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Abstract In this article we describe a major part of the theory of zero-sum discrete-time
stochastic games. We overview all basic streams of research in this area, in the context of
the existence of value and uniform value, algorithms, vector payoffs, incomplete information
and imperfect state observation. Also some models related to continuous-time games, e.g.,
games with short-stage duration, semi-Markov games, are overviewed. Moreover, a number
of applications of stochastic games are pointed out. The provided reference list reveals a
tremendous progress made in the field of zero-sum stochastic games since the seminal work
of Shapley (1953).
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1 Introduction

Stochastic games extend the model of strategic normal form games to situations in which
the environment changes in time in response to the players’ actions. They also extend the
Markov decision model to competitive situations with more than one decision maker. The
choices made by the players have two effects. First, together with the current state, the
players actions determine the immediate payoff that each player receives. Second, the current
state and the players actions have an influence on the chance of moving to a new state,
where future payoffs will be received. Therefore, each player has to observe the current
payoffs and take into account possible evolution of the state. This issue is also present in
one-player sequential decision problems, but the presence of additional players who have
their own goals adds complexity to the analysis of the situation. Stochastic games were
introduced in a seminal paper of Shapley (1953). He considered zero-sum dynamic games
with finite state and action spaces and a positive probability of termination. His model
is often considered as a stochastic game with discounted payoffs. Gilette (1957) studied a
similar model but with zero stop probability. These two papers inspired an enormous stream
of research in dynamic game theory and Markov decision processes. There is a large variety of
mathematical tools used in studying stochastic games. For example, the asymptotic theory
of stochastic games is based on some algebraic methods such as semi-algebraic functions.
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On the other hand, the theory of stochastic games with general state spaces has a direct
connection to the descriptive set theory. Furthermore, the algorithmic aspects of stochastic
games yield interesting combinatorial problems. The other basic mathematical tools make
use of martingale limit theory. There is also a known link between non-zero-sum stochastic
games and the theory of fixed points in infinite dimensional spaces. The principal goal of
this paper is to provide a comprehensive overview of the aforementioned aspects of zero-sum
stochastic games.

To begin a literature review let us mention that a basic and clear introduction to stochas-
tic dynamic games is given in Başar and Olsder (1995) and Haurie et al. (2012). Math-
ematical programming problems occurring in algorithms for stochastic games with finite
state and action spaces are broadly discussed in Filar and Vrieze (1997). Some studies of
stochastic games by the methods developed in gambling theory with many informative ex-
amples are described in Maitra and Sudderth (1996). An advanced material on repeated
and stochastic games is presented in Sorin (2002) and Mertens et al. (2015). The two
edited volumes by Raghavan et al. (1991) and Neyman and Sorin (2003) contain a survey
of a large part of the area of stochastic games developed for almost fifty years since Shap-
ley’s seminal work. This chapter and paper of Jaśkiewicz and Nowak (2016) include a very
broad overview of state-of-the-art results on stochastic games. Moreover, the surveys given
by Mertens (2002), Vieille (2002), Solan (2009), Solan and Vieille (2015) and Laraki and
Sorin (2015) constitute a relevant complementary material.

There is a great deal of applications of stochastic games in science and engineering.
Here, we only mention the ones concerning zero-sum games. For instance, Altman and
Hordijk (1995) applied stochastic games to queueing models. On the other hand, wireless
communication networks were examined in terms of stochastic games by Altman et al.
(2005). For the usage of stochastic games to models in operations research the reader is
referred to Charnes and Schroeder (1967), Winston (1978), Filar (1985) or Patek and
Bertsekas (1999). There is also a growing literature on applications of zero-sum stochastic
games in theoretical computer sciences, see for instance, Condon (1992), de Alfaro et al.
(2007) and Kehagias et al. (2013) and references cited therein. Applications of zero-sum
stochastic games to economic growth models and robust Markov decision processes are
described in Sect. 3 based mainly on the paper by Jaśkiewicz and Nowak (2011). The class
of possible applications of non-zero-sum stochastic games is larger than in the zero-sum case.
They are indicated in our second survey, see Chapter X in this volume.

The paper is organised as follows. In Sect. 2 we describe some basic material needed for
a study of stochastic games with general state spaces. It incorporates auxiliary results on
set-valued mappings (correspondences), their measurable selections and the measurability
of the parameterised zero-sum game value. This part naturally is redundant in case of
a study of stochastic games with discrete state and action spaces. Sect. 3 is devoted to
a general maxmin decision problem in discrete-time and a Borel state space. The main
motivation is to show its applications to stochastic economic growth models and some robust
decision problems in macroeconomics. Therefore, the utility (payoff) function in illustrative
examples is unbounded and the transition probability function is weakly continuous. In
Sect. 4 we consider standard discounted and positive Markov games with Borel state spaces
and simultaneous moves of the players. Sect. 5 is devoted to semi-Markov games with Borel
state space and weakly continuous transition probabilities satisfying some stochastic stability
assumptions. In the limit-average payoff case two criteria are compared. i.e., time average
and ratio average, and a question of path optimality is discussed. Furthermore, stochastic
games with general Borel payoff function on the spaces of infinite plays are examined in Sect.
6 . This part includes results on games with limsup payoffs and limit-average payoffs as a
special case. In Sect. 7 we present some basic results from the asymptotic theory of stochastic
games, mainly with finite state space, the notion of uniform value. This part of the theory
exhibits non-trivial algebraic aspects. Some algorithms for solving zero-sum stochastic games
of different type are described in Sect. 8. In Sect. 9 we overview zero-sum stochastic games
with incomplete information, imperfect monitoring. This is a vast area of stochastic games.
Therefore, we are only concerned with selected cases of recent contributions. Stochastic
games with vector payoffs and Blackwell’s approachability concept, on the other hand, are
discussed briefly in Sect. 10. Finally, Sect.11 gives a short overview of stochastic Markov
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games in continuous-time. We mainly focus on Markov games with short stage duration.
This theory based on an asymptotic analysis of discrete-time games when the stage duration
tends to zero.

2 Preliminaries

Let R be the set of all real numbers, R = R∪ {−∞} and N = {1, 2, ...}. By a Borel space X
we mean a non-empty Borel subset of a complete separable metric space endowed with the
relative topology and the Borel σ-algebra B(X). We denote by Pr(X) the set of all Borel
probability measures on X. Let Bµ(X) be the completion of B(X) with respect to some
µ ∈ Pr(X). Then U(X) = ∩µ∈Pr(X)Bµ(X) is the σ-algebra of all universally measurable
subsets of X. There are a couple of ways to define analytic sets in X, see Chapter 12 in
Aliprantis and Border (2006) or Chapter 7 in Bertsekas and Shreve (1996). On can say
that C ⊂ X is an analytic set if and only if there is a Borel set D ⊂ X×X whose projection
on X is C. If X is uncountable, then there exist analytic sets in X which are not Borel, see
Example 12.33 in Aliprantis and Border (2006). Every analytic set C ⊂ X belongs to U(X).
A function ψ : X → R is called upper semianalytic (lower semianalytic) if for any c ∈ R the
set {x ∈ X : ψ(x) ≥ c} ({x ∈ X : ψ(x) ≤ c}) is analytic. It is known that ψ is both upper
and lower semianalytic if and only if ψ is Borel measurable. Let Y be also a Borel space. A
mapping φ : X → Y is universally measurable if φ−1(C) ∈ U(X) for each C ∈ B(Y ).

A set-valued mapping x → Φ(x) ⊂ Y (also called a correspondence from X to Y ) is
upper semicontinuous (lower semicontinuous) if the set Φ−1(C) := {x ∈ X : Φ(x) ∩ C 6= ∅}
is closed (open) for each closed (open) set C ⊂ Y. Φ is continuous if it is both lower and
upper semicontinuous. Φ is weakly or lower measurable if Φ−1(C) ∈ B(X) for each open set
C ⊂ Y. Assume that Φ(x) 6= ∅ for every x ∈ X. It is well-known that if Φ is compact-valued
and upper semicontinuous, then by Theorem 1 in Brown and Purves (1973), Φ admits a
measurable selector, that is, there exists a Borel measurable mapping g : X → Y such that
g(x) ∈ Φ(x) for each x ∈ X. Moreover, the same holds if Φ is weakly measurable and has
complete values Φ(x) for all x ∈ X, see Kuratowski and Ryll-Nardzewski (1965). Assume
that D ⊂ X × Y is a Borel set such that D(x) := {y ∈ Y : (x, y) ∈ D} is non-empty and
compact for each x ∈ X. If C is an open set in Y , then D−1(C) := {x ∈ X : D(x)∩C 6= ∅} is
the projection on X of the Borel set D0 = (X×C)∩D and D0(x) = {y ∈ Y : (x, y) ∈ D0} is
σ-compact for any x ∈ X. By Theorem 1 in Brown and Purves (1973), D−1(C) ∈ B(X). For
a broad discussion of semicontinuous or measurable correspondences the reader is referred to
Himmelberg (1975), Klein and Thompson (1984) or Aliprantis and Border (2006). For any
Borel space Y, let C(Y ) be the space of all bounded continuous real-valued functions on Y.
Assume that Pr(Y ) is endowed with the weak topology and the Borel σ-algebra B(Pr(Y )),
see Billingsley (1968); Bertsekas and Shreve (1996) or Parthasarathy (1967). The σ-
algebra B(Pr(Y )) of all Borel subsets of Pr(Y ) coincides with the smallest σ-algebra on
Pr(Y ) for which the mapping p → p(D) is measurable for each D ∈ B(Y ), see Proposition
7.25 in Bertsekas and Shreve (1996). Recall that a sequence (pn)n∈N converges weakly to
some p ∈ Pr(Y ) if and only if for any φ ∈ C(Y ),∫

Y

φ(y)pn(dy)→
∫
Y

φ(y)p(dy) as n→∞.

If Y is a Borel space, then Pr(Y ) is a Borel space too, and if Y is compact, so is Pr(Y ), see
Corollary 7.25.1 and Proposition 7.22 in Bertsekas and Shreve (1996).

Consider the correspondence x→ Ψ(x) := Pr(Φ(x)) ⊂ Pr(Y ). The following result from
Himmelberg and Van Vleck (1975) is useful in studying stochastic games.

Proposition 1 If Φ is upper (lower) semicontinuous and compact-valued, then so is Ψ.

A transition probability or a stochastic kernel from X to Y is a function ϕ : B(Y )×X →
[0, 1] such that ϕ(D|·) is a Borel measurable function on X for every D ∈ B(Y ) and ϕ(·|x) ∈
Pr(Y ) for each x ∈ X. It is well-known that every Borel measurable mapping f : X → Pr(Y )
may be regarded as a transition probability ϕ from X to Y. Namely, ϕ(D|x) = f(x)(D),
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D ∈ B(Y ), x ∈ X, see Proposition 7.26 in Bertsekas and Shreve (1996). We shall write
f(dy|x) instead of f(x)(dy). Clearly, any Borel measurable mapping f : X → Y is a special
transition probability ϕ from X to Y such that for each x ∈ X, ϕ(·|x) is the Dirac measure
concentrated at the point f(x). Similarly, universally measurable transition probabilities are
defined, when B(X) is replaced by U(X).

Studying zero-sum stochastic games with Borel state spaces we must use in the proofs
some results on minimax measurable selections in parametrised games. Let X, A and B be
Borel spaces. Assume that KA ∈ B(X × A) and KB ∈ B(X × B) are such that the sets
A(x) := {a ∈ A : (x, a) ∈ A} and B(x) := {b ∈ B : (x, b) ∈ B} are non-empty for all x ∈ X.
Let K := {(x, a, b) : x ∈ X, a ∈ A(x), b ∈ B(x)}. Then K is a Borel subset of X × A × B.
Let r : K → R be a Borel measurable payoff function in a zero-sum game parametrised
by x ∈ X. If players 1 and 2 choose mixed strategies µ ∈ Pr(A(x)) and ν ∈ Pr(B(x)),
respectively, then the expected payoff to player 1 (cost to player 2) depends on x ∈ X and
is of the form

R(x, µ, ν) :=

∫
A(x)

∫
B(x)

r(x, a, b)ν(db)µ(da)

provided that the double integral is well-defined. Assuming this and that B(x) is compact
for each x ∈ X and r(x, a, ·) is lower semicontinuous on B(x) for each (x, a) ∈ KA, we
conclude from the minimax theorem of Fan (1953) that the game has a value, that is, the
equality holds

v∗(x) := min
ν∈Pr(B(x))

sup
µ∈Pr(A(x))

R(x, µ, ν) = sup
µ∈Pr(A(x))

min
ν∈Pr(B(x))

R(x, µ, ν), x ∈ X.

A universally (Borel) measurable strategy for player 1 is a universally (Borel) measurable
transition probability f from X to A such that f(A(x)|x) = 1 for all x ∈ X. By the Jankov-
von Neumann theorem (see Theorem 18.22 in Aliprantis and Border (2006)) there exists a
universally measurable function ϕ : X → A such that ϕ(x) ∈ A(x) for all x ∈ X. Thus,
the set of universally measurable strategies for player 1 is non-empty. Universally (Borel)
measurable strategies for player 2 are defined similarly. A strategy g∗ is optimal for player
2 if

v∗(x) = sup
µ∈Pr(A(x))

∫
A(x)

∫
B(x)

r(x, a, b)g∗(db|x)µ(da) for all x ∈ X.

Let ε ≥ 0. A strategy f∗ is ε-optimal for player 1 if

v∗(x) ≤ inf
ν∈Pr(B(x))

∫
A(x)

∫
B(x)

r(x, a, b)ν(db)f∗(da|x) + ε for all x ∈ X.

