1

∑
b∈A2

q(y|x, a, b)f1(a|x)f2(b|x), q(y|x, f1, b) :=
∑
a∈A1

q(y|x, a, b)f1(a|x),

ui(x, f1, f2) :=
∑
a∈A1

∑
b∈A2

ui(x, a, b)f1(a|x)f2(b|x), ui(x, f1, b) :=
∑
a∈A1

ui(x, a, b)f1(a|x).

Similarly, q(y|x, a, f2) and ui(x, a, f2) are defined. Note that every fi ∈ F 0
i can be recognised

as a compact convex subset of an Euclidean space. Also every function φ : X → R can be
viewed as a vector in an Euclidean space. Below we describe two results of Filar et al.
(1991) about characterisation of stationary equilibria in stochastic games with constrained
nonlinear programming. However, due to the fact that the constraint sets are not convex,
the results are not straightforward in numerical implementation. Although it is common in
mathematical programming to use matrix notation, we follow the one introduced in previous
sections.

Let c = (v1, v2, f1, f2). Consider the following problem (OPβ):

min O1(c) :=

2∑
i=1

∑
x∈X

vi(x)− ui(x, f1, f2)− β
∑
y∈X

vi(y)q(y|x, f1, f2)


subject to (f1, f2) ∈ F 0

1 × F 0
2 and

u1(x, a, f2) + β
∑
x∈X

v1(y)q(y|x, a, f2) ≤ v1(x), x ∈ X, a ∈ A1,

and
u2(x, f1, b) + β

∑
x∈X

v2(y)q(y|x, f1, b) ≤ v2(x), x ∈ X, b ∈ A2.

Theorem 14 Consider a feasible point c∗ = (v∗1 , v
∗
2 , f
∗
1 , f

∗
2 ) in (OPβ). Then (f∗1 , f

∗
2 ) ∈

F 0
1 ×F 0

2 is a stationary Nash equilibrium in the discounted stochastic game if and only if c∗
is a solution to problem (OPβ) with O1(c∗) = 0.
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Let c = (z1, v1, w1, f2, z2, v2, w2, f1). Now consider the following problem (OPa):

min O2(c) :=

2∑
i=1

∑
x∈X

vi(x)−
∑
y∈X

vi(y)q(y|x, f1, f2)


subject to (f1, f2) ∈ F 0

1 × F 0
2 and∑

y∈X
v1(y)q(y|x, a, f2) ≤ v1(x), u1(x, a, f2) +

∑
y∈X

z1(y)q(y|x, a, f2) ≤ v1(x) + z1(x)

for all x ∈ X, a ∈ A1 and∑
y∈X

v2(y)q(y|x, f1, b) ≤ v2(x), u2(x, f1, b) +
∑
y∈X

z2(y)q(y|x, f1, b) ≤ v2(x) + z2(x)

for all x ∈ X, b ∈ A2 and

ui(x, f1, f2) +
∑
y∈X

wi(y)q(y|x, f1, f2) = vi(x) + wi(x)

for all x ∈ X and i = 1, 2.

Theorem 15 Consider a feasible point c∗ = (z∗1 , v
∗
1 , w

∗
1 , f
∗
2 , z
∗
2 , v
∗
2 , w

∗
2 , f
∗
1 ) in (OPa). Then

(f∗1 , f
∗
2 ) ∈ F 0

1 × F 0
2 is a stationary Nash equilibrium in the limit-average payoff stochastic

game if and only if c∗ is a solution to problem (OPa) with O2(c∗) = 0.

Theorems 14 and 15 were stated in Filar et al. (1991), see also Theorems 3.8.2 and 3.8.4
in Filar and Vrieze (1997).

Similarly, as in the zero-sum case, when one player controls the transitions it is possible
to construct finite step algorithms to compute Nash equilibria. The linear complementarity
problem (LCP) is defined as follows. Given a square matrix M of order m and a (column)
vector Q ∈ Rm we find two vectors Z = [z1, ..., zm]T ∈ Rm and W = [w1, ..., wm]T ∈ Rm
such that

MZ +Q = W and wj ≥ 0, zj ≥ 0, zjwj = 0 for all j = 1, ...,m.

Lemke (1965) proposed some pivoting finite step algorithms to solve the LCP for a large
class of matrices M and vectors Q. Further research on the LCP can be found in Cottle et
al. (1992).

Finding a Nash equilibrium in any bimatrix game (A,B) is equivalent to solving the LCP
with

M =

[
BT O
O A

]
where O is the matrix with zero entries, Q = [−1, ...,−1]T .

A finite step algorithm for this LCP was given by Lemke and Howson (1964). If Z
∗

= [Z
∗
1, Z

∗
2]

is a part of the solution of the above LCP, then the normalisation of Z
∗
i is an equilibrium

strategy for player i.
Suppose that only player 2 controls the transitions in a discounted stochastic game, i.e.,

q(y|x, a, b) is independent of a ∈ A. Let {f1, ..., fm1
} and {g1, ..., gm2

} be the families of
all pure stationary strategies for players 1 and 2, respectively. Consider the bimatrix game
(A,B), where the entries aij of A and bij of B are

aij :=
∑
x∈X

u1(x, fi(x), gj(x)) and bij :=
∑
x∈X

J2
β(x, fi, gj).

Then, making use of Lemke-Howson algorithm Nowak and Raghavan (1993) proved the
following result.
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Theorem 16 Let ξ∗ = (ξ∗1 , ..., ξ
∗
m1

) and ζ∗ = (ζ∗1 , ..., ζ
∗
m2

) and assume that (ξ∗, ζ∗) is a
Nash equilibrium in the bimatrix game (A,B) defined above. Then the stationary strategies

f∗(x) =

m1∑
j=1

ξ∗j δfj(x) and g∗(x) =

m2∑
j=1

ζ∗j δgj(x)

form a Nash equilibrium in the discounted stochastic game.

It is worth mentioning that a similar result does not hold for stochastic games with the
limit-average payoffs. Note that the entries of the matrix B can be computed in finitely
many steps, but the order of the associated LCP is very high. Therefore, a natural question
arises as to whether the single-controller stochastic game can be solved with the help of
LCP formulation with appropriate defined matrix M (with lower dimension) and vector Q.
Since the payoffs and transitions depend on states and stationary equilibria are characterised
by the systems of Bellman equations the dimension of the LCP must be high. However, it
should be essentially smaller than in the case of Theorem 16. Such an LCP formulation
for discounted single-controller stochastic games was given by Mohan et al. (1997) and
further developed in Mohan et al. (2001). In the case of the limit-average payoff and single-
controller stochastic game Raghavan and Syed (2002) provided an analogous algorithm.
Further studies on specific classes of stochastic games (acyclic 3-person switching control
games, polystochastic games) the reader can find in Krishnamurthy et al. (2012).

Let us recall that a Nash equilibrium in an n-person game is a fixed point of some
mapping. A fixed point theorem of certain deformations of continuous mappings proved
by Browder (1960) turned out to be basic for developing so-called homotopy methods in
computing equilibria in non-zero-sum games. It reads as follows.

Theorem 17 Assume that C ⊂ Rd be a non-empty compact convex set. Let Ψ : [0, 1]×C →
C be a continuous mapping and F (Ψ) := {(t, c) ∈ [0, 1] × C : c = Ψ(t, c)}. Then F (Ψ)
contains a connected subset Fc(Ψ) such that Fc(Ψ)∩({0}×C) 6= ∅ and Fc(Ψ)∩({1}×C) 6= ∅.