A 0-optimal strategy is called optimal.
The following result follows from Nowak (1985b). For a much simpler proof see Nowak

(2010).

Proposition 2 Under the above assumptions the value function v∗ is upper semianalytic.
Player 2 has a universally measurable optimal strategy and, for any ε > 0, player 1 has a
universally measurable ε-optimal strategy. If, in addition, we assume that A(x) is compact
for each x ∈ X and r(x, ·, b) is upper semicontinuous for each (x, b) ∈ KB , then v∗ is Borel
measurable and both players have Borel measurable optimal strategies.

As a corollary to Theorem 5.1 in Nowak (1986) we can state the following result.

Proposition 3 Assume that x → A(x) is lower semicontinuous and has complete values
in A and x → B(x) is upper semicontinuous and compact valued. If r : K → R is lower
semicontinuous on K, then v∗ is lower semicontinuous, player 2 has a Borel measurable
optimal strategy, and for any ε > 0, player 1 has a Borel measurable ε-optimal strategy.

The lower semicontinuity of v∗ in Proposition 3 is a corollary to the maximum theorem
of Berge (1963). In some games or minimax control models one can consider the minimax
value

v∗(x) := inf
ν∈Pr(B(x))

sup
µ∈Pr(A(x))

R(x, µ, ν), x ∈ X,
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if the mixed strategies are used, or

w∗(x) := inf
b∈B(x)

sup
a∈A(x)

r(x, a, b), x ∈ X,

if the attention is restricted to pure strategies. If the assumption on semicontinuity of the
function r is dropped, then the measurability of v∗ or w∗ is connected with the measurability
of projections of coanalytic sets. This issue leads to some considerations in the classical
descriptive set theory. A comprehensive study of n the measurability of upper or lower value
of a game with Borel payoff function r is given in Prikry and Sudderth (2016).

3 Robust Markov decision processes

A discounted maxmin Markov decision process is defined by the objects: X, A, B, KA, K,
u, q, and β, where:

• X is a Borel state space;
• A is the action space of the controller (player 1), B is the action space of the opponent

(player 2). It is assumed that A and B are Borel spaces;
• KA ∈ B(X ×A) is the constraint set for the controller. It is assumed that

A(x) := {a ∈ A : (x, a) ∈ A} 6= ∅

for each x ∈ X. This is the set of admissible actions of the controller in the state x ∈ X;
• K ∈ B(X ×A×B) is the constraint set for the opponent. It is assumed that

B(x, a) := {b ∈ B : (x, a, b) ∈ B} 6= ∅

for each (x, a) ∈ KA. This is the set of admissible actions of the opponent for (x, a) ∈ KA;
• u : K → R is a Borel measurable stage payoff function;
• q is a transition probability from K to X, called the law of motion among states. If xn

is a state at the beginning of period n of the process and actions an ∈ A(xn) and bn ∈
B(xn, an) are selected by the players, then q(·|xn, an, bn) is the probability distribution
of the next state xn+1;

• β ∈ (0, 1) is called the discount factor.

We make the following assumptions on the sets KA and K.

(C1) For any x ∈ X, A(x) is compact and the set-valued mapping x → A(x) is upper semi-
continuous.

(C2) The set-valued mapping (x, a)→ B(x, a) is lower semicontinuous.
(C3) There exists a Borel measurable mapping g : KA → B such that g(x, a) ∈ B(x, a) for all

(x, a) ∈ KA.

Remark 1 From Sect. 2, it follows that condition (C3) holds if B(x, a) is σ-compact for each
(x, a) ∈ KA (see Brown and Purves (1973) or if B is a complete separable metric space and
each set B(x, a) is closed (see see Kuratowski and Ryll-Nardzewski (1965)).

Let H1 := X, Hn := Kn ×X for n ≥ 2. Put H∗1 := KA and H∗n := Kn ×KA if n ≥ 2.
Generic elements of Hn and H∗n are histories of the process and they are of the form h1 = x1,
h∗1 = (x1, a1) and for each n ≥ 2, hn = (x1, a1, b1, ....xn−1, an−1, bn−1, xn), h∗n = (hn, an).

A strategy for the controller is a sequence π = (πn)n∈N of stochastic kernels πn from
Hn to A such that πn(A(xn)|hn) = 1 for each hn ∈ Hn. The class of all strategies for the
controller will be denoted by Π. A strategy for the opponent is a sequence γ = (γn)n∈N of
stochastic kernels γn from H∗n to B such that γn(B(xn, an)|h∗n) = 1 for all h∗n ∈ H∗n. The
class of all strategies for the opponent will be denoted by Γ ∗. Let F be the set of Borel
measurable mappings f from X to A such that f(x) ∈ A(x) for each x ∈ X. A deterministic
stationary strategy for the controller is a sequence π = (fn)n∈N where fn = f for all n ∈ N
and some f ∈ F. Such a strategy can obviously be identified with the mapping f ∈ F . Put

u+(x, a, b) := max{u(x, a, b), 0} and u−(x, a, b) := min{u(x, a, b), 0}, (x, a, b) ∈ K.
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For each initial state x1 = x and any strategies π ∈ Π and γ ∈ Γ ∗, define

J+
β (x, π, γ) = Eπγx

( ∞∑
n=1

βn−1u+(xn, an, bn)

)
, (1)

J−β (x, π, γ) = Eπγx

( ∞∑
n=1

βn−1u−(xn, an, bn)

)
. (2)

Here, Eπγx denotes the expectation operator corresponding to the unique conditional prob-
ability measure Pπγx defined on the space of histories, starting at state x and endowed with
the product σ-algebra, which is induced by strategies π, γ and the transition probability
q according to the Ionescu-Tulcea Theorem, see Proposition 7.45 in Bertsekas and Shreve
(1996) or Proposition V.1.1 in Neveu (1965). . In the sequel, we give conditions under
which J+

β (x, π, γ) <∞ for any x ∈ X, π ∈ Π, γ ∈ Γ ∗. They enable us to define the expected
discounted payoff over an infinite time horizon as follows

Jβ(x, π, γ) = Eπγx

( ∞∑
n=1

βn−1u(xn, an, bn)

)
. (3)

Then, for every x ∈ X and π ∈ Π, γ ∈ Γ ∗, Jβ(x, π, γ) ∈ R and

Jβ(x, π, γ) = J+
β (x, π, γ) + J−β (x, π, γ) =

∞∑
n=1

βn−1Eπγx u(xn, an, bn).

Let
vβ(x) := sup

π∈Π
inf
γ∈Γ∗

Jβ(x, π, γ), x ∈ X.

This is the maxmin or lower value of the game starting at the state x ∈ X. A strategy
π∗ ∈ Π is called optimal for the controller if infγ∈Γ∗ Jβ(x, π∗, γ) = vβ(x) for every x ∈ X.

It is worth mentioning that if u is unbounded, then an optimal strategy π∗ need not
exist even if 0 ≤ v∗(x) < ∞ for every x ∈ X and the available action sets A(x) and B(x)
are finite, see Example 1 in Jaśkiewicz and Nowak (2011).

The maxmin control problems with Borel state spaces have been already considered
by González-Trejo et al. (2003); Hansen and Sargent (2008); Iyengar (2005); Küenle
(1986) and are referred to as games against nature or robust dynamic programming (Markov
decision) models. The idea of using maxmin decision rules was used in statistics, see Blackwell
and Girshick (1954). It is also used in economics, see for example the variational preferences
in Maccheroni et al. (2006).

3.1 One-sided weighted norm approach

We now describe our regularity assumptions imposed on the payoff and transition probability
functions.

(W1) The payoff function u : K → R is upper semicontinuous.
(W2) For any φ ∈ C(X) the function

(x, a, b)→
∫
X

φ(y)q(dy|x, a, b)

is continuous.

(M1) There exist a continuous function ω : X → [1,∞) and a constant α > 0 such that

sup
(x,a,b)∈K

∫
X
ω(y)q(dy|x, a, b)

ω(x)
≤ α and βα < 1. (4)

Moreover, the function (x, a, b)→
∫
X
ω(y)q(dy|x, a, b) is continuous.
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(M2) There exists a constant d > 0 such that

sup
a∈A(x)

sup
b∈B(x,a)

u+(x, a, b) ≤ dω(x)

for all x ∈ X.

Note that under conditions (M1) and (M2) the discounted payoff function is well-defined,
since

0 ≤ Eπγx

( ∞∑
n=1

βn−1u+(xn, an, bn)

)
≤ d

∞∑
n=1

βn−1αn−1ω(x) <∞.

Remark 2 Assumption (W2) states that transition probabilities are weakly continuous. It
is worth emphasising that this property, in contrast to the set-wise continuous transitions,
is satisfied in a number of models arising in operations research, economics, etc. Indeed,
Feinberg and Lewis (2005) studied the typical inventory model

xn+1 = xn + an − ξn+1, n ∈ N,

where xn is the inventory at the end of period n, an is the decision how much should be
ordered, and ξn is the demand during period n and each ξn has the same distribution as
the random variable ξ. Assume that X = R, A = R+. Let q(·|x, a) be the transition law
for this problem. In view of Lebesgue’s dominated convergence theorem, it is clear that q
is weakly continuous. On the other hand, recall that the set-wise continuity means that
q(D|x, ak) → q(D|x, a0) as ak → a0 for any D ∈ B(X). Suppose that the demand is
deterministic d = 1, ak = a + 1/k and D = (−∞, x + a − 1]. Then, q(D|x, a) = 1, but
q(D|x, ak) = 0.

For any function φ : X → R define the ω-norm as follows

‖φ‖ω = sup
x∈X

|φ(x)|
ω(x)

, (5)

provided that it is finite. Let Uω(X) be the space of all upper semicontinuous functions
endowed with the metric induced by the ω-norm. By Uω(X) we denote the set of all upper
semicontinuous functions φ : X → R such that φ+ ∈ Uω(X).

Define uk := max{u,−k}, k ∈ N. For any φ ∈ Uω(X), (x, a, b) ∈ K and k ∈ N, put

Lβ,kφ(x, a, b) = uk(x, a, b) + β

∫
X

φ(y)q(dy|x, a, b)

and

Lβφ(x, a, b) = u(x, a, b) + β

∫
X

φ(y)q(dy|x, a, b).

The maximum theorem of Berge (1963) (see also Proposition 10.2 in Schäl (1975))
implies the following auxiliary result.

Lemma 1 Assume (C1)-(C3), (W1)-(W2) and (M1)-(M2). Then for any φ ∈ Uω(X) the
functions

inf
b∈B(x,a)

Lβ,kφ(x, a, b) and max
a∈A(x)

inf
b∈B(x,a)

Lβ,kφ(x, a, b)

are upper semicontinuous on KA and X, respectively. Similar properties hold if Lβ,kφ(x, a, b)
is replaced by Lβφ(x, a, b).

For any x ∈ X, define

Tβ,kφ(x) = max
a∈A(x)

inf
b∈B(x,a)

Lβ,kφ(x, a, b) and Tβφ(x) = max
a∈A(x)

inf
b∈B(x,a)

Lβφ(x, a, b). (6)

By Lemma 1, the operators Tβ,k and Tβ are well-defined. Additionally, note that

Tβφ(x) = max
a∈A(x)

inf
ρ∈Pr(B(x,a))

∫
B

Lβφ(x, a, b)ρ(db).

We can now state the main result in Jaśkiewicz and Nowak (2011).
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Theorem 1 Assume (C1)-(C3), (W1)-(W2) and (M1)-(M2). Then vβ ∈ Uω(X), Tβvβ =
vβ and there exists a stationary strategy f∗ ∈ F such that

vβ(x) = inf
b∈B(x,a)

Lβvβ(x, f∗(x), b)

for x ∈ X. Moreover,

vβ(x) = inf
γ∈Γ∗

Jβ(x, f∗, γ) = sup
π∈Π

inf
γ∈Γ∗

Jβ(x, π, γ)

for all x ∈ X, so f∗ is an optimal stationary strategy for the controller.

The proof of Theorem 1 consists of two steps. First, we deal with truncated models,
in which the payoff function u is replaced by uk. Then, making use of the fixed point
argument, we obtain an upper semicontinuous solution to the Bellman equation, say vβ,k.
Next, we observe that the sequence (vβ,k)k∈N is non-increasing. Letting k →∞, making use
of Lemma 1 we arrive at the conclusion.

Remark 3 The weighted supremum norm approach in Markov decision processes was pro-
posed by Wessels (1977) and further developed, e.g., by Hernández-Lerma and Lasserre
(1999). This method has been also adopted to zero-sum stochastic games, see Couwenbergh
(1980); González-Trejo et al. (2003); Jaśkiewicz (2009, 2010); Jaśkiewicz and Nowak (2006,
2011); Küenle (2007) and references cited therein. The common feature of the aforemen-
tioned works is the fact that the authors use the weighted norm condition instead of as-
sumption (M2). More precisely, in our notation it means that the following holds

sup
a∈A(x)

sup
b∈B(x,a)

|u(x, a, b)| ≤ dω(x), x ∈ X (7)

for some constant d > 0. This assumption, however, excludes many examples studied in
economics where the utility function u equals −∞ in some states. Moreover, inequality in
(M1) and (7) often enforce additional constraints on the discount coefficient β in comparison
with (M1) and (M2), see Example 6 in Jaśkiewicz and Nowak (2011).

Observe that, if the payoff function u takes on only negative values, then assumption
(M2) is redundant. Thus, the problem comes down to the negative programming, which was
solved by Strauch (1966) in case of one-player game (Markov decision process).

3.1.1 Models with unknown disturbance distributions

Consider the control system in which

xn+1 = Ψ(xn, an, ξn), n ∈ N.