This result was extended to upper semicontinuous correspondences by Mas-Colell (1974).
Consider an n-person game and assume that Ψ1 is a continuous mapping whose fixed points in
the set C of strategy profiles correspond to Nash equilibria in this game. The basic idea in the
homotopy methods is to define a “deformation” Ψ of Ψ1 such that Ψ(1, c) = Ψ1(c) for all c ∈ C
and such that Ψ(0, c) has a unique fixed point, say c∗0, that is relatively simply to find. By
Theorem 17, Fc(Ψ) is a connected set. Thus, c∗0 is connected via Fc(Ψ) with a fixed point c∗1 of
Ψ1. Hence, the idea is to consider the connected set Fc(Ψ). Since the dimension of the domain
of Ψ is one higher than the dimension of its range, one can formulate regularity conditions
under which the approximation path is a compact, piecewise differentiable one-dimensional
manifold, i.e., it is a finite collection of arcs and loops. In the case of bimatrix games a
non-degeneracy condition is sufficient to guarantee that the aforementioned properties are
satisfied. A comprehensive discussion of the homotopy algorithms applied to n-person games
is provided in Herings and Peeters (2010) and references cited therein. According to the
authors, “advantages of homotopy algorithms include their numerical stability, their ability to
locate multiple solutions, and the insight they provide in the properties of solutions”. Various
examples show that implementation of homotopy methods is rather straightforward with the
aid of available professional software. It is worth recalling the known fact that the Lemke-
Howson algorithm can be applied to bimatrix games only. An issue of finding Nash equilibria
in concave n-person games comprises a non-linear complementarity problem. Therefore, one
can only expect to obtain approximate equilibria by different numerical methods.

The homotopy methods, as noted by Herings and Peeters (2004), are also useful in the
study of stationary equilibria, their structure and computation in non-zero-sum stochastic
games. Their results can be applied to n-person discounted stochastic games with finite state
and action spaces.

Recently, Govindan and Wilson (2003) proposed a new algorithm to compute Nash equi-
libria in finite games. Their algorithm combines the global Newton method (see Smale
(1976))) and a homotopy method for finding fixed points of continuous mappings devel-
oped by Eaves (1972, 1984). A crucial role in the construction of a Nash equilibrium plays
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a fundamental topological property of the graph of the Nash equilibrium correspondence
discovered by Kohlberg and Mertens (1986). Being more precise, the authors show that
making use of the global Newton method it is possible to trace the path of the homotopy
by a dynamical system. The same method can be applied to a construction of an algorithm
for n-person discounted stochastic games with finite action and state sets, see Govindan and
Wilson (2009).

Solan and Vieille (2010) pointed out that the methods based on formal logic, successfully
applied to zero-sum games, are also useful in the examination of certain classes of non-zero-
sum stochastic games with the limit-average payoff criterion.

9 Uniform equilibrium, subgame-perfection and correlation in stochastic
games with finite state and action spaces

In this section we consider stochastic games with finite state space X = {1, ..., s} and finite
sets of actions. We deal with “normalised discounted payoffs” and use notation which is more
consistent with the surveyed literature. We put β = 1 − λ and multiply all current payoffs
by λ ∈ (0, 1). Thus, we consider

J iλ(x, π) := Eπx

( ∞∑
t=1

λ(1− λ)t−1ui(xt, a
t)

)
, x = x1 ∈ X, π ∈ Π, i ∈ N.

For any T ∈ N and x = x1 ∈ X, π ∈ Π, the T -stage average payoff for player i ∈ N is

J iT (x, π) := Eπx

(
1

T

T∑
t=1

ui(xt, a
t)

)
.

A vector ḡ ∈ Rn is called a uniform equilibrium payoff if for any ε > 0 there exist
λ0 ∈ (0, 1), T 0 ∈ N and π0 ∈ Π such that for every player i ∈ N, any πi ∈ Πi, x ∈ X,
λ ∈ (0, λ0), T ≥ T 0, we have

J iλ(x, π0) + ε ≥ gix ≥ J iλ(x, (πi, π
0
−i))− ε

and
J iT (x, π0) + ε ≥ gix ≥ J iT (x, (πi, π

0
−i))− ε.

Any profile π0 that has the above two properties is a called a uniform ε-equilibrium In
other words, the game has a uniform equilibrium if for every ε > 0 there is a strategy profile
π0 which is an ε-equilibrium in every discounted game with a sufficiently small discount
factor λ and in every finite-stage game with sufficiently long time horizon.

A stochastic game is called absorbing if all states but one are absorbing. Assume that
X = {1, 2, 3} and only state x = 1 is non-absorbing. Let E0 denote the set of all uniform
equilibrium payoffs. Since the payoffs are determined in states 2 and 3, in a 2-person game
the set E0 can be viewed as a subset of R2. Let λk → 0 as k → ∞ and let f∗k be a
stationary Markov perfect equilibrium in the λk-discounted 2-person game. A question arises
as to whether the sequence (J iλk(x, f∗k ), J2

λk
(x, f∗k ))k∈N with x = 1 has an accumulation

point ḡ ∈ E0. That is the case in the zero-sum case (see Mertens and Neyman (1981)).
Sorin (1986) provided a non-zero-sum modification of the “Big Match”, where only state
x = 1 is non-absorbing in which limk→∞(J1

λk
(1, f∗k ), J2

λk
(1, f∗k )) 6∈ E0. A similar phenomenon

concerns the limit of T -stage equilibrium payoffs. Sorin (1986) gave a full description of the
set E0 in his example. His observations were generalised by Vrieze and Thuijsman (1989)
to all 2-person absorbing games.

Theorem 18 Any two-person absorbing stochastic game has a uniform equilibrium payoff.

We now formulate the fundamental result of Vieille (2000a,b).

Theorem 19 Every two-person stochastic game has a uniform equilibrium payoff.
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The proof of Vrieze and Thuijsman (1989) is based on the “vanishing discount factor
approach” combined with the idea of “punishment” successfully used in repeated games.
The assumption that there only two players is important in the proof. The ε-equilibrium
strategies that they construct need unbounded memory. The proof of Vieille (2000a,b)
is involved. One of the reasons is that the ergodic classes do not depend continuously on
strategy profiles. “The basic idea is to devise an ε-equilibrium profile that takes the form
of a stationary-like strategy vector, supplemented by threats of indefinite punishment” (see
Vieille (2002)). The construction of uniform equilibrium payoff consists of two independent
steps. First, a class of solvable states is constructed and some controlled sets are considered.
Then the problem is reduced to the existence of equilibria in a class of recursive games. The
punishment component is crucial in the construction and therefore the assumption that the
game is 2-person is crucial. Neither of the two parts of the proof can be extended to games
with more than two players. The ε-equilibrium profiles have no subgame-perfection property
and require unbounded memory for the players. For a heuristic description of the proof the
reader is referred to Vieille (2002).

Flesch et al. (1997) constructed a 3-person game with absorbing states where only
a cyclic Markov equilibrium exist. No examples of this type were found in the 2-person
case. This example inspired Solan (1999), who also used some arguments from Vrieze and
Thuijsman (1989) and proved the following result.

Theorem 20 Every 3-person absorbing stochastic game has a uniform equilibrium payoff.

In a quitting game every player has only two actions, c for continue and q for quit. As soon
as one or more of the players at any stage chooses q, the game stops and the players receive
their payoffs, which are determined by the subset of players that choose simultaneously the
action q. If nobody chooses q throughout all stages of play, then all players receive zero. The
payoffs are defined as follows. For every non-empty subset S ⊂ N of players there is a payoff
vector v(S) ∈ Rn. On the first stage that any player chooses q and S is the subset of players
that choose q at this stage, every player i ∈ N receives the payoff v(S)i. A quitting game
is a special limit-average absorbing stochastic game. The example of Flesch et al. (1997)
belongs to this class. We now state a result due to Solan and Vieille (2001).

Theorem 21 Consider a quitting game satisfying the following assumptions: if player i
alone quits, then i receives 1, and if player i quits with some other players, then i receives
at most 1. Then the game has a subgame-perfect ε-equilibrium. Moreover, there is a cyclic
ε-equilibrium strategy profile.

Quitting games are special cases of “escape games” studied by Simon (2007). As shown
by Simon (2012) a study of quitting games can be based on some methods of topological
dynamics and homotopy theory. More comments on this issue can be found in Simon (2016).

Thuijsman and Raghavan (1997) studied n-person perfect information stochastic games
and n-person ARAT stochastic games and showed the existence of pure equilibria in the
limit-average payoff case. They also derived the existence of ε-equilibria for 2-person switch-
ing control stochastic games with the same payoff criterion. A class of n-person stochastic
games with the limit-average payoff criterion and additive transitions as in the ARAT case
from Sect. 5 was studied in Flesch et al. (2007). The payoff functions do not satisfy any
separability in actions assumption. They established the existence of Nash equilibria that are
history dependent. For 2-person absorbing games, they showed the existence of stationary
ε-equilibria. In Flesch et al. (2008, 2009), the authors studied stochastic games with the
limit-average payoffs where the state space X is the Cartesian product of some finite sets
Xi, i ∈ N. For any state x = (x1, ..., xn) ∈ X and any profile of actions a = (a1, ..., an)
the transition probability is of the form q(y|x, a) = q1(y1|x1, a1) · · · qn(yn|xn, an) where
y = (y1, ..., yn) ∈ X. In both aperiodic and periodic cases they established the existence of
Nash equilibria for n-person games. In the 2-person zero-sum case there exists a stationary
Markov perfect equilibrium.

A stochastic game is recursive if the payoffs at all non-absorbing states are zero. The
class of recursive stochastic games is important. The payoffs in any absorbing state can be
interpreted as limit averages of stage payoffs as soon as the absorbing state is reached. If no
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absorbing state is reached then the average payoff is zero. Recursive stochastic games can
also be viewed as games with semicontinuous payoffs on the space of sequences of states as
in the approach taken by Maitra and Sudderth (1996).

Flesch et al. (2010a) considered a class of n-person stochastic games assuming that in
every state, the transitions are controlled by one player. The payoffs are equal to zero in every
non-absorbing state and are non-negative in every absorbing state. They proposed a new
iterative method to analyse these games under the expected limit-average payoff criterion
and proved the existence of a subgame-perfect ε-equilibrium in pure strategies. They also
showed the existence of the uniform equilibrium payoffs.

Recursive n-person perfect information games, where each player controls one non-
absorbing state were studied in Kuipers et al. (2016). A subgame-perfect ε-equilibrium
was shown to exist by a combinatorial method. Correlated equilibria were introduced by Au-
mann (1974, 1987) for games in normal form. Correlation devices may be of different types,
see Forges (2009). In Sect. 4 we consider a correlation device using public randomisation.
They are also called stationary, because at every stage a signal is generated according to
the same probability distribution, independently of any data. There are also devices based
on past signals that were sent to the players, but not on the past play. They are called “au-
tonomous correlation devices” (see Forges (2009)). An ε-equilibrium in an extended game
that includes an autonomous correlation device is also called an extensive-form correlated
ε-equilibrium in a multistage game. Solan (2001) characterised the set of extensive-form
correlated ε-equilibria in stochastic games. He showed that every feasible and individually
rational payoff in a stochastic game is an extensive-form correlated equilibrium payoff con-
structed with the help of appropriately chosen device. .

The following two results are due to Solan and Vieille (2002).

Theorem 22 Every n-person stochastic game with finite state and action spaces has a uni-
form correlated equilibrium payoff, using an autonomous correlation device.

The construction of an equilibrium profile is based on the method of Mertens and Neyman
(1981) applied to zero-sum games. The equilibrium path is sustained by the use of threat
strategies. However, punishment occurs only if a player disobeys the recommendation of
the correlation device. The second result is stronger in some sense but concerns positive
recursive games, where the payoffs in absorbing states are non-negative for all the players.

Theorem 23 Every positive recursive stochastic game with finite sets of states and actions
has a uniform correlated equilibrium payoff and the correlation device can be taken to be
stationary.

The proof of the above result makes use of a variant of the method of Vieille (2000b).
In a recent paper, Mashiah-Yaakovi (2015) considered stochastic games with countable

state spaces, finite sets of actions and Borel measurable bounded payoffs, defined on the
space H∞ of all plays. This class includes the Gδ-games of Blackwell (1969). The concept
of an uniform ε-equilibrium does not apply to this class of games, because the payoffs are
not additive. She proved that these games have extensive-form correlated ε-equilibria.

Secchi and Sudderth (2002a) considered a special class of n-person stochastic “stay-
in-a-set games” defined as follows. Let Gi be a fixed subset of X for each i ∈ N. Define
Gi∞ := {(x1, a1, x2, a2, ...)}, where xt ∈ Gi for every t. The payoff function for player i ∈ N
is the characteristic function of the set G∞i . They proved the existence of an ε-equilibrium
(equilibrium) assuming that the state space is countable (finite) and the sets of actions
are finite. Maitra and Sudderth (2003) generalised this result to the Borel state stay-in-a
set games with compact action sets using standard continuity assumption on the transition
probability with respect to actions. Secchi and Sudderth (2002b) proved that every n-person
stochastic game with countably many states, finite action sets and bounded upper semicon-
tinuous payoff functions onH∞ has an ε-equilibrium. All proofs in the aforementioned papers
are partially based on the methods frm gambling theory, see Dubins and Savage (1976).

Non-zero-sum infinite horizon games with perfect information are special cases of stochas-
tic games. Flesch et al. (2010a) established the existence of subgame-perfect ε-equilibria in
pure strategies in perfect information games with lower semicontinuous payoff functions on
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the space H∞ of all plays. A similar result for games with chance moves and upper semicon-
tinuous payoffs was proved by and Purves and Sudderth (2011). Solan and Vieille (2003)
provided an example of a 2-person game with perfect information that has no subgame-
perfect ε-equilibrium in pure strategies, but does have a subgame-perfect ε-equilibrium in
behavior strategies. Their game belongs to the class of deterministic stopping games. Re-
cently Flesch et al. (2014) showed that a subgame-perfect ε-equilibrium (in behavioral
strategies) may not exist in perfect information games if the payoff functions are bounded
and Borel measurable.

We close this section with a remerk on “folk theorems” for stochastic games. It is worth
mentioning that the techniques, based on threat strategies utilised very often in repeated
games, cannot be immediately adapted to stochastic games, where the players use ran-
domised (behavioral) strategies. Deviations are difficult to deteck when the actions are se-
lected at random. However, some folk theorems for various classes of stochastic games were
proved in Dutta (1995); Fudenberg and Yamamoto (2011); Hörner et al. (2011); Pęski and
Wiseman (2016).

Abreu et al. (1986, 1990) applied a method for analysing subgame-perfect equilibria
in discounted repeated games that resembles dynamic programming technique. The set of
equilibrium payoffs is a set-valued fixed point of some naturally defined operator. A sim-
ilar idea was used in stochastic games by Mertens and Parthasarathy (1991). The fixed
point property for subgame-perfect equilibrium payoffs can be used to develop algorithms.
Berg (2016) and Kitti (2016) considered some modifications of the aforementioned meth-
ods for discounted stochastic games with finite state spaces. They also demonstrated some
techniques for computing (non-stationary) subgame-perfect equilibria in pure strategies pro-
vided that they exist. Sleet and Yeltekin (2015), also applied the methods of Abreu et al.
(1986, 1990) to some classes of dynamic games and provided a new method for computing
equilibrium value correspondences. This method is based on outer and inner approximations
of the equilibrium value correspondence via step set-valued functions.

10 Non-zero-sum stochastic games with imperfect monitoring

There are only few papers on non-zero sum stochastic games with imperfect monitoring
(or incomplete information). Although in many models an equilibrium does not exist, some
positive results were obtained for repeated games, see Forges (1992), Chap. IX in Mertens
et al. (2015) and references cited therein. Altman et al. (2005, 2008) studied stochastic
games, in which every player can only observe and control his “private state”, and the state
of the world is composed of the vector of private states. Moreover, the players do not observe
the actions of their partners in the game. Such models of games are motivated by certain
examples in wireless communications.