It is assumed that (ξn)n∈N is a sequence of independent random variables with values in
a Borel space S having unknown probability distributions that can change from period to
period. The set B of all possible distributions is assumed to be a non-empty Borel subset of
the space Pr(S) endowed with the weak topology. The mapping Ψ : KA×S → X is assumed
to be continuous. Let u0 be an upper semicontinuous utility function defined on KA×S such
that u+

0 (x, a, s) ≤ dω(x) for some constant d > 0 and all (x, a) ∈ KA, s ∈ S.
We can formulate a maxmin control model in the following way:
(a) B(x, a) = B ⊂ Pr(S) for each (x, a) ∈ KA, K = KA ×B;
(b) u(x, a, b) =

∫
S
u0(x, a, s)b(ds), (x, a, b) ∈ K;

(c) for any Borel set D ⊂ X, q(D|x, a, b) =
∫
X

1D(Ψ(x, a, s))b(ds), (x, a, b) ∈ K.
Then for any bounded continuous function φ : X → R,∫

X

φ(y)q(dy|x, a, b) =

∫
X

φ(Ψ(x, a, s))b(ds). (8)

From Proposition 7.30 in Bertsekas and Shreve (1996) or Lemma 5.3 in Nowak (1986)
and (8), it follows that q is weakly continuous. Moreover, by virtue of Proposition 7.31 in
Bertsekas and Shreve (1996), it is easily seen that u is upper semicontinuous on K.

The following result can be viewed as a corollary to Theorem 1.
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Proposition 4 Let Ψ and u0 satisfy the above assumptions. If (M1) holds, then the con-
troller has an optimal strategy.

Proposition 4 is a counterpart of the results obtained in Sect. 6 of González-Trejo et al.
(2003) for discounted models (see Propositions 6.1-6.3 and their consequences). However,
our assumptions imposed on the primitive data are weaker than the ones used by González-
Trejo et al. (2003). They are satisfied for a pretty large number of systems, in which the
disturbances comprise “random noises” that are difficult to observe and often caused by
external factors influencing the dynamics. Below we give certain examples which stem from
economic growth theory and related topics. Mainly, they are inspired by models studied in
Stokey et al. (1989), Bhattacharya and Majumdar (2007) and Hansen and Sargent (2008).
In the below examples the set B is a singleton.

Example 1 (A growth model with multiplicative shocks) Let X = [0,∞) be the set of all
possible capital stocks. If xn is a capital stock at the beginning of period n, then the level
of satisfaction of consumption of an ∈ A(xn) = [0, xn] in this period is aσn. Here σ ∈ (0, 1] is
a fixed parameter. The evolution of the state process is described by the following equation

xn+1 = (xn − an)θξn, n ∈ N,

where θ ∈ (0, 1) is some constant and ξn is a random shock in period n. Assume that each
ξn follows a probability distribution b ∈ B for some Borel set B ⊂ Pr([0,∞)). We assume
that b is unknown.

Consider the maxmin control model, where X = [0,∞), A(x) = [0, x], B(x, a) = B, and
u(x, a, b) = aσ for (x, a, b) ∈ K. Then, the transition probability q is of the form

q(D|x, a, b) =

∫ ∞
0

1D((x− a)θs)b(ds),

where D ∈ B(X). If φ ∈ C(X), then the integral∫
X

φ(y)q(dy|x, a, b) =

∫ ∞
0

φ((x− a)θs)b(ds)

is continuous at (x, a, b) ∈ K. We further assume that

s̄ = sup
b∈B

∫ ∞
0

sb(ds) <∞.

Define now
ω(x) = (r + x)σ, x ∈ X, (9)

where r ≥ 1 is a constant. Clearly, u+(x, a, b) = aσ ≤ ω(x) for any (x, a, b) ∈ K. Hence,
condition (M2) is satisfied. Moreover, by Jensen’s inequality we obtain∫

X

ω(y)q(dy|x, a, b) =

∫ ∞
0

(r + (x− a)θs)σb(ds) ≤ (r + xθ s̄)σ.

Thus, ∫
X
ω(y)q(dy|x, a, b)

ω(x)
≤ ησ(x), where η(x) :=

r + s̄xθ

r + x
, x ∈ X. (10)

If x ≥ x̄ := s̄1/(1−θ), then η(x) ≤ 1, and consequently, ησ(x) ≤ 1. If x < x̄, then

η(x) <
r + s̄xθ

r + x
≤ r + s̄x̄θ

r
= 1 +

x̄

r
,

and

ησ(x) ≤ α :=
(

1 +
x̄

r

)σ
. (11)

Let β ∈ (0, 1) be any discount factor. Then, there exists r ≥ 1 such that αβ < 1, and from
(10) and (11) it follows that assumption (M1) is satisfied.
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Example 2 Let us consider again the model from Example 1 but with u(x, a, b) = ln a,
a ∈ A(x) = [0, x]. This utility function has a number of applications in economics, see Stokey
et al. (1989). Nonetheless, the two-sided weighted norm approach cannot be employed,
because ln(0) = −∞. Assume now that the state evolution equation is of the form

xn+1 = (1 + ρ0)(xn − an)ξn, n ∈ N,

where ρ0 > 0 is a constant rate of growth and ξn is an additional random income (shock)
received in period n. Let ω(x) = r + ln(1 + x) for all x ∈ X and some r ≥ 1. Clearly,
u+(x, a, b) = max{0, ln a} ≤ max{0, lnx} ≤ ω(x) for all (x, a, b) ∈ K. By Jensen’s inequality
it follows that∫

X

ω(y)q(dy|x, a, b) =

∫ ∞
0

ω((x− a)(1 + ρ0) + s)b(ds) ≤ r + ln(1 + x(1 + ρ0)s̄)

for all (x, a, b) ∈ K. Thus∫
X
ω(y)q(dy|x, a)

ω(x)
≤ ψ(x) :=

r + ln(1 + x(1 + ρ0)s̄)

r + ln(1 + x)
. (12)

If we assume that s̄(1 + ρ0) > 1, then

ψ(x)− 1 =
ln( 1+(1+ρ0)s̄x

1+x )

r + ln(1 + x)
≤ 1

r
ln

(
1 + (1 + ρ0)s̄x

1 + x

)
≤ 1

r
ln(s̄(1 + ρ0)).

Hence

ψ(x) ≤ α := 1 +
1

r
ln(s̄(1 + ρ0)).

Choose now any β ∈ (0, 1). If r is sufficiently large, then αβ < 1, and by (12) condition
(M1) holds.

Example 3 (A growth model with additive shocks) Consider the model from Example 1 with
the following state evolution equation

xn+1 = (1 + ρ0)(xn − an) + ξn, n ∈ N,

where ρ0 is constant introduced in Example 2. The transition probability q is now of the
form

q(D|x, a, b) =

∫ ∞
0

1D((1 + ρ0)(x− a) + s)b(ds),

where D ∈ B(X). If φ ∈ C(X), then the integral∫
X

φ(y)q(dy|x, a) =

∫ ∞
0

φ((1 + ρ0)(x− a) + s)b(ds)

is continuous in (x, a, b) ∈ K. Let the function ω be as in (9). Applying Jensen’s inequality
we obtain∫
X

ω(y)q(dy|x, a, b) =

∫ ∞
0

ω((x−a)(1+ρ0)+s)b(ds) ≤ ω(x(1+ρ0)+s̄) = (r+x(1+ρ0)+s̄)σ.

Thus, ∫
X
ω(y)q(dy|x, a, b)

ω(x)
≤ ησ0 (x), where η0(x) :=

r + x(1 + ρ0) + s̄

r + x
, x ∈ X.

Take r > s̄/ρ0 and note that

lim
x→0+

η0(x) = 1 +
s̄

r
< lim
x→∞

η0(x) = 1 + ρ0.

Hence,

sup
(x,a,b)∈K

∫
X
ω(y)q(dy|x, a, b)

ω(x)
≤ sup
x∈X

ησ0 (x) = (1 + ρ0)σ.

Therefore, condition (M1) holds for all β ∈ (0, 1) satisfying the following inequality β(1 +
ρ0)σ < 1.

For other examples involving quadratic cost/payoff functions and linear evolution of the
system the reader is referred to Jaśkiewicz and Nowak (2011).
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3.1.2 An application to the Hansen-Sargent model in macroeconomics

In this subsection we study maxmin control model, in which minimising player (nature)
helps the controller to design a decision rule that is robust to misspecification of a dynamic
approximating model linking controls today to state variables tomorrow. The constraint on
nature is represented by a cost based on a reference transition probability q. Nature can
deviate away from q, but the larger the deviation, the higher the cost. In particular, this
cost is proportional to the relative entropy I(q̂||q) between the chosen probability q̂ and the
reference probability q, i.e., the cost equals to θ0I(q̂||q), where θ0 > 0. Such preferences in
macroeconomics are called multiplier preferences, see Hansen and Sargent (2008).

Let us consider the following scalar system:

xn+1 = xn + an + εn + bn, n ∈ N, (13)

where xn ∈ X = R, an ∈ A(xn) ≡ A = [0, â] is an action selected by the controller and
bn ∈ B(xn, an) ≡ B = (−∞, 0] is a parameter chosen by the malevolent nature. The sequence
of random variables (εn)n∈N is i.i.d., where εn follows the standard Gaussian distribution
with the density denoted by φ. At each period the controller selects a control a ∈ A, which
incurs the payoff u0(x, a). It is assumed that the function u0 is upper semicontinuous on
X × A. The controller has a unique explicitly specified approximating model (when bn ≡ 0
for all n) but concedes that data might actually be generated by a number of set of models
that surround the approximating model.

Let n ∈ N be fixed. By p we denote the conditional density of variable Y = xn+1 implied
by equation (13). Setting a = an, x = xn, and bn = b we obtain that

p(y|x, a, b) =
1√
2π
e−

(y−x−a−b)2
2 for y ∈ R.

Clearly, p(·|x, a, b) defines the probability measure q, where

q(D|x, a, b) =

∫
D

p(y|x, a, b)dy for D ⊂ B(R).

If b = 0, then we deal with the baseline model. Hence, the relative entropy

I(q(·|x, a, b)||q(·|x, a, 0)) =
1

2
b2,

and consequently, the payoff function in the model is

u(x, a, b) = u0(x, a) +
1

2
θ0b

2.

The term 1
2θ0b

2 is a penalised cost paid by nature. The parameter θ0 can be viewed as the
degree of robustness. For example, if θ0 is large, then the penalisation becomes so great that
only the nominal model remains and the strategy is less robust. Conversely, the lower values
of θ0 allow to design a strategy which is appropriate for a wider set of model misspecifications.
Therefore, a lower θ0 is equivalent to a higher degree of robustness.

Within such a framework, we shall consider pure strategies for nature. A strategy γ =
(γn)n∈N is an admissible strategy to nature, if γn : H∗n → B is a Borel measurable function,
i.e., bn = γn(h∗n), n ∈ N, and for every x ∈ X and π ∈ Π

Eπγx

( ∞∑
n=1

βn−1b2n

)
<∞.

The set of all admissible strategies to nature is denoted by Γ ∗0 .
The objective of the controller is to find a policy π∗ ∈ Π such that

inf
γ∈Γ∗0

Eπ
∗γ

x

( ∞∑
n=1

βn−1

{
u0(xn, an) +

1

2
θ0b

2
n

})
=

max
π∈Π

inf
γ∈Γ∗0

Eπγx

( ∞∑
n=1

βn−1

{
u0(xn, an) +

1

2
θ0b

2
n

})
.
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We solve the problem by proving that there exists a solution to the optimality equation.
First, we note that assumption (M1) is satisfied for ω(x) = max{x, 0} + r, where r ≥ 1 is
some constant. Indeed, on page 268 in Jaśkiewicz and Nowak (2011) it is shown that for
every discount factor β ∈ (0, 1) we may choose sufficiently large r ≥ 1 such that αβ < 1,
where α = 1 + (â + 1)/r. Further, we shall assume that supa∈A u

+
0 (x, a) ≤ dω(x) for all

x ∈ X.
For any function φ ∈ Uω(X) we define the operator Tβ as follows

Tβφ(x) = max
a∈A

inf
b∈B

[
u0(x, a) +

1

2
θ0b

2 + β

∫
X

φ(y)q(dy|x, a, b)
]

for all x ∈ X. Clearly, Tβ maps the space Uω(X) into itself. Indeed, we have

Tβφ(x) ≤ max
a∈A

[
u0(x, a) + β

∫
X

φ(y)q(dy|x, a, b)
]
≤ dω(x) + βα‖φ+‖ωω(x)

for all x ∈ X. Hence, (Tβφ)+ ∈ Uω(X) and by Lemma 1, Tβφ is upper semicontinuous.
Proceeding analogously as in the proof of Theorem 1, we infer that vβ ∈ Uω(X), where
vβ(x) = Tβvβ and there exits f∗ ∈ F such that

vβ(x) = Tβvβ(x) = max
a∈A

inf
b∈B

[
u0(x, a) +

1

2
θ0b

2 + β

∫
X

vβ(y)q(dy|x, a, b)
]

= inf
b∈B

[
u0(x, f∗(x)) +

1

2
θ0b

2 + β

∫
X

vβ(y)q(dy|x, f∗(x), b)

]
(14)

for x ∈ X. Finally, we may formulate the following result.

Proposition 5 Consider the system given in (13). Then, vβ ∈ Uω(X) and there exists a
stationary strategy f∗ such that (14) is satisfied for all x ∈ X. The strategy f∗ is optimal
for the controller.

3.2 Average reward robust Markov decision process

In this subsection we assume that u takes values in R rather than in R. Moreover, the action
set of nature is independent of (x, a) ∈ KA, i.e., B(x, a) ≡ B, where B is a compact metric
space. Obviously, (C3) is then immediately satisfied. Since, we consider the average payoff
in the maxmin control problem, we impose a bit stronger assumptions than in the previous
subsection. Here there are their counterparts.

(C̃1) For any x ∈ X, A(x) is compact and the set-valued mapping x→ A(x) is continuous.
(W̃1) The payoff function u is continuous on K.

A strategy for the opponent is a sequence γ = (γn)n∈N of Borel measurable mappings
γn : H∗n → B rather than a sequence of stochastic kernels. The set of all strategies for the
opponent is denoted by Γ ∗0 .

For any initial state x ∈ X and strategies π ∈ Π, γ ∈ Γ ∗0 we set u−n (x, π, γ) =
Eπγx [u−(xn, an, bn)], u+

n (x, π, γ) = Eπγx [u+(xn, an, bn)] and un(x, π, γ) = Eπγx [u(xn, an, bn)],
provided the integral is well-defined, i.e., either u+

n (x, π, γ) < +∞ or u−n (x, π, γ) > −∞.
Note that un(x, π, γ) is the n-stage expected cost. For x ∈ X, strategies π ∈ Π, γ ∈ Γ ∗0 and
β ∈ (0, 1) we define J−β (x, π, γ) and J+

β (x, π, γ) as in (1) and in (2). Assuming that these
expressions are finite we define the expected discounted payoff to the controller as in (3).
Clearly, the maxmin value vβ is defined as in the previous subsection, i.e.,

vβ(x) = sup
π∈Π

inf
γ∈Γ∗0

Jβ(x, π, γ).

For any initial state x ∈ X, strategies π ∈ Π, γ ∈ Γ ∗0 and n ∈ N we put

J−n (x, π, γ) := Eπγx

[
n∑

m=1

u−(xm, am, bm)

]
and J+

n (x, π, γ) := Eπγx

[
n∑

m=1

u+(xm, am, bm)

]
.
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If these expressions are finite we can define the total expected n-stage payoff to the controller
as follows

Jn(x, π, γ) := J+
n (x, π, γ) + J−n (x, π, γ).

Clearly, we have that

Jn(x, π, γ) =

n∑
m=1

um(x, π, γ).

Furthermore, we set

J
−
n (x, π, γ) =

J−n (x, π, γ)

n
, J

+

n (x, π, γ) =
J+
n (x, π, γ)

n
,

and

Jn(x, π, γ) =
Jn(x, π, γ)

n
.

The robust expected average payoff per unit time (average payoff, for short) is defined as
follows

R̂(x, π) = lim inf
n→∞

inf
γ∈Γ

Jn(x, π, γ). (15)

A strategy π̄ ∈ Π is called an optimal robust strategy for the controller in the average payoff
case, if supπ∈Π R̂(x, π) = R̂(x, π̄) for each x ∈ X.

We can now formulate our main assumption.

(D) There exist functions D+ : X → [1,∞) and D− : X → [1,∞) such that

J
+

n (x, π, γ) ≤ D+(x) and |J−n (x, π, γ)| ≤ D−(x)

for every x ∈ X, π ∈ Π, γ ∈ Γ and n ∈ N. Moreover, D+ is continuous and the function
(x, a, b)→

∫
X
D+(y)q(dy|x, a, b) is continuous on K.

Condition (D) trivially holds if the payoff function u is bounded. The models with un-
bounded payoffs satisfying (D) are given in Jaśkiewicz and Nowak (2014) (see Examples 1
and 2). Our aim is to consider the robust expected average payoff per unit time. The analysis
is based upon studying the so-called optimality inequality, which is obtained via vanishing
discount factor approach. However, we note that we cannot use the results from previous
subsection, since in our approach we must take a sequence of discount factors converging
to one. Theorem 1 was obtained under assumption (M1). Unfortunately, in our case this
assumption is useless. Clearly, if α > 1, as it happens in Examples 1-3, the requirement
αβ < 1 is a limitation and makes impossible to define a desirable sequence (βn)n∈N converg-
ing to one. Therefore, we first re-consider the robust discounted payoff model under different
assumption.

Put w(x) = D+(x)/(1− β), x ∈ X. Let Uw(X) (Cw(X)) be the space of all real-valued
upper semicontinuous (continuous) functions such that v(x) ≤ w(x) for all x ∈ X. Assume
now that φ ∈ Uw(X) and f ∈ F. For every x ∈ X we set (recall (6))

Tβφ(x) = sup
a∈A(x)

inf
b∈B

[
u(x, a, b) + β

∫
X

φ(y)q(dy|x, a, b)
]
. (16)

The following result is Theorem 1 in Jaśkiewicz and Nowak (2014).

Theorem 2 Assume (C̃1),(W̃1), (W2) and (D). Then, for each β ∈ (0, 1), vβ ∈ Uw(X),
vβ = Tβvβ and there exists f∗ ∈ F such that

vβ(x) = inf
b∈B

[
u(x, f∗(x), b) + β

∫
X

vβ(y)q(dy|x, f∗(x), b)

]
, x ∈ X.

Moreover, vβ(x) = supπ∈Π infγ∈Γ∗0 Jβ(x, π, γ) = infγ∈Γ∗0 Jβ(x, f∗, γ) for each x ∈ X, i.e.,
f∗ is optimal.
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Remark 4 The proof of Theorem 2 is to some extent standard, but as mentioned we cannot
apply the Banach contraction principle (see for instance Blackwell (1965) or Bertsekas
and Shreve (1996)). The majority of papers that deal with maximisation of the expected
discounted payoff assume that the one-stage payoff function is bounded from above (see
Hernández-Lerma and Lasserre (1996); Schäl (1975)) or it satisfies inequality (7). Neither
requirement is met in this framework. Therefore, we have to consider truncated models and
finite horizon maxmin problems.

In order to establish the optimality inequality we shall need a generalised Tauberian
relation, which plays a crucial role in proving Theorem 3 stated below.

For any sequence (uk)k∈N of real numbers put un := 1
n

∑n
k=1 uk for any n ∈ N. Fix a

constant D ≥ 1 and consider the set SD of all sequences (uk)k∈N such that |un| ≤ D for
each n ∈ N. Assume now that the elements of the sequence (uk(ξ))k∈N ∈ SD may depend
on ξ belonging to some set Ξ. Define

un(ξ) =
1

n

n∑
k=1

uk(ξ)

and

vβ = inf
ξ∈Ξ

(1− β)

∞∑
k=1

βk−1uk(ξ) for β ∈ (0, 1), vn := inf
ξ∈Ξ

un(ξ).

Proposition 6 Assume that (un(ξ))n∈N ∈ SD for each ξ ∈ Ξ. Then we have the following

lim inf
β→1−

vβ ≥ lim inf
n→∞

vn.

Proposition 6 extends Proposition 4 and Corollary 5 in Lehrer and Sorin (1992) that are
established under assumption that 0 ≤ un(ξ) ≤ 1 for every n ∈ N and ξ ∈ Ξ. This result is
related to the so-called Tauberian relations. Recent advances on this issue can be found in
Renault (2014) (see also a discussion in Sect. 7). It is worth mentioning that Proposition 6 is
also useful in the study of risk-sensitive control models, see Jaśkiewicz (2007) or Appendix
in Jaśkiewicz and Nowak (2014).

Let us fix a state z ∈ X and define

hβ(x) := Vβ(x)− Vβ(z), for x ∈ X and β ∈ (0, 1).

Furthermore, we make the following assumptions.

(B1) There exists a function M : X → (−∞, 0] such that infβ∈(0,1) hβ(x) ≥ M(x) and there
exists a continuous function Q : X → [0,+∞) such that supβ∈(0,1) hβ(x) ≤ Q(x) for

every x ∈ X. Moreover, the function (x, a, b)→
∫
X
Q(y)q(dy|x, a, b) is continuous on K.

(B2) For any x ∈ X, π ∈ Π and γ ∈ Γ ∗0 it holds that

lim
n→∞

Eπγx [Q(xn)]

n
= 0.

The main result in Jaśkiewicz and Nowak (2014) is as follows.

Theorem 3 Assume (C̃1),(W̃1), (W2), (D) and (B1)-(B2). Then, there exist a constant
g, a real-valued upper semicontinuous function h and a stationary strategy f̄ ∈ F such that

h(x) + g ≤ sup
a∈A(x)

inf
b∈B

[
u(x, a, b) +

∫
X

h(y)q(dy|x, a, b)
]

= inf
b∈B

[
u(x, f̄(x), b) +

∫
X

h(y)q(dy|x, f̄(x), b)

]
for x ∈ X. Moreover, g = supπ∈Π R̂(x, π) = R̂(x, f̄) for all x ∈ X, i.e., f̄ is the optimal
robust strategy.
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4 Discounted and positive stochastic Markov games with simultaneous moves

From now on we assume that B(x, a) = B(x) is independent of a ∈ A(x) for each x ∈ X.
Therefore we now have

KB ∈ B(X ×B) and K := {(x, a, b) : x ∈ X, a ∈ A(x), b ∈ B(x)}. (17)

Thus, on every stage n ∈ N, player 2 does not observe player 1’s action an ∈ A(xn) in
state xn ∈ X. One can say that the players act simultaneously and play the standard
discounted stochastic game as in the seminal work of Shapley (1953). It is assumed that
both players know on every stage n ∈ N the entire history of the game up to state xn ∈ X.
Now a strategy for player 2 is a sequence γ = (γn)n∈N of Borel (or universally measurable)
transition probabilities γn from Hn to B such that γn(B(xn)|hn) = 1 for each hn ∈ Hn.
The set of all Borel (universally) measurable strategies for player 2 is denoted by Γ (Γu).
Let G (Gu) be the set of all Borel (universally) measurable mappings g : X → Pr(B)
such that g(x) ∈ Pr(B(x)) for all x ∈ X. Every g ∈ Gu induces a transition probability
g(db|x) from X to B and is recognised as a randomised stationary strategy for player 2.
A semistationary strategy for player 2 is determined by a Borel or universally measurable
function g : X × X → Pr(B) such that g(x, x′) ∈ Pr(B(x′)) for all (x, x′) ∈ X × X.
Using a semistationary strategy player 2 choses an action bn ∈ B(xn) on any stage n ≥ 2
according to the probability measure g(x1, xn) depending on xn and the initial state x1. Let
F (Fu) be the set of all Borel (universally) measurable mappings f : X → Pr(A) such that
f(x) ∈ Pr(A(x)) for all x ∈ X. Then F (Fu) can be considered as the set of all randomised
stationary strategies for player 1. The set of all Borel (universally) measurable strategies for
player 1 is denoted by Π (Πu). For any initial state x ∈ X, π ∈ Πu, γ ∈ Γu, the expected
discounted payoff function Jβ(x, π, γ) is well-defined under conditions (M1) and (M2). Since
Π ⊂ Πu and Γ ⊂ Γu, Jβ(x, π, γ) is well-defined for all π ∈ Π, γ ∈ Γ. If we restrict attention
to Borel measurable strategies, then the lower value of the game is

vβ(x) = sup
π∈Π

inf
γ∈Γ

Jβ(x, π, γ)

and the upper value of the game is

vβ(x) = inf
γ∈Γ

sup
π∈Π

Jβ(x, π, γ), x ∈ X.

Suppose that the stochastic game has a value, i.e., vβ(x) := vβ(x) = vβ(x) for each x ∈ X.
Then, under our assumptions (M1) and (M2), vβ(x) ∈ R. Let X := {x ∈ X : vβ(x) = −∞}.
A strategy π∗ ∈ Π is optimal for player 1 if

inf
γ∈Γ

Jβ(x, π∗, γ) = vβ(x) for all x ∈ X.

Let ε > 0 be fixed. A strategy γ∗ ∈ Γ is ε-optimal for player 2 if

sup
π∈Π

Jβ(x, π, γ∗) = vβ(x) for all x ∈ X \X and sup
π∈Π

Jβ(x, π, γ∗) < −1

ε
for all x ∈ X.

Similarly, the value vβ and ε-optimal or optimal strategies can be defined in the class of
universally measurable strategies. Let

K̄A := {(x, ν) : x ∈ X, ν ∈ Pr(A(x))}, K̄B := {(x, ρ) : x ∈ X, ρ ∈ Pr(B(x))}

and
K̄ := {(x, ν, ρ) : x ∈ X, ν ∈ Pr(A(x)), ρ ∈ Pr(B(x))}.

For any (x, ν, ρ) ∈ K̄ and D ∈ B(X), define

u(x, ν, ρ) :=

∫
A(x)

∫
B(x)

u(x, a, b)ρ(db)ν(da)

and

q(D|x, ν, ρ) :=

∫
A(x)

∫
B(x)

q(D|x, a, b)ρ(db)ν(da).
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If f ∈ Fu and g ∈ Gu, then

u(x, f, g) := u(x, f(x), g(x)) and q(D|x, f, g) := q(D|x, f(x), g(x)). (18)

For any (x, ν, ρ) ∈ K̄ and φ ∈ Uω(X), define

Lβφ(x, ν, ρ) = u(x, ν, ρ) + β

∫
X

φ(y)q(dy|x, ν, ρ) (19)

and
Tβφ(x) = max

ν∈Pr(A(x))
inf

ρ∈Pr(B(x))
Lβφ(x, ν, ρ). (20)

By Lemma 7 in Jaśkiewicz and Nowak (2011), the operator Tβ is well-defined and the
maximum theorem of Berge (1963) it can be proved that Tβφ ∈ Uω(X) for any φ ∈ Uω(X).