In the model of Altman et al. (2008), the state space X =
∏n
i=1Xi, where Xi is a

finite set of private states of player i ∈ N. The action space Ai(xi) of every player i ∈ N
depends on xi ∈ Xi and is finite. It is assumed that player i ∈ N has no information
about the payoffs called costs. Hence, player i only knows the history of his private state
process and the action chosen by himself in the past. Thus, a strategy πi of player i ∈
N is independent of realisations of state processes of other players and their actions. If
x = (x1, . . . , xn) ∈ X is a state at some period of the game and a = (a1, . . . , an) is the
action profile selected independently by the players at that state then the probability of
going to state y = (y1, ..., yn) is q(t|x, a) = q1(y1|x1, a1) · · · qn(yn|xn, an), where q(·|xi, ai) ∈
Pr(Ai(xi)). Thus the coordinate (or private) state processes are independent. It is assumed
that every player i is given a probability distribution νi of the initial state xi ∈ Xi and
that the initial private states are independent. The initial distribution ν of the state x ∈ X
is determined by ν1, . . . , νn in an obvious way and is known by the players. Further, it is
supposed that every player i ∈ N is given some stage cost functions cji (x, a) (j = 0, 1, ..., ni)
depending on x ∈ X and action profiles a available in that state. The cost function c0i is to
be minimised by player i in the long run, and cji (for j > 0) are the costs that must satisfy
some constraints described below.
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Any strategy profile π together with the initial distribution ν and the transition probabil-
ity q induces a unique probability measure on the space of all infinite plays. The expectation
operator with respect to this measure is denoted by Eπν . The expected limit-average cost
Cji (π) is defined as follows

Cji (π) := lim sup
T→∞

1

T
Eπν

(
T∑
t=1

cji (x
t, at)

)
.

Note that xt ∈ X and at is an action profile of all the players.
Let bji > 0 (j = 1, ..., ni) be bounds used to define constraints below. A strategy profile

π is i-feasible if

Cji (π) ≤ bji for each j = 1, ..., ni.

Thus, π is feasible if it is i-feasible for every player i ∈ N.
A strategy profile π∗ is called a constrained Nash equilibrium, if π∗ is feasible and for

every layer i ∈ N and his strategy πi such that the profile (πi, π
∗
−i) is i-feasible, it holds that

C0
i (π) ≤ C0

i (πi, π
∗
−i).

Note that a unilateral deviation of player i may increase his cost or it may violate his
constraints. The aforementioned is illustrated in Altman et al. (2008) by an example in
wireless communications.

Altman et al. (2008) made the following assumptions.

(I1) (Ergodicity) For every player i ∈ N and any his stationary strategy the state process
on Xi is an irreducible Markov chain with one ergodic class and possibly some transient
states.

(I2) (Strong Slater condition) There exists some η > 0 such that every player i ∈ N has a
strategy πηi with the property that for any strategy profile π−i of other players

Cji (πηi , π−i) ≤ b
j
i − η for all j = 1, ..., ni.

(I3) (Information) The players do not observe their costs.

Theorem 24 Consider the game model that satisfies conditions (I1)-(I3). Then there exists
a stationary constrained Nash equilibrium.

Stochastic games with finite sets of states and actions and imperfect public monitoring
were studied in Fudenberg and Yamamoto (2011) and Hörner et al. (2011). The players,
in their models, observe states and receive only public signals on the chosen actions by the
partners in the game. Fudenberg and Yamamoto (2011) and Hörner et al. (2011) estab-
lished “folk theorems” for stochastic games under assumptions that relate to “irreducibility”
conditions on the transition probability function. Moreover, Hörner et al. (2011) also studied
algorithms for both computing the sets of all equilibrium payoffs in the normalised discounted
games and for finding their limit as the discount factor tends to one. As shown in counterex-
amples in Flesch et al. (2003) an n-person stochastic game with non-observable actions of
the players (and no public signals) and the expected limit-average criterion does not pos-
sess ε-equilibrium. Cole and Kocherlakota (2001) studied discounted stochastic games with
hidden states and actions. They provided an algorithm for finding a sequential equilibrium
where strategies depend on private information only through the privately observed state.
Imperfect monitoring is also assumed in the model of supermodular stochastic game studied
in Balbus et al. (2013b) where the monotone convergence of Nash equilibrium payoffs in
finite stage games is proved.
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11 Intergenerational stochastic games

This section develops a concept of equilibrium behaviour and establishes its existence in
various intergenerational games. Both paternalistic and non-paternalistic altruism cases are
discussed. Consider an infinite sequence of generations labelled by t ∈ N. There is a single
good (called also a renewable resource) that can be used for consumption or productive
investment. The set of all resource stocks S is an interval in R. It is assumed that 0 ∈
S. Every generation lives one period and derives utility from its own consumption and
consumptions of some or all its descendants. Generation t observes the current stock st ∈ S
and chooses at ∈ A(st) := [0, st] for consumption. The remaining part yt = st − at is
left as an investment for its descendants. The next generation’s inheritance or endowment
is determined by a weakly continuous transition probability q from S to S (stochastic
production function), which depends on yt ∈ A(st) ⊂ S. Recall that the weak continuity of
q means that q(·|ym) ⇒ q(·|y0) if ym → y0 in S (as m → ∞). Usually, it is assumed that
state 0 is absorbing, i.e., q({0}|0) = 1. Let Φ be the set of all Borel functions φ : S → S such
that φ(s) ∈ A(s) for each s ∈ S. A strategy for generation t is a function φt ∈ Φ. If φt = φ
for all t ∈ N and some φ ∈ Φ, then we say that the generations employ a stationary strategy.

Suppose that all generations from t + 1 onwards use a consumption strategy c ∈ Φ.
Then, in the paternalistic model, generation t’s utility, when it consumes at ∈ A(st), equals
toH(at, c)(st) whereH is some real-valued function used for measurement of the satisfaction
level of the generation. This implies that in models with paternalistic altruism each gener-
ation derives its utility from its own consumption and the consumptions of its successor or
successors.

Such a game model reveals a time inconsistency. Strotz (1956) and Pollak (1968) were
among the first, who noted this fact in the model of an economic agent whose preferences
change over time. In related works, Phelps and Pollak (1968) and Peleg and Yaari (1973)
observed that this situation is formally equivalent to one, in which decisions are made by
a sequence of heterogeneous planners. They investigated the existence of consistent plans,
what we shall call (stationary) Markov perfect equilibria. The solution concept is in fact
a symmetric Nash equilibrium (c∗, c∗, ...) in a game played by countably many short-lived
players having the samy utility functions. Therefore, we can say that a stationary Markov
perfect equilibrium (c∗, c∗, ...) corresponds with a strategy c∗ ∈ Φ such that

H(c∗(s), c∗)(s) = sup
a∈A(s)

H(a, c∗)(s)

for every s ∈ S. We identify this equilibrium with c∗.
In other words, c∗ ∈ Φ is a stationary Markov perfect equilibrium if

c∗(s) ∈ arg max
a∈A(s)

H(a, c∗)(s) for each s ∈ S.

There is now a substantial body of work on paternalistic models, see for instance, Alj and
Haurie (1983); Harris and Laibson (2001); Nowak (2010) and the results presented below
in this section. At the beginning we consider three types of games, in which the existence
of a stationary Markov perfect equilibrium was proved in a sequence of papers: Balbus et
al. (2015a), Balbus et al. (2015b) and Balbus et al. (2015c). Game (G1) describes a
purely deterministic case, whilst games (G2) and (G3) deal with a stochastic production
function. However, (G2) concerns a model with one descendant, whereas (G3) examines a
model with infinitely many descendants. Let us mention that by an intergenerational game
with k (k is finite or infinite) descendants (successors or followers) we mean a game in
which each generation derives its utility from its own consumption and consumptions of its
k descendants.

(G1) Let S := [0,+∞). Assume that q(·|yt) = δp(yt)(·), where p : S → S is a continuous and
increasing production function such that p(0) = 0. We also accept that

H(a, c)(s) = û(a, c(p(s− a)))

for some continuous and increasing in each variable function û : R2
+ → R ∪ {−∞}.