Theorem 4 Assume that (W1)-(W2) and (M1)-(M2) hold and that the correspondence
x→ A(x) is upper semicontinuous and compact-valued. In addition, assume that the corre-
spondence x→ B(x) is lower semicontinuous and every set B(x) is a complete subset of B.
Then the game has a value vβ ∈ Uω(X), player 1 has an optimal stationary strategy f∗ ∈ F
and

Tβvβ(x) = vβ(x) = max
ν∈Pr(A(x))

inf
ρ∈Pr(B(x))

Lβvβ(x, ν, ρ) = inf
ρ∈Pr(B(x))

Lβvβ(x, f∗(x), ρ)

for each x ∈ X. Moreover, for any ε > 0, player 2 has an ε-optimal Borel measurable
semistationary strategy.

The assumption that every B(x) is complete in B is made to assure that G 6= ∅, see
Kuratowski and Ryll-Nardzewski (1965). The construction of an ε-optimal semistationary
strategy for player 2 is based on using “truncated games” Gk with the payoff functions
uk := max{u,−k}, k ∈ N. In every game Gk player 2 has an ε-optimal stationary strategy,
say g∗k ∈ G. If vβ,k is the value function of the game Gk, then it is shown that vβ(x) =
infk∈N vβ,k(x) for all x ∈ X. This fact can be easily used to construct a measurable partition
{Xn}n∈Z of the state space (Z ⊂ N) such that if g(x, x′) := gn(x′) for x ∈ Xn, n ∈ Z and
x ∈ X, then g is an ε-optimal semistationary strategy for player 2. For the details the reader
is referred to the proof of Theorem 2 in Jaśkiewicz and Nowak (2011).

Remark 5 Zero-sum discounted stochastic games with compact metric state space and weakly
continuous transitions were first studied by Maitra and Parthasarathy (1970). Kumar and
Shiau (1981) extended their result to Borel state space games with bounded continuous
payoff functions and weakly continuous transitions. Couwenbergh (1980) studied continu-
ous games with unbounded payoffs and a metric state space using the weighted supremum
norm approach introduced by Wessels (1977). He proved that both players possess opti-
mal stationary strategies. In order to obtain such a result additional conditions should be
imposed. Namely, the function u is continuous and such that |u(x, a, b)| ≤ dω(x) for some
constant d > 0 and all (x, a, b) ∈ K. Moreover, the mappings x → A(x) and x → B(x) are
compact-valued and continuous. It should be noted that our condition (M2) allows for much
larger class of models and is less restrictive for discount factors compared with the weighted
supremum norm approach. We also point out that a class of zero-sum lower semicontinuous
stochastic games with weakly continuous transition probabilities and bounded from below
non-additive payoff functions was studied by Nowak (1986).

A similar result can also be proved under the following conditions.

(C4) KA ∈ B(X ×A) and KB ∈ B(X ×B). Moreover, A(x) is compact for each x ∈ X.
(C5) The payoff function u is Borel measurable and u(x, ·, b) is upper semicontinuous and

q(D|x, ·, b) is continuous on A(x) for any D ∈ B(X), x ∈ X, b ∈ B(x).

A simple modification of the proof of Theorem 2 in Jaśkiewicz and Nowak (2011) using
appropriately adapted theorems on measurable minimax selections proved in Nowak (1985b)
gives the following result.
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Theorem 5 Assume (C4)-(C5) and (M1)-(M2). Then, the game has a value vβ , which is a
lower semianalytic function on X. Player 1 has an optimal stationary strategy f∗ ∈ Fu and

Tβvβ(x) = vβ(x) = max
ν∈Pr(A(x))

inf
ρ∈Pr(B(x))

Lβvβ(x, ν, ρ) = inf
ρ∈Pr(B(x))

Lβvβ(x, f∗(x), ρ)

for each x ∈ X. Moreover, for any ε > 0, player 2 has an ε-optimal universally measurable
semistationary strategy.

Maitra and Parthasarathy (1971) first studied positive stochastic games, where the stage
payoff function u ≥ 0 and β = 1. The extended payoff in a positive stochastic game is

Jp(x, π, γ) := Eπγx

( ∞∑
n=1

u(xn, an, bn)

)
, x = x1 ∈ X, π ∈ Π, γ ∈ Γ.

Using standard iteration arguments as in Strauch (1966) or Bertsekas and Shreve (1996)
one can show that Jp(x, π, γ) < ∞ if and only if there exists a non-negative universally
measurable function w on X such that the following condition holds

u(x, a, b) +

∫
X

w(y)q(dy|x, a, b) ≤ w(x) for all (x, a, b) ∈ K. (21)

The value functions and ε-optimal strategies are defined in the positive stochastic games in
the obvious manner. Studying positive stochastic games it is convenient to use approximation
of Jp(x, π, γ) from below by Jβ(x, π, γ) as β goes to 1. To make this method effective we
must change our assumptions on the primitives in the way described below.

(C6) KA ∈ B(X ×A) and KB ∈ B(X ×B). Moreover, B(x) is compact for each x ∈ X.
(C7) The payoff function u is Borel measurable and u(x, a, ·) is lower semicontinuous and

q(D|x, a, ·) is continuous on B(x) for any D ∈ B(X), x ∈ X, a ∈ A(x).

As noted in preliminaries, assumption (C6) implies that ∅ 6= G ⊂ Gu and Fu 6= ∅. Let T1 be
the operator in (20) with β = 1.

Theorem 6 Assume that (21) and (C6)-(C7) hold. Then the positive stochastic game has
a value function vp which is upper semianalytic and vp(x) = supβ∈(0.1) vβ(x) for all x ∈ X.
Moreover, vp is the smallest non-negative upper semianalytic solution to the equation

T1v(x) = v(x), x ∈ X.

Player 2 has an optimal stationary strategy g∗ ∈ Gu such that

T1vp(x) = sup
ν∈Pr(A(x))

min
ρ∈Pr(B(x))

Lvp(x, ν, ρ) = sup
ν∈Pr(A(x))

Lvp(x, ν, x), g∗(x)), x ∈ X,

and for any ε > 0, player 1 has an ε-optimal universally measurable semistationary strategy.

Theorem 6 is a version of Theorem 5.4 in Nowak (1985a). Some special cases under
much stronger continuity assumptions were considered by Maitra and Parthasarathy (1971)
for games with compact state spaces and by Kumar and Shiau (1981) for games with a Borel
state space and finite action sets in each state. An essential part of the proof of Theorem 6
is Proposition 2.

A similar result holds for positive semicontinuous games satisfying the following condi-
tions.

(C8) For any x ∈ X, A(x) is a complete set in A and the correspondence x → A(x) is lower
semicontinuous.

(C9) For any x ∈ X, B(x) is compact and the correspondence x→ A(x) is upper semicontin-
uous.

(W3) u ≥ 0 and u is lower semicontinuous on K.

Let L1 and T1 be the operators defined as in (19) and (20), respectively, but with β = 1.
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Theorem 7 Assume (21), (C8)-(C9) and (W3). Then, the positive stochastic game has a
value function vp which is lower semicontinuous and vp(x) = supβ∈(0,1) vβ(x) for all x ∈ X.
Moreover, vp is the smallest non-negative lower semicontinuous solution to the equation

T1v(x) = v(x), x ∈ X. (22)

Player 2 has an optimal stationary strategy g∗ ∈ G such that

T1vp(x) = sup
ν∈Pr(A(x))

min
ρ∈Pr(B(x))

L1vp(x, ν, ρ) = sup
ν∈Pr(A(x))

L1vp(x, ν, g
∗(x)), x ∈ X,

and for any ε > 0, player 1 has an ε-optimal Borel measurable semistationary strategy.

The proof of Theorem 7 is similar to that of Theorem 6 and makes use of Proposition 3.
Player 1 need not have an optimal strategy even if X is finite. This is shown in Example

1 in Kumar and Shiau (1981) (see also pages 192-193 in Maitra and Sudderth (1996)),
which was inspired by Everett (1957). We present this example below.

Example 4 Let X = {−1, 0, 1}, A = {0, 1}, B = {0, 1}. States x = −1 and x = 1 are
absorbing with zero payoffs. If x = 0 and both players choose the same actions (a = 1 = b or
a = 0 = b), then u(x, a, b) = 1 and q(−1|0, a, b) = 1. Moreover, q(0|0, 0, 1) = q(1|0, 1, 0) = 1
and u(0, 0, 1) = u(0, 1, 0) = 0. It is obvious that vp(−1) = 0 = vp(1). In state x = 0 we
obtain the equation vp(0) = 1/(2 − vp(0)), which gives solution vp(0) = 1. In this game
player 1 has no optimal strategy.

If player 2 is dummy, i.e., every set B(x) is a singleton, X is a countable set and vp is
bounded on X, then by Ornstein (1969) player 1 has a stationary ε-optimal strategy. A
counterpart of this result does not hold for positive stochastic games.

Example 5 Let X = N ∪ {0}, A = {1, 2}, B = {1, 2}. State x = 0is absorbing with zero
payoffs. Let x ≥ 2 and a = 1. Then u(x, 1, b) = 0 for b ∈ B and q(x − 1|x, 1, 1) = q(x +
1|x, 1, 2) = 1. If x ≥ 2 and a = 2, then u(x, 2, 1) = 0 and u(x, 2, 2) = 1. In both cases
(b = 1 or b = 2) the game moves to the absorbing state x = 0 with probability one. If
x = 1, then u(1, a, b) = 1 and q(0|1, a, b) = 1 for all a ∈ A and b ∈ B. It is obvious that
vp(0) = 0 and vp(1) = 1. It is shown that vp(x) = (x+ 1)/2x for x ≥ 2 and player 1 has no
stationary ε-optimal strategy. It is easy to check that the function vp given here is a solution
to equation (22). It may be interesting to note that also v(0) = 0, v(x) = 1 for x ≥ 1 is also
a solution to equation (22) and v(x) > vp(x) for x > 1. For the details see Counterexample
in Nowak and Raghavan (1991), whose interesting modification called the “big match on
the integers” was studied by Fristedt et al. (1995).

The assumption that q(D|x, a, ·) is continuous on B(x) for each (x, a) ∈ KA and D ∈
B(X) is weaker than the norm continuity of q(·|x, a, b) in b ∈ B(x). However, from the point
of view of applications, e.g., in dynamic economic models or engineering problems the weak
continuity assumption of q(·|x, a, b) in (x, a, b) ∈ K is more useful (see Remark 2).

5 Zero-sum semi-Markov games

In this section, we study zero-sum semi-Markov games on a general state space with possi-
bly unbounded payoffs. Different limit-average expected payoff criteria can be used for such
games, but under some conditions they turn out to be equivalent. Such games are char-
acterised by the fact that the time between jumps is a random variable with distribution
dependent on the state and actions chosen by the players. Most primitive data for a game
model considered here are as in Sect. 4. More precisely, we assume that KA ⊂ X × A and
KB ⊂ X × B be non-empty Borel sets. Then, the set K in (17) is Borel. As in Sect. 4
we assume that A(x) and B(x) are the admissible action sets for the player 1 and 2, re-
spectively, in state x ∈ X. Let Q be a transition probability from K to [0,∞)×X. Hence,
if a ∈ A(x), b ∈ B(x) are actions chosen by the players in state x, then for D ∈ B(X)
and t ≥ 0, Q([0, t] × D|x, a, b) is the probability that the sojourn time of the process in x
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will be smaller than t, and the next state x′ will be in D. Let k = (x, a, b) ∈ K. Clearly,
q(D|k) = Q([0,∞] × D|k) is the transition law of the next state. The mean holding time
given k is defined as

τ(k) =

∫ +∞

0

tH(dt|k),

where H(t|k) = Q([0, t] × X|k) is a distribution function of the sojourn time. The payoff
function to player 1 is a Borel measurable function u : K → R. It is usually of the form

u(x, a, b) = u1(x, a, b) + u2(x, a, b)τ(x, a, b), (x, a, b) ∈ K, (23)

where u1(x, a, b) is an immediate reward obtained at the transition time and u2(x, a, b) is
the reward rate in the time interval between successive transitions.

The game starts at T1 := 0 and is played as follows. If the initial state is x1 ∈ X
and the actions (a1, b1) ∈ A(x1) × B(x1) are selected by the players, then the immediate
payoff u1(x1, a1, b1) is incurred for player 1 and the game remains in state x1 for a random
time T2 that enjoys the probability distribution H(·|x1, a1, b1). The payoff u2(x1, a1, b1) to
player 1 is incurred until the next transition occurs. Afterwards the system jumps to the
state x2 according to the transition law q(·|x1, a1, b1). The situation repeats itself yielding a
trajectory (x1, a1, b1, t2, x2, a2, b2, t3, . . .) of some stochastic process, where the xn, an, bn and
tn+1 describe the state, the actions chosen by the players and the decision epoch, respectively,
on the nth stage of the game. Clearly, tn+1 is a realisation of the random variable Tn+1 and
H(·|xn, an, bn) is a distribution function of the random variable Tn+1 − Tn for any n ∈ N.

Strategies and their sets for both players are defined in a similar way as in Sect. 4. The
only difference is now that the history of the process also includes the jump epochs, i.e.,
hn = (x1, a1, b1, t2, . . . , xn) is the history of the process up to the n-th state.

Let N(t) be the number of jumps that have occurred prior to time t, i.e., N(t) = max{n ∈
N : Tn ≤ t}. Under our assumptions for each initial state x ∈ S, and any strategies
(π, γ) ∈ Π × Γ we have Pπγx (N(t) < 1) = 1 for any t ≥ 0.

For any pair of strategies (π, γ) ∈ Π × Γ and an initial state x ∈ X we define

• the ratio average payoff

Ĵ(x, π, γ) = lim inf
n→∞

Eπγx (
∑n
k=1 u(xk, ak, bk))

Eπγx (
∑n
k=1 τ(xk, ak, bk))

; (24)

• the time average payoff

ĵ(x, π, γ) = lim inf
t→∞

Eπγx (
∑N(t)
n=1 u(xn, an, bn))

t
, (25)

where Eπγx is the expectation operator corresponding to the unique measure Pπγx defined
on the space of all histories of the process starting at x and induced by q, H and strategies
π ∈ Π and γ ∈ Γ.

Remark 6 The definition of average reward in (25) is more natural for semi-Markov games,
since it takes into account continuous nature of such processes. Formally, the time average
payoff should be define as follows

ĵ(x, π, γ) = lim inf
t→∞

Eπγx (
∑N(t)
n=1 u(xn, an, bn) + (TN(t)+1 − t)u2(xN(t), aN(t), bN(t))

t
.

However, from Remark 3.1 in Jaśkiewicz (2009), it follows that the assumptions imposed
on the game model with the time average payoff imply that

lim
t→∞

Eπγx (TN(t)+1 − t)u2(xN(t), aN(t), bN(t))

t
= 0.

Finally, it is worth emphasising that the payoff defined in (25) requires additional tools
and methods for the study (such as renewal theory, martingale theory and analysis of the
underlying process to the so-called small set) than the model with average payoff (24)
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We shall need the following continuity-compactness, ergodicity and regularity assump-
tions.

(C10) The set-valued mappings x → A(x) and x → B(x) are continuous; moreover, A(x) and
B(x) are compact for each x ∈ X.

(C11) The functions u and τ are continuous on K and there exist a positive constant d and
continuous function ω : X → [1,∞) such that

τ(x, a, b) ≤ dω(x), |u(x, a, b)| ≤ dω(x),

for all (x, a, b) ∈ K.
(C12) The function (x, a, b)→

∫
X
ω(y)q(dy|x, a, b) is continuous.

(GE1) There exists a Borel set C ⊂ X such that, for some λ̂ ∈ (0, 1) and η > 0, we have∫
X

ω(y)q(dy|x, a, b) ≤ λ̂ω(x) + η1C(x),

for each (x, a, b) ∈ K, with ω introduced in (C11).
(GE2) The function ω is bounded on C, that is,

ωC := sup
x∈C

ω(x) <∞.

(GE3) There exist some δ ∈ (0, 1) and a probability measure on C with the property that

q(D|x, a, b) ≥ δµ(D),

for each Borel set D ⊂ C, x ∈ C, a ∈ A(x) and b ∈ B(x).
(R1) There exist κ > 0 and ξ < 1 such that

H(κ|x, a, b) ≤ ξ,

for all x ∈ C, a ∈ A(x) and b ∈ B(x). Moreover, τ(x, a, b) ≤ d for all (x, a, b) ∈ K.
(R2) There exists a decreasing function α such that α(0) ≤ d, α(∞) = 0 and∫ ∞

t

sH(ds|x, a, b) ≤ α(t)

for all (x, a, b) ∈ K. Moreover, limt→∞ supx∈C supa∈A(x),b∈B(x)[1−H((t|x, a, b)] = 0.

(C13) There exists an open set C̃ ⊂ C such that µ(C̃) > 0.

For any Borel function v : X → R, we define the ω-norm as in (5). By Bω(X) we denote
the set of all Borel measurable functions with finite ω-norm.

Remark 7 (a) Assumption (GE3) in the theory of Markov chains implies that the process
generated by the stationary strategies of the players and the transition law q is ϕ-irreducible
and aperiodic. The irreducible measure can be defined as follows

ϕ(D) := δµ(D ∩ C) for D ∈ B(X).

In other words, if ϕ(D) > 0, then the probability of reaching the set D is positive, indepen-
dent of the initial state. The set C is called “small set”.

The function ω in (GE1, GE2) up to the multiplicative constant is a bound for the
average time of first entry of the process to the set C (Theorem 14.2.2 in Meyn and Tweedie
(2009)).

Assumptions (GE) imply that the underlying Markov chain (xn)n∈N induced by a pair
of stationary strategies (f, g) ∈ F ×G of the players possesses a unique invariant probability
measure πfg. Moreover, (xn)n∈N is ω-uniformly ergodic (see Meyn and Tweedie (1994)),
i.e., there exist constants θ > 0 and α̂ < 1 such that∣∣∣∣∫

X

φ(y)q(dy|x, f, g)−
∫
X

φ(y)πfg(dy)

∣∣∣∣ ≤ ‖φ‖ωθω(x)α̂n (26)
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for every φ ∈ Bω(X) and x ∈ X, n ≥ 1. Here q(n)(·|x, f, g) denotes the n-step transition
probability induced by q, f ∈ F and g ∈ G. Clearly, for integers n ≥ 2 and D ∈ B(X), we
have

q(n)(D|x, f, g) :=

∫
X

q(n−1)(D|y, f, g)q(dy|x, f, g)

and q(1)(D|x, f, g) := q(D|x, f, g). From (26) we conclude that

Ĵ(f, g) := Ĵ(x, f, g) =

∫
X
u(y, f, g)πfg(dy)∫

X
τ(y, f, g)πfg(dy)

, x ∈ X, (27)

for every f ∈ F and g ∈ G, that is, the average payoff is independent of the initial state. Ob-
viously, τ(x, f, g) = τ(x, f(x), g(x)), see (18). Consult also Proposition 10.2.5 in Hernández-
Lerma and Lasserre (1999) and Theorem 3.6 in Kartashov (1996) for similar type of as-
sumptions that lead to ω-ergodicity of the underlying Markov chains induced by stationary
strategies for the players.

(b) Condition (R1) ensures that infinite number of transitions does not occur in a finite
time interval when the process is in the set C. Indeed, when the process is outside the set
C, then assumption (GE) imply that the process governed by any strategies of the players
returns to the set C within the finite number of transitions with probability one. Then, (R1)
prevents the process in the set C from the explosion. As an immediate consequence of (R1)
we get that τ(x, a, b) > κ(1 − ξ) for all x ∈ C and (x, a, b) ∈ K. Assumption (R2) is a
technical assumption used in the proof of the equivalence of the aforementioned two average
payoff criteria.

In order to formulate the first result, we replace the function ω by a new one W (x) :=
ω(x) + η

δ that satisfies the following inequality:∫
X

W (y)q(dy|x, a, b) ≤ λ∗W (x) + δ1C(x)

∫
C

W (y)µ(dy),

for (x, a, b) ∈ K and suitably chosen λ∗ ∈ (0, 1) (see Lemma 3.2 in Jaśkiewicz (2009)).
Observe that, if we define the subprobability measure p(·|x, a, b) := q(·|x, a, b)− δ1C(x)µ(·),
then ∫

X

W (y)p(dy|x, a, b) ≤ λ∗W (x).

The above inequality plays a crucial role in the application of the fixed point argument in
the proof of Theorem 8 given below.

Similarly as in (5) we define ‖ ·‖W and the set BW (X). For each average payoff we define
the lower, upper value and the value for the game in an obvious way.

The first result summarises Theorem 4.1 in Jaśkiewicz (2009) and Theorem 1 in Jaśkiewicz
(2010).

Theorem 8 Assume (C10)-(C13), (GE1)-(GE3), (W2). Then, the following holds.

(a) There exist a constant v and h∗ ∈ BW (X), which is continuous and such that

h∗(x) = val

[
u(x, ·, ·)− vτ(x, ·, ·) +

∫
X

h∗(y)q(dy|x, ·, ·)
]

(28)

= sup
ν∈Pr(A(x))

inf
ρ∈Pr(B(x))

[
u(x, ν, ρ)− vτ(x, ν, ρ) +

∫
X

h∗(y)q(dy|x, ν, ρ)

]
= inf

ρ∈Pr(B(x))
sup

ν∈Pr(A(x))

[
u(x, ν, ρ)− vτ(x, ν, ρ) +

∫
X

h∗(y)q(dy|x, ν, ρ)

]
for all x ∈ X.

(b) The constant v is a value of the game with the average payoff defined in (24).
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(c) There exists a pair (f̂ , ĝ) ∈ F ×G such that

h∗(x) = inf
ρ∈Pr(B(x))

[
u(x, f̂(x), ρ)− vτ(x, f̂(x), ρ) +

∫
X

h∗(y)q(dy|x, f̂(x), ρ)

]
= sup

ν∈Pr(A(x))

[
u(x, ν, ĝ(x))− vτ(x, ν, ĝ(x)) +

∫
X

h∗(y)q(dy|x, ν, ĝ(x))

]
for all x ∈ X. The stationary strategies f̂ ∈ F and ĝ ∈ G are optimal for the players.

The proof of Theorem 8 owes much to the approach introduced by Vega-Amaya (2003),
who used a fixed point argument in the game model with set-wise continuous transition
probabilities. However, we cannot directly apply a fixed point argument. First, we have to
regularise (to smooth in some sense) certain functions. Using this smoothing method, we are
able to apply the Banach fixed point theorem in the space of lower semicontinuous functions
that are bounded in the W -norm. It is worth mentioning that the contraction operator for
any lower semicontinuous function h : X → R is of the form

(T̂ h)(x) := inf
ρ∈Pr(B(x))

sup
ν∈Pr(A(x))

Φh(x, ν, ρ),

where

Φh(k̄) := lim inf
δ(k′,k̄)→0

(
u(k̄)− Vτ(k̄) +

∫
X

h(y)p(dy|k̄)

)
,

δ is a metric on X × Pr(A)× Pr(B), and

V := sup
f∈F

inf
g∈G

Ĵ(f, g)

is the lower value in the game with the payoff function defined in (24) in the class of stationary
strategies of the players. Next, it is proved that k → Φh(k) is indeed lower semicontinuous.
The definition of the operator T̂ is more involved when compared to the one studied by Vega-
Amaya (2003), who assumed that the transition law is set-wise continuous in actions, i.e, for
which the function (x, a, b)→ q(D|x, a, b) is continuous in (a, b) for every setD ∈ B(X). Since
Vega-Amaya (2003) worked with set-wise continuous transitions, he obtained a solution in
BW (X). The operator T̂ , on the other hand, enables us to get a lower semicontinuous solution
to the optimality equation. In order to obtain a continuous solution, we have to repeat this
procedure for a game with the payoff −u. Then, it is sufficient to show that the obtained
lower semicontinuous solution for the game with the payoff −u coincide with the solution
to the optimality equation obtained for the original game. Hence, it must be continuous.
The optimal strategies and the conclusion that V = v are deduced immediately from the
optimality equation.

The problem of finding optimal strategies for the players in ergodic zero-sum Markov
games on a general state space was considered by, among others, Ghosh and Bagchi (1998),
who assumed that the transition law q has a majorant, i.e., there exists a probability mea-
sure ν̂ such that q(·|x, a, b) ≥ ν̂(·) for all (x, a, b) ∈ K. Then, the solution to the optimality
equation is obtained via the Banach fixed point theorem, since due to the aforementioned
assumption one can introduce a contractive operator in the so-called “span semi-norm”:
‖h‖sp := supx∈X h(x)− infx∈X h(x), where h : X → R is a bounded Borel function. Nowak
(1994) studied Markov games with state independent transitions and obtained some opti-
mality inequalities using standard vanishing discount factor approach. Finally, the results of
Meyn and Tweedie (2009), Meyn and Tweedie (1994), Kartashov (1996) allowed to study
other classes of stochastic (Markov or semi-Markov) games satisfying general ergodicity
conditions. These assumptions were used to prove the existence of the game value with the
average payoff criteria and the existence of optimal strategies for the players in games with
unbounded payoff functions, see Jaśkiewicz (2002); Vega-Amaya (2003) or Jaśkiewicz and
Nowak (2006); Küenle (2007) and references cited therein. For instance, the first two papers
mentioned above deal with semi-Markov zero-sum games with set-wise continuous transition
probabilities. The payoffs and transitions in Jaśkiewicz (2002); Vega-Amaya (2003) need
not be continuous with respect to the state variable. Within such a framework, the authors
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proved that the optimality equation has a solution, there exists a value of the game and
both players possess optimal stationary strategies. However, the proofs in these papers are
based on different methods. For instance, Jaśkiewicz (2002) analyses auxiliary perturbed
models, whereas Vega-Amaya (2003) makes use of a fixed point theorem, which directly
leads to a solution of the optimality equation. Moreover, neither of these works deals with
the time average payoff criterion.

Jaśkiewicz and Nowak (2006); Küenle (2007), on the other hand, examine Markov games
with weakly continuous transition probabilities. Jaśkiewicz and Nowak (2006) proved that
such a Markov game has a value and both players have optimal stationary strategies. Their
approach relies on applying Fatou’s lemma for weakly convergent measures, which in turn
allows to get the optimality inequalities instead of the optimality equation. Moreover, the
proof employs Michael’s theorem on a continuous selection. A completely different approach
was presented by Küenle (2007). Under slightly weaker assumptions he introduced certain
contraction operators that lead to a parameterised family of functional equations. Making
use of some continuity and monotonicity properties of the solutions to these equations (with
respect to the parameter) he obtained a lower semicontinuous solution to the optimality
equation.

Remark 8 In Jaśkiewicz (2009); Küenle (2007) the authors impose a weaker version of
basic assumptions (C10). In particular, they assumed that the payoff function u is lower
semicontinuous, A(x) is a complete metric space, and the mapping x → A(x) is lower
semicontinuous, while the correspondence x→ B(x) is upper semicontinuous and B(x) is a
compact metric space. Then, it was shown that the game has a value and the second player
has an optimal stationary strategy, whereas the first player has an ε-optimal stationary
strategy for any ε > 0.