Moreover, we allow û to be unbounded from below. Hence, we assume that û(0, y) ≥ −∞
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for all y ≥ 0 and û(x, 0) > −∞ for all x > 0. Furthermore, for any y1 > y2 in S and
h > 0 we assume that the function ∆hû(x) := û(x, y1)− û(x+h, y2) has the strict single
crossing property on (0,+∞), i.e., ∆hû(x) ≥ 0 implies that ∆hû(x′) > 0 for each x′ > x
(see Milgrom and Shannon (1994)).

(G2) Let S := [0,+∞). We study a model with a utility that reflects a generation’s attitude
towards risk. This fact is reflected by a positive risk coefficient r. In this setup, H takes
the following form:

H(a, c)(s) =

{
u(a) + β

∫
S
v(c(s′))q(ds′|s− a), for r = 0

u(a)− β
r ln

∫
S
e−rv(c(s

′))q(ds′|s− a), for r > 0,

where u : S → R ∪ {−∞} is increasing, strictly concave, continuous on (0,+∞) and
u(0) ≥ −∞. In addition, the function v : S → R is bounded, continuous and increasing.
Further assumptions are as follows: for every s ∈ S, the set Zs := {y ∈ S : q({s}|y) > 0}
is countable and the transition law q is stochastically increasing. The latter fact means
that, if z → Q(z|y) is the cumulative distribution function for q(·|y), then for all y1 < y2
and z ∈ S, we have Q(z|y1) ≥ Q(z|y2).

(G3) Let S := [0, s̄] for some s̄ > 0. In this case, we assume that the utility function of current
generation t is as follows:

H(a, c)(s) = ũ(a) + Ecs [w(at+1, at+2, ...)],

where w : S∞ → R is continuous and ũ : S 7→ R is continuous, strictly concave and
increasing. Here, Ecs is an expectation operator with respect to the unique probability
measure on the space of all feasible future histories (starting from the endowment s of
generation t) of the consumption-investment process induced by the stationary strategy
c ∈ Φ used by each generation τ (τ > t) and the transition probability q. The function
ũ is also assumed to be continuous and strictly concave. Defining

J̃(c)(s) = Ecs [w(ak, ak+1, ak+2, ...)]

for every k ∈ N we obtain that

H(a, c)(s) = ũ(a) +

∫
S

J̃(c)(s′)q(ds′|s− a).

In addition, q(·|y) is assumed to be non-atomic for y > 0.

Let I denote the set of non-decreasing lower semicontinuous functions i : S → R such
that i(s) ∈ A(s) for each s ∈ S. Note that every i ∈ I is continuous from the left and has at
most a countable number of discontinuity points. Put

F := {c ∈ Φ : c(s) = s− i(s), i ∈ I, s ∈ S}.

Clearly, any c ∈ F is upper semicontinuous and continuous from the left. The idea of using
the class F of strategies for analysing equilibria in deterministic bequest games comes from
Bernheim and Ray (1983). Further, it was successfully applied to the study of other classes of
dynamic games with simultaneous moves, see Sundaram (1989a); Majumdar and Sundaram
(1991).

Theorem 25 Every intergenerational game (G1), (G2) and (G3) possess a stationary Markov
perfect equilibrium c∗ ∈ F.

The main idea of the proof is based upon the consideration of an operator L defined
as follows: to each consumption strategy c ∈ F used by descendant (or descendants) the
function L assigns the maximal element c0 from the set of best responses to c. It is shown
that c0 ∈ F. Moreover, F can be viewed as convex subset of the vector space Y of real-
valued continuous from the left functions η : S 7→ R of bounded variation on every interval
Sn := [0, n], n ∈ N, thus in particular on [0, s̄].We further equip Y with the topology of weak
convergence. We assume that (ηm) converges weakly to some η0 ∈ Y , if lim

m→∞
ηm(s) = η0(s)

for every continuity point s of η0. Then, due to Lemma 2 in Balbus et al. (2015c), F
is compact and metrisable. Finally, the equilibrium point is obtained via the Schauder-
Tychonoff fixed point theorem applied to the operator L.
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Remark 8 (a) Theorem 25 for game (G1) was proved in Balbus et al. (2015c). Related
results for purely deterministic case were considered by Bernheim and Ray (1983);
Leininger (1986). For instance, Leininger (1986) studied a class U of bounded from
below utility functions for which every selector of the best response correspondence is
non-decreasing. In particular, he noticed that this class is non-empty and it includes, for
instance, the separable case, i.e., u(x, y) = v(x) + bv(y), where v is strictly increasing,
concave and b > 0. Bernheim and Ray (1983), on the other hand, showed that the
functions u, that are strictly concave in its first argument, and satisfying the so-called
increasing differences property (see Sect. 2) also belong to U . Other functions u that
meet conditions imposed in Bernheim and Ray (1983); Leininger (1986) are of the
form u(x, y) = v1(x)v2(y), where v1 is strictly concave and v2 ≥ 0 is continuous and
increasing. The class U is not fully characterised. The class (G1) of games includes all the
mentioned above examples and some new ones. Our result is also valid for a larger class of
utilities that can be unbounded from below. Therefore, Theorem 25 is a generalisation of
Theorem 4.2 in Bernheim and Ray (1983) and Theorem 3 in Leininger (1986). The proofs
given by Bernheim and Ray (1983) and Leininger (1986) do not work for unbounded
utility functions. Indeed, Leininger (1986) use a transformation of upper semicontinuous
consumption strategies into the set of Lipschitz functions with constant 1. This clever
“levelling” operation enables him to equip the space of continuous functions on the interval
[0, ȳ] with the topology of uniform convergence and to apply the Schauder fixed point
theorem. His proof strongly makes use of the uniform continuity of u. This is the case,
when the production function crosses the 45◦ line. If the production function does not
cross the 45◦ line, a stationary equilibrium is then obtained as a limit of equilibria
corresponding to the truncations of the production function. However, this part of the
proof is descriptive and sketchy. Bernheim and Ray (1983), on the other hand, identify
with the maximal best response consumption strategy, which is upper semicontinuous,
a convex valued upper hemicontinuous correspondence. Then, such obtained space of
upper hemicontinuous correspondences is equipped with the Hausdorff topology. This
fact implies the strategy space is compact, if endowments have an upper bound, i.e.,
when the production function p crosses the 45◦ line. If this is not satisfied, then a similar
approximation technique as in Leininger (1986) is employed. Our proof does not follow
the above-mentioned approximation methods. The weak topology introduced in the space
Y implies that F is compact and allows to use an elementary but non-trivial analysis. For
examples of deterministic bequest games with stationary Markov perfect equilibria given
in closed form the reader is referred to Fudenberg and Tirole (1991), Nowak (2006b)
and Nowak (2010).

(b) Theorem 25 for game (G2) was proved by Balbus et al. (2015b), whereas for game
(G3) by Balbus et al. (2015a). Within the stochastic framework Theorem 25 is an
attempt of saving the result reported by Bernheim and Ray (1989) on the existence
of stationary Markov perfect equilibria in games with very general utility function and
non-atomic shocks. If q is allowed to possess atoms, then a stationary Markov perfect
equilibrium exists in the bequest games with one follower (see Theorems 1-2 in Balbus et
al. (2015b)). The latter result also embraces the purely deterministic case, see Example
1 in Balbus et al. (2015b), where the nature and role of assumptions are discussed.
However, as showed in Example 3 in Balbus et al. (2015a), the existence of stationary
Markov perfect equilibria in the class of F cannot be proved in intergenerational games,
where q has atoms and there are more than one descendant. The result in Bernheim
and Ray (1986) concerns “consistent plans” in models with finite time horizon. The
problem is then simpler. The results of Bernheim and Ray (1986) was considerably
extended by Harris (1985) in his paper on perfect equilibria in some classes of games of
perfect information. It should be noted that there are other papers, that contain certain
results for bequest games with stochastic production function. Amir (1996b) studied
games with one descendant for every generation and the transition probability such that
the induced cumulative distribution function Q(z|y) is convex in y ∈ S. This condition
is rather restrictive. Nowak (2006a) considered similar games in which the transition
probability is a convex combination of the Dirac measure at state s = 0 and some
transition probability from S to S with coefficients depending on investments. Similar
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models were considered by Balbus et al. (2012); Balbus et al. (2013a). The latter paper
also studies some computational issues for stationary Markov perfect equilibria. One
should note, however, that the transition probabilities in the aforementioned works are
specific. However, the transition structure in Balbus et al. (2015a,b) is consistent with
the transitions used in the theory of economic growth, see Bhattacharya and Majumdar
(2007); Stokey et al. (1989).