The next result is concerned with the second payoff criterion.

Theorem 9 Assume (C10)-(C13), (GE1)-(GE3), (W2), (R1)-(R2). Then, v is the the

value of the game and the pair of stationary strategies (f̂ , ĝ) is also optimal for the players
in the game with the time average payoff defined in (25).

The proof of Theorem 9 requires different methods than the proof of Theorem 8 and
was formulated as Theorem 5.1 in Jaśkiewicz (2009). The point of departure of its proof
is optimality equation (28). It, in turn, allows to define certain martingale or super- (sub-)
martingale, to which the optional sampling theorem is applied. The usage of this result
requires an analysis of returns of the process to the small set C and certain consequences
of ω-geometric ergodicity as well as some facts from the renewal theory. Theorem 5.1 in
Jaśkiewicz (2009) refers to the proof of Theorem in Jaśkiewicz (2004) on the equivalence
of the expected time and ratio average payoff criteria for semi-Markov control processes
with set-wise continuous transition probabilities. Some adaptation to the weakly continuous
transition probability case is needed. Moreover, the conclusion of Lemma 7 in Jaśkiewicz
(2004) that is also used in the proof of Theorem 9 requires an additional assumption as (R2)
given above.

The third result deals with the sample path optimality. For any strategies (π, γ) ∈ Π×Γ
and an initial state x ∈ X we define three payoffs

• the sample path ratio average payoff (I)

Ĵ1(x, π, γ) = lim inf
n→∞

∑n
k=1 u(xk, ak, bk)

Tn
; (29)

• the sample path ratio average payoff (II)

Ĵ2(x, π, γ) = lim inf
n→∞

∑n
k=1 u(xk, ak, bk)∑n
k=1 τ(xk, ak, bk)

; (30)

• the sample path time average payoff

ĵ(x, π, γ) = lim inf
t→∞

∑N(t)
n=1 u(xn, an, bn)

t
. (31)
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A pair of strategies (π∗, γ∗) ∈ Π × Γ is said to be sample path optimal with respect to
(29), if there exists a function v1 ∈ Bω(X) such that for all x ∈ X it holds

Ĵ1(x, π∗, γ∗) = v1(x) Pπ
∗γ∗

x a.s.

for every γ ∈ Γ Ĵ1(x, π∗, γ) ≥ v1(x) Pπ
∗γ

x a.s.

for every π ∈ Π Ĵ1(x, π, γ∗) ≤ v1(x) Pπγ
∗

x a.s.

Analogously, we define sample path optimality with respect to (30) and (31). In order to
prove sample path optimality we need additional assumptions.

(C14) There exist positive constants d1, d2 and p ∈ [1, 2) such that

d2 ≤ τ(x, a, b)p ≤ d1ω(x), and |u(x, a, b)|p ≤ d1ω(x),

for all (x, a, b) ∈ K.
(C15) If we put

η̂(x, a, b) =

∫ ∞
0

tpH(dt|x, a, b),

where the constant p is introduced in (C14) and (x, a, b) ∈ K, then there exists a constant
d3 > 0 such that

η̂(x, a, b) ≤ d3ω(x), (x, a, b) ∈ K.

The following result states that the sample path average payoff criteria coincide. The
result was proved by Vega-Amaya and Luque-Vásquez (2000) (see Theorems 3.7 and 3.8).
for semi-Markov control processes (one-player games).

Theorem 10 Assume (C10)-(C15), (W2), (GE1)-(GE2). Then, the pair of optimal strate-
gies (f̄ , ḡ) ∈ F × G from Theorem 8 is sample path optimal with respect to the payoff in
(29), (30) and (31). Moreover, Ĵ1(x, f̄ , ḡ) = Ĵ2(x, f̄ , ḡ) = ĵ(x, f̄ , ḡ) = v.

The point of departure in the proof of Theorem 10 is the optimality equation obtained
in Theorem 8. Namely, from (28) we get two inequalities. The first one is obtained with the
optimal stationary strategy f̄ for player 1, whereas the second one is connected with the
optimal stationary strategy ḡ for player 2. Then, the proofs proceed as in Vega-Amaya and
Luque-Vásquez (2000) and make use of Strong Law of Large Numbers for Markov chains
and for martingales (see Hall and Heyde (1980)).

6 Stochastic games with Borel payoffs

Consider a game G with countable state space X, finite action spaces and the transition
law q. Let r : H∞ → R be a bounded Borel measurable payoff function defined on the set
H∞ of all plays (xt, at, bt)t∈N endowed with the product topology and the Borel σ-algebra.
(X, A and B are given the discrete topology.) For any initial state x = x1 and each pair of
strategies (π, γ) the expected payoff is

R(x, π, γ) := Eπγx r(x1, a1, b1, x2, a2, b2, ...).

If X is a singleton, then G is called the Blackwell game, see Martin (1998). Blackwell (1969,
1989) proved the following result.

Theorem 11 The game G has a value if r = 1Z is the indicator function of a Gδ-set
Z ⊂ H∞.

Martin (1998) proved the following remarkable result.

Theorem 12 The Blackwell game G has a value for any bounded Borel measurable payoff
function r : H∞ → R.
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Maitra and Sudderth (2003b) noted that Theorem 12 can be extended easily to the
stochastic game with countable set of states X. It is interesting that the proof of the above
result is in some part based on the theorem of Martin (1975, 1985) on the determinacy
of infinite Borel games with perfect information extending the classical work of Gale and
Steward (1953) on clopen games. A further discussion of games with perfect information can
be found in Mycielski (1992). An extension to games with delayed information was studied
by Shmaya (2011). Theorem 12 was extended by Maitra and Sudderth (1998) in a finitely
additive measure setting to a pretty large class of stochastic games with arbitrary state and
action spaces endowed with the discrete topology and the history space H∞ equipped with
the product topology. The payoff function r in their approach is Borel measurable. Since
Fubini’s theorem is not true for finite additive measures, the integration order is fixed in the
model. The proof of Maitra and Sudderth (1998) is based on some considerations described
in Maitra and Sudderth (1993b) and basic ideas of Martin (1998).

As shown in Maitra and Sudderth (1992) Blackwell Gδ-games (as in Theorem 11) belong
to a class of games, where the payoff function r = lim supn→∞ rn and rn depends on finite
histories of play. Clearly, the limsup payoffs include the discounted ones. A “partial history
trick” on page 181 in Maitra and Sudderth (1996) or page 358 in Maitra and Sudderth
(2003a) can be used to show that the limsup payoffs also generalise the usual limiting average
ones. Using the operator approach of Blackwell (1989) and some ideas from gambling theory
developed in Dubins and Savage (1976) and Dubins et al. (1989), Maitra and Sudderth
(1992) showed that every stochastic game with limsup payoff and countable state and action
spaces has a value. The approach is algorithmic in some sense and was extended to a Borel
space framework by Maitra and Sudderth (1993a), where some measurability issues were
solved by using the minimax measurable selection theorem from Nowak (1985a) and some
methods from the theory of inductive definability. The authors first studied “leavable games”
where player 1 can use a strategy and a stop rule. Then they considered approximation of
a non-leavable game by leavable ones. The limsup payoffs are Borel measurable, but the
methods used in Martin (1998) and Maitra and Sudderth (1998) are not suitable for the
countably additive games considered by Maitra and Sudderth (1993a). On the other hand,
the proof given in Maitra and Sudderth (1998) has no algorithmic aspect compared with
Maitra and Sudderth (1993a). As mentioned above the class of games with limsup payoffs
includes the games with the average payoffs defined as follows. Let X, A and B be Borel
spaces and let u : X × A × B → R be a bounded Borel measurable stage payoff function
defined on the Borel set K. (Recall notation from Sections 3-4.) Assume that the players
are allowed to use universally measurable strategies. For any initial state x = x1 and each
strategy pair (π, γ), the expected limsup payoff is

R(x, π, γ) := Eπγx

(
lim sup
n→∞

1

n

n∑
k=1

u(xk, ak, bk)

)
. (32)

By a minor modification of the proof of Theorem 1.1 in Maitra and Sudderth (1993a)
together with the “partial history trick” mentioned above one can conclude the following
result.

Theorem 13 Assume that X, A, B are Borel spaces, KA ∈ B(X × A), KB ∈ B(X × B)
and the set B(x) is compact for each x ∈ X. If u : K → R is bounded Borel measurable,
u(x, a, ·) is lower semicontinuous and q(D|x, a, ·) is continuous on B(x) for all (x, a) ∈ KA

and D ∈ B(X), then the game with the expected limiting average payoff defined in (32) has
a value and for any ε > 0 both players have ε-optimal universally measurable strategies.

The methods of gambling theory were also used to study “games of survival” of Milnor and
Shapley (1957), see Theorem 16.4 in Maitra and Sudderth (1996). As defined by Everett
(1957) a recursive game is a stochastic game, where the payoff is zero in every state from
which the game can move after some choice of actions to a different state. Secchi (1997)
gave conditions for recursive games with countably many states and finite action sets under
which the value exists and the players have stationary ε-optimal strategies. He used the
techniques from gambling theory.
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The lower semicontinuous payoffs r : H∞ → R used in Nowak (1986) are of the limsup
type. However, Theorem 4.2 on the existence of value in a semicontinuous game established
in Nowak (1986) is not a special case of the aforementioned works of Maitra and Sud-
derth. The reason is that the transition law in Nowak (1986) is weakly continuous. If r is
bounded, continuous, and the action correspondences are compact-valued and continuous,
then Theorem 4.2 in Nowak (1986) implies that both players have “persistently optimal
strategies”. This notion comes from gambling theory, see Kertz and Nachman (1979). A pair
of persistently optimal strategies forms a sub-game perfect equilibrium in the sense of Selten
(1975).

We close this section with a famous example of Gilette (1957) called the Big Match.

Example 6 Let X = {0, 1, 2}, A(x) = A = {0, 1} and B(x) = B = {0, 1}. The state x = 0 is
absorbing with zero payoffs and x = 2 is absorbing with payoffs 1. The game starts in state
x = 1. As long as player 1 picks 0, she gets one unit on each stage that player 2 picks 0 and
gets nothing on stages when player 2 chooses 1. If player 1 plays 0 forever, then she gets

lim sup
n→∞

r1 + · · ·+ rn
n

,

where rk is the number of units obtained on stage k ∈ N. However, if player 1 picks 1
on some stage (goes to “big match”) and the choice of player 2 is also 1, then the game
moves to the absorbing state 2 and she will get 1 from this stage on. If player 1 picks 1 on
some stage and the choice of player 2 is 0, then the game moves to the absorbing state 0
and all future payoffs will be zero. The definition of the transition probability is obvious.
Blackwell and Ferguson (1968) showed two things. The Big Match has no value in the class
of stationary strategies. However, if the players know the entire history on every stage of the
game, then the game has a value in general classes of strategies. Player 2 has a stationary
optimal strategy (toss a coin in state x = 1), and for any ε > 0, player 1 has an ε-optimal
strategy. The value of the game in state 1 is 1/2. An important feature of this example (that
belongs to the class of games studied by Maitra and Sudderth (1992)) is that player 1 must
remember the entire history of the game at every moment of play. Blackwell and Ferguson
(1968) gave two different constructions of an ε-optimal strategy for player 1. One of them
relies on using a sequence of optimal stationary strategies in the discounted games with the
discount factor tending to one. The idea was to switch from one discounted optimal strategy
to another on the basis of some statistics defined on the past plays. This concept was used
by Mertens and Neyman (1981) in their fundamental work on stochastic games with the
average payoffs. The Big Match was generalised by Kohlberg (1972), who considered finite
state and finite action games in which all states but one are absorbing. Useful comments on
the Big Match can be found in Mertens (2002) or Solan (2009).

7 Asymptotic analysis and the uniform value

In this section we briefly overview some result expressed in the literature in terms of “nor-
malised discounted payoffs”. Let x = x1 ∈ X, π ∈ Π and γ ∈ Γ. The normalised discounted
payoff is of the form

Jλ(x, π, γ) := Eπγx

(
λ

∞∑
n=1

(1− λ)n−1u(xn, an, bn)

)
.

The discount factor β = 1 − λ and λ ∈ (0, 1). Clearly Jλ(x, π, γ) = (1 − β)Jβ(x, π, γ). If
the value wλ(x) exists for the normalised game for an initial state x ∈ X, then wλ(x) =
(1−β)vβ(x). By vn(x) we denote the value function of the n-stage game with payoff function

Jn(x, π, γ) := Eπγx

(∑n
k=1 u(xk, ak, bk)

n

)
.
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A function v∞ : X → R is called a uniform value for the stochastic game if for any ε > 0,
there exist a pair of strategies (πε, γε) ∈ Π × Γ, some n0 ∈ N and λ0 ∈ (0, 1) such that for
all n ≥ n0 and x ∈ X,

sup
π∈Π

Jn(x, π, γε)− ε ≤ v∞(x) ≤ inf
γ∈Γ

Jn(x, πε, γ) + ε (33)

and for all λ ∈ (0, λ0) and x ∈ X,

sup
π∈Π

Jλ(x, π, γε)− ε ≤ v∞(x) ≤ inf
γ∈Γ

Jλ(x, πε, γ) + ε. (34)

If v∞ exists, then from (33) and (34), it follows that v∞(x) = limn→∞ vn(x) = limλ→0+ wλ(x).
Moreover, (πε, γε) is a pair of nearly optimal strategies in all sufficiently long finite games
as well as in all discounted games with the discount factor β (or λ) sufficiently close to one
(zero).