The interesting issue studied in the economic literature concerns the limiting behaviour of
the state process induced by a stationary Markov perfect equilibrium. Below we formulate
a steady state result for a stationary Markov perfect equilibrium obtained for the game
(G1). Under slightly more restrictive conditions it was shown by Bernheim and Ray (1987)
that the equilibrium capital stock never exceeds the optimal planning stock in any period.
Namely, it is assumed that

(B1) p is strictly concave, continuously differentiable and limy→0+ p
′(y) > 1, limy→∞ p′(y) <

1/β, where β ∈ (0, 1] is a discount factor;
(B2) û(at, at+1) = v̂(at)+βv̂(at+1), where v̂ : S → R is increasing, continuously differentiable,

strictly concave and v̂(a)→∞ as a→∞.
An optimal consumption program â := (ât)t∈N is the one which maximises

∑∞
t=1 β

t−1v̂(ât)
subject to all feasibility constraints described in the model. The following result is stated as
Theorems 3.2 and 3.3 in Bernheim and Ray (1987).

Theorem 26 Assume (B1)-(B2) and consider game (G1). If c∗ is a stationary Markov
perfect equilibrium, then i∗(s) = s− c∗(s) ≤ ŷ, where ŷ ∈ [0,∞) is the limit of the sequence
(st − ât)t∈N. If ŷ > 0, it solves βp′(y) = 1. If limy→0+ p

′(y) > 1/β, then ŷ > 0.

For further properties of stationary Markov perfect equilibria such as efficiency, Pareto
optimality the reader is referred to Sect. 4 in Bernheim and Ray (1987).

For stochastic models it is of some interest to know whether a stationary Markov perfect
equilibrium induces a Markov process having an invariant distribution. It turns out that the
answer is positive if an additional stochastic monotonicity requirement is met:

(B3) If y1 < y2 then for any non-decreasing Borel measurable function h : S → R it holds∫
S

h(s)q(ds|y1) ≤
∫
S

h(s)q(ds|y2).

By Theorem 25 for game (G3), there exists c∗ ∈ F. Then s → i∗(s) = s − c∗(s) is non-
decreasing on S. Put q∗(B|s) := q(B|i∗(s)) where B is a Borel subset of S and s ∈ S. From
(B3), it follows that s → q∗(·|s) is non-decreasing. Define the mapping Ψ : Pr(S) → Pr(S)
by

Ψσ(B) :=

∫
S

q∗(B|s)σ(ds)

where B ∈ B(S). An invariant distribution for the Markov process induced by the transition
probability q∗ determined by i∗ (and thus by a c∗) is any fixed point of Ψ. Let ∆(q∗) be
the set of invariant distributions for the process induced by q∗. In Sect. 4 in Balbus et al.
(2015a) the following result was proved.

Theorem 27 Assume (B3) and consider game (G3). Then the set of invariant distributions
∆(q∗) is compact in the weak topology on Pr(S).

For each σ ∈ ∆(q∗), M(σ) :=
∫
S
sσ(ds) is the mean of distribution σ. By Theorem 27,

there exists σ∗∗ with the highest mean over the set ∆(q∗).
One can ask for the uniqueness of invariant distribution. Theorem 4 in Balbus et al.

(2015a) gives a positive answer to this question. However, this result concerns the model
with multiplicative shocks, i.e., q is induced by the equation

st+1 = f(yt)ξt, t ∈ N,

where f : S → S is a continuous increasing function such that f(0) > 0. In addition, there is
a state ŝ ∈ (0,∞) such that f(y) > y for y ∈ (0, ŝ) and f(y) < y for y ∈ (ŝ,∞). Here (ξt)t∈N
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is i.i.d. sequence with the non-atomic distribution π. Assuming additionally the monotone
mixing condition we conclude from Theorem 4 in Balbus et al. (2015a) the uniqueness of
the invariant distribution. Further discussion on these issues can be found in Stokey et al.
(1989), Hopenhayn and Prescott (1992), Stachurski (2009), Balbus et al. (2015a) and
references cited therein.

In contrast to the paternalistic model one can also think of a non-paternalistic altruism.
This notion is concerned with a model, in which each generation’s utility is derived from
its own consumption and the utilities of its all successors. The most general model with
non-paternalistic altruism was formulated by Ray (1987). His work is of some importance,
because it provides a proper definition of an equilibrium for the non-paternalistic case.
According to Ray (1987), a stationary equilibrium consists of a pair of two functions:
a saving policy (or strategy) and an indirect utility function. Such a pair constitutes an
equilibrium if it is optimal for the current generation, provided its descendants use the same
saving strategy and the same indirect utility function.

Assume that the generations from t onwards use a consumption strategy c ∈ Φ. Then,
the expected utility of generation t, that inherits an endowment st = s ∈ S := [0, s̄], is of
the form

Wt(c, v)(s) := (1− β)ũ(c(s)) + βEcs [w(v(st+1), v(st+2), ...)]. (8)

where ũ : S → K and w : K∞ → K are continuous functions and K := [0, k̄] with some
k̄ ≥ s̄. The function v : S → K is called an indirect utility and is assumed to be Borel
measurable. Similarly, for any c ∈ Φ and s = st+1 ∈ S we can define

J(c, v)(s) := Ecs [w(v(st+2), v(st+3), ...)],

which yields that

W (c, v)(s) := Wt(c, v)(s) = (1− β)ũ(c(s)) + β

∫
S

J(c, v)(s′)q(ds′|s− c(s)).

Let us define

P (a, c, v)(s) := (1− β)ũ(a) + β

∫
S

J(c, v)(s′)q(ds′|s− a),

where s ∈ S, a ∈ A(s) and c ∈ Φ. If st = s, then P (a, c, v)(s) is the utility for generation t
choosing the consumption level a ∈ A(st) in this state under the assumption that all future
generations will employ a stationary strategy c ∈ Φ and the indirect utility is v.

A stationary equilibrium in the sense of Ray (1987) is a pair (c∗, v∗), with c∗ ∈ Φ, and
v∗ : S → K being a bounded Borel measurable function such that for every s ∈ S we have
that

v∗(s) = sup
a∈A(s)

P (a, c∗, v∗)(s) = P (c∗(s), c∗, v∗)(s) = W (c∗, v∗)(s). (9)

Note that equality (9) says that, there exist an indirect utility function v∗ and a con-
sumption strategy c∗, both depending on the current endowment, such that each generation
finds it optimal to adopt this consumption strategy provided its descendants use the same
strategy and exhibit the given indirect utility.

Let V be the set of all non-decreasing upper semicontinuous functions v : S → K. Note
that every v ∈ V is continuous from the right and has at most a countable number of
discontinuity points. By I we denote the subset of all functions ϕ ∈ V such that ϕ(s) ∈ A(s)
for each s ∈ S. Let F = {c : c(s) = s − i(s), s ∈ S, i ∈ I}. We impose similar conditions
to those imposed on model (G3). Namely, we shall assume that ũ is strictly concave and
increasing. Then, the following result holds.

Theorem 28 In a non-paternalistic game described above with non-atomic transitions,
there exists a stationary equilibrium (c∗, v∗) ∈ F × V.
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Theorem 28 was established as Theorem 1 in Balbus et al. (2016). Ray (1987) anal-
ysed games with non-paternalistic altruism and deterministic production functions. Unfor-
tunately, his proof contains a mistake. The above result is strongly based on the assumption
that the transitions are non-atomic and weakly continuous. The problem in the deterministic
model of Ray (1987) remains open. However, Theorem 28 implies that an equilibrium exists
if a “small non-atomic noise” is added to the deterministic transition function.

There is a great deal of works devoted to the so-called “hyperbolic decision makers”, in
which the function w in (G3) has a specific form. Namely,

w(ak, ak+1, ak+2, . . .) = αβ

∞∑
m=k

βm−kũ(am), (10)

where α > 0 and is interpreted as a short-run discount factor and β < 1 is known as a
long-run discount coefficient. This model was studied by Harris and Laibson (2001) with
the transition function defined via the difference equation

st+1 = R(st − at) + ξt, R ≥ 0 and t ∈ N.

The random variables (ξt)t∈N are non-negative, independent and identically distributed with
respect to a non-atomic probability measure. The function ũ satisfies some restrictive con-
dition concerning the risk-aversion of the decision maker, but it may be unbounded from
above. Working in the class of strategies with locally bounded variation, Harris and Laibson
(2001) showed the existence of a stationary Markov perfect equilibrium in their model with
concave utility function ũ. They also derived a strong hyperbolic Euler relation. The model
considered in Harris and Laibson (2001) can also be viewed as a game between generations,
see Balbus and Nowak (2008); Nowak (2010); Jaśkiewicz and Nowak (2014a) where related
versions are studied. However, its main interpretation in economic literature says that it is a
decision problem where the utility of an economic agent changes over time. Thus, the agent
is represented by a sequence of selves and the problem is to find a time-consisten solution.
This solution is actually a stationary Markov perfect equilibrium obtained by thinking about
selves as players in an intergenerational game. For further details and references the reader
is referred to Harris and Laibson (2001); Jaśkiewicz and Nowak (2014a).

The model with the function w defined in (10) can be extended by adding to the transition
probabilities an unknown parameter θ. Then, the natural solution for such model is a robust
Markov perfect equilibrium. Roughly speaking, this solution is based on the assumption that
the generations involved in the game are risk-sensitive and accept a maxmin utility. More
precisely, let Θ be a non-empty Borel subset of an Euclidean space Rm (m ≥ 1). Then, the
endowment st+1 for generation t+ 1 is determined by the transition q from S×Θ to S that
depends on the investment yt ∈ A(st) and a parameter θt ∈ Θ. This parameter is chosen
according to a certain probability measure γt ∈ P, where P denotes the action set of nature
and it is assumed to be a Borel subset of Pr(Θ).

Let Γ be the set of all sequences (γt)t∈N of Borel measurable mappings γt : D → P, where
D = {(s, a) : s ∈ S, a ∈ A(s)}. For any t ∈ N and γ = (γt)t∈N ∈ Γ , we set γt := (γτ )τ≥t.
Clearly, γt ∈ Γ. A Markov strategy for nature is a sequence γ = (γt)t∈N ∈ Γ. Note that γt
can be called a Markov strategy used by nature from period t onwards.

For any t ∈ N, define Ht as the set of all sequences

ht = (at, θt, st+1, at+1, θt+1, ...), where (sk, ak) ∈ D and k ≥ t.

Ht is the set of feasible future histories of the process from period t onwards. Endow Ht with
the product σ-algebra. Assume in addition that that ũ ≤ 0 and assume that the generations
employ a stationary strategy c ∈ Φ and nature chooses some γ ∈ Γ. Then the choice of nature
is a probability measure depending on (st, c(st)). Let Ec,γ

t

st denote as usual the expectation
operator corresponding to the unique probability measure on Ht induced by a stationary
strategy c ∈ Φ used by each generation τ (τ ≥ t), a Markov strategy of nature γt ∈ Γ
and the transition probability q. Assume that all generations from t onwards use c ∈ Φ and
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nature applies a strategy γt ∈ Γ. Then, the generation t’s expected utility is of the following
form

Ŵ (c)(st) := inf
γt∈Γ

Ec,γ
t

st

(
ũ(c(st)) + αβ

∞∑
m=t+1

βm−t−1ũ(c(sτ ))

)
.

This definition of utility in an intergenerational game provides an intuitive notion of ambi-
guity aversion, which can be regarded as the generations’ diffidence for any lack of precise
definition of uncertainty, something that provides room for the malevolent influence of na-
ture. Defining

Ĵ(c)(sj) = inf
γj∈Γ

Ec,γ
j

sj

 ∞∑
m=j

βm−j ũ(c(sτ ))


we one can show that

Ŵ (c)(st) = ũ(c(s)) + inf
ξ∈P

αβ

∫
S

Ĵ(c)(st+1)q(dst+1|st − c(st), ξ).

For any s ∈ S, a ∈ A(s) and c ∈ Φ, put

P̂ (a, c)(s) = ũ(a) + inf
ξ∈P

αβ

∫
S

Ĵ(c)(s′)q(ds′|s− a, ξ).

If s = st, then P̂ (a, c)(s) is the utility for generation t choosing a ∈ A(st) in this state when
all future generations employ a stationary strategy c ∈ Φ.

A robust Markov perfect equilibrium is a function c∗ ∈ Φ such that for every s ∈ S we
have

sup
a∈A(s)

P̂ (a, c∗)(s) = P̂ (c∗(s), c∗)(s) = Ŵ (c∗)(s).

The existence of a robust Markov perfect equilibrium in the aforementioned model was
proved by Balbus et al. (2014) under the assumption that the transition probability is a
convex combination of probability measures µ1, . . . , µl on S with coefficients depending on
investments y = s − a. A robust Markov perfect equilibrium was obtained in the class of
functions F under the condition that all measures µ1, . . . , µl are non-atomic. If µ1, . . . , µl
have atoms, then some stochastic dominance conditions are imposed, but the equilibrium
was obtained in the class of Lipschitz continuous functions with constant one. A different
approach was presented in the work of Jaśkiewicz and Nowak (2014b), where the set of
endowments S and the set of consumptions are Borel, and the parameter set Θ is finite.
Assuming again that the transition probability is a finite convex combination of probability
measures µ1, . . . , µl on S depending on the parameter θ with coefficients depending on the
inheritance s and consumption level a, they established two-fold result. First, they proved
the existence of a robust Markov perfect equilibrium in the class of randomised strategies.
Then, assuming that µ1, . . . , µl are non-atomic and making use of the purification theorem
of Dvoretzky-Wald-Wolfowitz, they replaced a randomised equilibrium by a pure one.

The models of intergenerational games with general spaces of consumptions and en-
dowments were also examined by Jaśkiewicz and Nowak (2014a). A novel feature in this
approach is the fact that generation t can employ the entropic risk measure to calculate
its utilities. More precisely, if Z is a random variable with the distribution π, then its en-
tropic risk measure is E(Z) = 1

r ln
∫
Ω
erZ(ω)π(dω), where r < 0 is a risk coefficient. If r is

sufficiently close to zero, then making use of the Taylor expansion one can see that

E(Z) ≈ EZ +
r

2
V ar(Z).

This means that a generation, which uses the entropic risk measure to calculate its utility,
is risk averse and takes into account not only the expected value of a random future suc-
cessors’ utilities derived from consumptions but their variance either. Assuming that each
generation cares about only its m descendants and assuming that the transition probabil-
ity is a convex combination of finitely many non-atomic measures on the endowment space
with coefficients that may depend on s and a, Jaśkiewicz and Nowak (2014a) proved the
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existence of stationary Markov perfect equilibrium in pure strategies. The same result was
shown for games with infinitely many descendants in case of hyperbolic preferences. In both
cases the proof consists of two parts. Firstly, a randomised stationary Markov perfect equi-
librium was shown to exist. Secondly, making use of the specific structure of the transition
probability and applying the Dvoretzky-Wald-Wolfowitz theorem a desired pure stationary
Markov perfect equilibrium was obtained.

12 Stopping games

Stopping games were introduced by Dynkin (1969) as a generalisation of optimal stop-
ping problems. They were used in several models in economics and operations research, for
example, in equipment replacement, job search, consumer purchase behaviour, see Heller
(2012).

Dynkin (1969) dealt with the following problem. Two players observe a bivariate sequence
of adapted random variables (X(k), Y (k))k∈N0 , where N0 = N ∪ {0}. Player 1 chooses a
stopping time τ1 such that {τ1 = k} ⊂ {X(k) ≥ 0}, whereas player 2 selects τ2 such that
{τ2 = k} ⊂ {X(k) < 0}. If τ1 ∧ τ2 is finite, then player 2 pays Y (τ) to player 1 and the
game terminates. Hence, the objective of player 1 (respectively 2) is to maximise (minimise)
R(τ1, τ2) = E[Y (τ1∧τ2)]. Dynkin (1969) characterised ε-optimal stopping times and proved
that the game has a value provided that supk∈N0

|Y (k)| is integrable. This model was later
extended by Kiefer (1971) and Neveu (1975). In particular, Neveu (1975) showed the
existence of a game value in a slightly modified model. Namely, he dealt with the following
expected payoff function

R(τ1, τ2) = E[X(τ1)1[τ1 < τ2] + Y (τ2)1[τ2 ≤ τ1]],

where (X(k)))k∈N0
and (Y (k))k∈N0

are R-valued adapted stochastic processes such that
supk∈N0

(X+(k) + Y −(k)) are integrable and X(k) ≤ Y (k) for all k ∈ N0. The game consid-
ered by Neveu (1975) was generalised by Yasuda (1985), who dropped the latter assumption
on the monotonicity. In this model the expected payoff function takes the following form

R(τ1, τ2) = E[X(τ1)1[τ1 < τ2] + Y (τ2)1[τ2 < τ1] + Z(τ1)1[τ1 = τ2]],

where as usual (X(k)))k∈N0 , (Y (k))k∈N0 and (Z(k)))k∈N0 are adapted integrable random
variables. Yasuda (1985) considered a randomised strategies instead of pure ones. According
to Yasuda (1985) a strategy for a player is an adapted random sequence p = (pk)k∈N0

(or
q = (qk)k∈N0

) such that 0 ≤ pk, qk ≤ 1 with probability one. Here, pk (or qk) stands for the
probability that the player stops the game at time k conditional on the event that the game
was not stopped before. In computing the payoff induced by a pair of strategies (p, q) one
assumes that the randomisations performed by the players in various stages are mutually
independent and independent of the payoff processes. Thus, a strategy that corresponds to
a stopping time σ is pk = 0 on the event [σ > k] and pk = 1 on the event [σ ≤ k]. Yasuda
(1985) proved the existence of the value in the set of randomised strategies in a finite and
discounted infinite time horizon problems.

In order to formulate a next result, let us define the stopping stages for players 1 and 2 by
θ1 := inf{k ∈ N0 : P (k) ≤ pk}, and θ2 := inf{k ∈ N0 : Q(k) ≤ qk}, where (P (k), Q(k))k∈N0

is a double sequence of i.i.d. random variables, uniformly distributed over [0, 1] satisfying
certain independence assumptions imposed in Rosenberg et al. (2001). Set θ = θ1 ∧ θ2.
Clearly, θ is the stage at which the game stops. Let us define

R(p, q) = E[X(θ1)1[θ1 < θ2] + Y (θ2)1[θ2 < θ1] + Z(θ1)1[τ1 = τ2 < +∞]]

and its β-discounted evaluation

Rβ(p, q) = (1− β)E
[
βθ+1(X(θ1)1[θ1 < θ2] + Y (θ2)1[θ2 < θ1] + Z(θ1)1[τ1 = τ2 < +∞])

]
.

The following result was proved in Rosenberg et al. (2001).
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Theorem 29 Assume that E[supk∈N0
(|X(k)|+ |Y (k)|+ |Z(k)|)] < +∞. Then the stopping

games with the payoffs R(p, q) and Rβ(p, q) have values, say v and vβ , respectively. Moreover,
limβ→1 vβ = v.

Let us now turn to non-zero-sum Dynkin games. They were considered in several papers,
see, for instance, Ferenstein (2007); Krasnosielska-Kobos (2016); Morimoto (1986); Nowak
and Szajowski (1999); Ohtsubo (1987, 1991); Solan and Vieille (2001); Szajowski (1994).
Obviously, the list of references is by no means exhaustive. We start with presenting a
first result for two-player non-zero-sum stopping games. Assume that the aforementioned
sequences (X(k)))k∈N0

, (Y (k))k∈N0
and (Z(k)))k∈N0

are bounded in R2 and let ρ be a uniform
bound on the payoffs. The payoff of the game is R(p, q) except that R(p, q) ∈ R2. Shmaya
et al. (2003) proved the following result.

Theorem 30 For each ε > 0 the stopping game has an ε-equilibrium (p∗, q∗).

Theorem 30 does not hold, if the payoffs are not uniformly bounded. It is is based upon
the Ramsey theorem from graph theory. A similar result was also reported in Shmaya and
Solan (2004), where a stochastic version of the Ramsey theorem was proved and then used
in the proof of main result. Namely, the Ramsey theorem states that for every colouring of a
complete infinite graph by finitely many colours, there is a complete infinite monochromatic
subgraph. Shmaya and Solan (2004) applied a variation of this result that allowed them to
reduce the problem of the existence of an ε-equilibrium in a general stopping game to that
of studying properties of ε-equilibria in a simple class of stochastic games with finite state
space.

All the aforementioned works deal with the two-player case and/or assume some special
structure of the payoffs. Recently, Hamadène and Hassani (2004) studied n-person non-zero
sum Dynkin games. Such a game is terminated at τ := τ1 ∧ . . . ∧ τn, where τi is a stopping
time chosen by player i. Then, the corresponding payoff for player i is given by

Ri(τ1, . . . , τn) = W i,I
τ ,

where Is denotes the set of players who make the decision to stop, that is, Is = {m ∈
{1, . . . , n} : τ = τm} and W i,Is is the payoff stochastic process of player i. The main
assumption says that the payoff is less when the player belongs to the group involved in the
decision to stop when he is not. Hamadène and Hassani (2004) showed that the game has a
Nash equilibrium in pure strategies. The proof is based on the approximation scheme whose
limit provides a Nash equilibrium.

Krasnosielska-Kobos and Ferenstein (2013) is another paper that is concerned with
multi-person stopping games. More precisely, they consider a game, in which players se-
quentially observes the offers X(1), X(2), . . . at jump times T1, T2, . . . of a Poisson process.
It is assumed that the random variables X(1), (X(2), . . . form i.i.d. sequence. Each accepted
offer results in a reward R(k) = X(k)r(Tk), where r is non-increasing discount function. If
more than one player accepts the offer, then the player with highest priority gets the reward.
By making use of the solution to the multiple optimal stopping time problem with above re-
ward structure Krasnosielska-Kobos and Ferenstein (2013) constructed a Nash equilibrium,
which is Pareto efficient.

Mashiah-Yaakovi (2014), on the other hand, studied subgame perfect equilibria in stop-
ping games. It is assumed that at every stage one of the players is chosen according to a
stochastic process, and that player decides whether to continue the interaction or to stop
it. The terminal payoff vector is obtained by another stochastic process. Mashiah-Yaakovi
(2014) defines a weaker concept of subgame perfect equilibrium, namely, a δ-approximate
subgame perfect ε-equilibrium. A strategy profile is a δ-approximate subgame perfect ε-
equilibrium if it induces an ε-equilibrium in every subgame, except perhaps a set of sub-
games that occur with probability at most δ. A 0-approximate subgame perfect ε-equilibrium
is actually a subgame perfect ε-equilibrium. The concept of approximate subgame perfect
equilibrium relates to the concept of “trembling-hand perfect equilibrium” introduced by
Selten (1975).

Finally, it is worth pointing out that there are different notions of random stopping
times. The above mentioned randomised strategies used by Yasuda (1985); Rosenberg et
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al. (2001) are also called behaviour stopping times. A randomised stopping time, on the
other hand, is a non-negative adapted real-valued process ρ = (ρk)k∈N∪{∞} that satisfies∑
k∈N∪{∞} ρk = 1. The third concept allows to define mixed stopping times ν. Roughly

speaking, they are product measurable functions, in which the first coordinate is chosen
according to the uniform distribution over the interval [0, 1] at the outset. Then, the stopping
time is ν(r, ·).
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