Mertens and Neyman (1981) gave sufficient conditions for the existence of v∞ for arbi-
trary state space games. For a proof of the following result see Mertens and Neyman (1981)
or Chapter VII in Mertens et al. (2015).

Theorem 14 Assume that

– the payoff function u is bounded;
– for any λ ∈ (0, 1), wλ exists and both players have ε-optimal stationary strategies;
– for any α < 1 there exists a sequence (λi)i∈N such that 0 < λi < 1, λi+1 ≥ αλi for all
i ∈ N, limi→∞ λi = 0, and

∞∑
i=1

sup
x∈X
|wλi(x)− wλi+1(x)| <∞. (35)

Then the uniform value v∞ exists. Moreover, if x = x1 is an initial state and

Un(hn, an, bn) =
u(x1, a1, b1) + · · ·+ u(xn, an, bn)

n
,

then we have

sup
π∈Π

Eπγ
ε

x

(
lim sup
n→∞

Un(hn, an, bn)

)
− ε ≤ v∞(x) (36)

≤ inf
γ∈Γ

Eπ
εγ

x

(
lim inf
n→∞

Un(hn, an, bn

)
+ ε.

Mertens and Neyman (1981) proved additionally that wλ and vn converge to v∞ uni-
formly on X. It is worth emphasising that their ε-optimal strategy has a simple intuition
behind. Namely, at every step, the strategy updates a fictitious discount factor and plays
an optimal strategy for that fictitious parameter. This parameter summarises past play, and
its updating is based on payoffs received in the previous steps. If payoffs received so far are
high, the player puts higher weight on the future and increases his patience by letting the
fictitious discount factor get closer to one. If, on the other hand, payoffs received so far are
low, he focuses more about short-term payoffs, and therefore decrease this fictitious discount
factor. The construction idea of such a strategy lies in the fine-tuning and hinges on alge-
braic properties of the value of the discounted game, as a function of the discount factor,
proven by Bewley and Kohlberg (1976a). For a detailed discussion of the assumptions made
in Theorem 14 consult Mertens (2002) and Mertens et al. (2015). It should be noted that
neither the existence of uniform value nor (36) follows from the general minmax theorems
of Maitra and Sudderth (1992, 1993a).

Assume that X, A and B are finite. Bewley and Kohlberg (1976a,b) proved that the
limits limλ→0+ wλ(x) and limn→∞ vn(x) exist and have a common value v(x), called the
asymptotic value. Using their results Mertens and Neyman (1982) proved that v(x) is
actually the uniform value v∞(x). Independently of this result, it is possible to show using
Bewley and Kohlberg (1976a) that the assumptions of Theorem 14 hold for games with a
finite state space and finite action sets, see Remark VII.3.2 in Mertens et al. (2015). Bewley
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and Kohlberg (1976a) actually proved more, i.e., wλ(x) has in the neighbourhood of zero
the Puiseux series expansion. More precisely, there exist λ′ ∈ (0, 1), M ∈ N and numbers
ai(x) (i = 0, 1, ...) (depending on x ∈ X) such that for all λ ∈ (0, λ′), we have

wλ(x) =

∞∑
i=0

ai(x)λi/M . (37)

Recently, Oliu-Barton (2014) gave a direct proof of the existence of 4 limλ→0+ wλ. His proof
does not utilise the Tarski-Seidenberg elimination from real algebraic geometry as in Bewley
and Kohlberg (1976a). (An excellent introduction to semialgebraic functions and their usage
in finite state and action stochastic games can be found in Neyman (2003a).) Moreover,
based upon the explicit description of asymptotically optimal strategies, Oliu-Barton (2014)
showed that his approach can be also used to obtain the uniform value as in Mertens and
Neyman (1981). Further generalisation of the above mentioned results to other stochastic
games were provided by Zillotto (2016).

A similar Puiseux expansion can be obtained for stationary optimal strategies in the
discounted games. Mertens (1982, 2002) showed how to get (37) for normalised discounted
payoffs in finite non-zero-sum games. Different proofs of (37) are given in Milman (2002),
Szczechla et al. (1997) and Neyman (2003a). It is also worth mentioning that the values
vn of finite stage games can be also approximated by some series expansions. Bewley and
Kohlberg (1976b) proved that there exist M ∈ N and real numbers bi(x) (i = 0, 1, 2...) such
that for n sufficiently large we have∣∣∣∣∣vn(x)−

∞∑
i=0

bi(x)n−i/M

∣∣∣∣∣ = O(lnn/n) (38)

and the error term in (38) is tight. A result on a uniform polynomial convergence rate of the
values vn to v∞ is given in Milman (2002). The results on the values wλ described above
generalise the paper of Blackwell (1962) on dynamic programming (one-person games),
where it was shown that the normalised value is a bounded and rational function of the
discount factor.

The Puiseux series expansions can also be used to characterise average payoff games,
in which the players have optimal stationary strategies, see Bewley and Kohlberg (1978),
Chapter 8 in Vrieze (1987) or Filar and Vrieze (1997). For example, one can prove that
the average payoff game has a constant value v0 and both players have optimal stationary
strategies if and only if a0(x) = v0 and a1(x) = · · · = aM−1(x) = 0 in (37) for all x ∈ X,
see, e.g.,Theorem 5.3.3 in Filar and Vrieze (1997).

We remind that a stochastic game is absorbing if all states but one are absorbing. A
recursive or an absorbing game is called continuous if the action sets are compact metric, the
state space is countable, and the payoffs and transition probabilities depend continuously on
actions. Mertens and Neyman (1981) gave sufficient conditions for limλ→0+ wλ = limn→∞ vn
to hold that include the finite case as well as a more general situation, e.g., when the
function λ → wλ is of bounded variation or satisfies some integrability condition, see also
Remark 2 in Mertens (2002) and Laraki and Sorin (2015). However, their conditions
are not known to hold in continuous absorbing or recursive games. Rosenberg and Sorin
(2001) studied the asymptotic properties of wλ and vn using some non-expansive operators
called Shapley operators, naturally connected with stochastic games (see also Kohlberg
(1972), Neyman (2003b) and Sorin (2004)). They obtained results implying that equality
limλ→0+ wλ = limn→∞ vn holds for continuous absorbing games with finite state spaces.
Their result was used by Mertens et al. (2009) to show that every game in this class has a
uniform value (consult also Sect. 3 in Zillotto (2016)).

Recursive games were introduced by Everett (1957), who proved the existence of value
and of stationary ε-optimal strategies, when the state space and action sets are finite. Re-
cently, Li and Venel (2016) proved that recursive games on a countable state space with
finite action spaces has the uniform value, if the family {vn} is totally bounded. Their proofs
follow the same idea as in Solan and Vieille (2002). Moreover, the result in Li and Venel
(2016) together with ones in Rosenberg and Vieille (2000) provides the uniform Tauberian
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theorem for recursive games: (vn) converges uniformly if and only if (vλ) converges uniformly
and both limits are the same. For finite state continuous recursive games the existence of
limλ→0+ wλ was recently proved by Sorin and Vigeral (2015).

Finally, we wish to mention one more class of stochastic games, the so-called definable
games studied by Bolte et al. (2015). Such games involve a finite number of states and it
is additionally assumed that all their data (action sets, payoffs and transition probabilities)
are definable in an o-minimal structure. Bolte et al. (2015) proved that these games have
the uniform value. The reason for that lies in the fact that definability allows to avoid highly
oscillatory phenomena in a various settings (partial differential equations, control theory,
continuous optimisation), see Bolte et al. (2015) and references cited therein.

In general the asymptotic value limλ→0+ wλ or limn→∞ vn may not exist for stochastic
games with finitely many states. An example with four states (two of them being absorbing)
and compact action sets was recently given by Vigeral (2013). Moreover, there are problems
with the asymptotic theory in stochastic games with finite state space and countable action
sets, see Zillotto (2016). In particular, an example given in Zillotto (2016) contradicts the
famous hypothesis formulated by Mertens (1987) on the existence of asymptotic value.

A new approach to the asymptotic value in games with finite state and action sets was
recently given by Oliu-Barton (2014). His proof when compared to Bewley and Kohlberg
(1976a) is direct, relatively short and more elementary. It is based on the theory of finite
dimensional systems and the theory of finite Markov chains. The existence of the uniform
value is obtained without using algebraic tools.

8 Algorithms for zero-sum stochastic games

Let P = [pij ] be a payoff matrix in a zero-sum game where 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. By
val[pij ] we denote the value for this game in mixed strategies. We assume in this section
that X, A and B are finite sets. For any function φ : X → R, we can consider the zero-sum
game Γφ(x) where the payoff matrix is

Pφ(x) :=

[
λu(x, i, j) + (1− λ)

∑
x∈X

φ(y)q(y|x, i, j)

]
, x ∈ X.

Let Tλφ(x) be the value of the game Γφ(x). If φ(x) = φ0(x) = 0 for all x ∈ X, then Tnφ0(x) is
the value of the n-stage discounted stochastic game starting at the state x ∈ X. As we know
from Shapley (1953) the value function wλ of the normalised discounted game is a unique
solution to the equation wλ(x) = Tλwλ(x), x ∈ X. Moreover, wλ(x) = limn→∞ Tnφ0(x).
Computing Tnφ0(x) is called value iteration and can be used as an algorithm to approximate
the value function wλ, but It is known that this algorithm is rather slow. If f∗(x) (g∗(x)) is
an optimal mixed strategy for player 1 (player 2) in game Γwλ(x), then the functions f∗ and
g∗ are stationary optimal strategies for the players in the infinite horizon discounted game.

Example 7 Let X = {1, 2}, A(x) = B(x) = {1, 2} for x ∈ X. Assume that state x = 2
is absorbing with zero payoffs. In state x = 1, we have u(1, 1, 1) = 2, u(1, 2, 2) = 6 and
u(1, i, j) = 0 for i 6= j. Further, we have q(1|1, 1, 2) = q(1|1, 2, 2) = 1 and q(2|1, i, j) = 1 for
i 6= j. If λ = 1/2, then the Shapley equation is for x = 1 of the form

wλ(1) = val

[
1 + 1

2wλ(1) 0 + 1
2wλ(2)

0 + 1
2wλ(2) 3 + 1

2wλ(1)

]
.

Clearly, wλ(2) = 0 and wλ(1) ≥ 0. Hence, the above matrix game has no pure saddle
point and it is easy to calculate that wλ(1) = (−8 + 4

√
13)/2. This example is taken from

Parthasarathy and Raghavan (1981) and shows that in general there is no finite step algo-
rithm for solving zero-sum discounted stochastic games.

The value iteration algorithm of Shapley does not utilise any information on optimal
strategies in the n-stage games. Hoffman and Karp (1966) proposed a new algorithm involv-
ing both payoffs and strategies. Let w0 = 0 and let g1(x) be an optimal strategy for player 2 in
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the matrix game Pw0(x), x ∈ X.Define w1(x) = supπ∈Π Jλ(x, π, g1). Then choose an optimal
strategy g2(x) for player 2 in the matrix game Pw1(x). Define w2(x) = supπ∈Π Jλ(x, π, g2)
and continue the procedure. It is shown that limn→∞ wn(x) = wλ(x).

LetX = {1, ..., k}.Any function w : X → R can be viewed as a vector w̄ = (w(1), ..., w(k)) ∈
Rk. The fact that wλ is a unique solution to the Shapley equation is equivalent to saying
that the unconstrained optimisation problem

min
w̄∈Rk

∑
x∈X

(Tλw(x)− w(x))2

has a unique global minimum. Pollatschek and Avi-Itzhak (1969) proposed a successive
iterations algorithm, which corresponds to the “policy iteration” in dynamic programming.
The proposed algorithm is connected with a Newton-Raphson type procedure associated
with the global minimum problem mentioned above. Van der Wal (1978) showed that their
algorithm does not converge in general. Filar and Tolwinski (1991) presented an improved
version of the Pollatschek and Avi-Itzhak algorithm for solving the discounted zero-sum
stochastic games based on a “modified Newton’s method”. They demonstrated that it always
converges to the value of the stochastic game, and and solved the example of Van der Wal
(1978). For further comments on the mentioned iterative algorithms the reader is referred
to Vrieze (1987), Breton (1991), Raghavan and Filar (1991), Filar and Vrieze (1997) and
Raghavan (2003).

For further considerations we point out that every f ∈ F (also g ∈ G) can be viewed as
a vector in an Euclidean space. If f ∈ F , then

u(x, f, b) =
∑

a∈A(x)

u(x, a, b)f(a|x) and q(y|x, f, b) =
∑

a∈A(x)

q(y|x, a, b)f(a|x).

Similarly u(x, a, g) and q(y|x, a, g) are defined for any g ∈ G. A zero-sum discounted stochas-
tic game can also be solved by a constrained nonlinear programming technique studied by
Filar et al. (1991), see also Chapter 3 in Filar and Vrieze (1997). Consider the problem
(NP1) defined as follows:

min
∑
x∈X

(w1(x) + w2(x))

subject to

λu(x, a, g) + (1− λ)
∑
y∈X

w1(y)q(y|x, a, g) ≤ w1(x), x ∈ X, a ∈ A(x), g ∈ G,

−λu(x, f, b) + (1− λ)
∑
y∈X

w2(y)q(y|x, f, b) ≤ w2(x), x ∈ X, b ∈ B(x), f ∈ F.

Note that the objective function is linear, but the constraint set is not convex. It is shown
(see Chapter 3 in Filar and Vrieze (1997)) that every local minimum of (NP1) is a global
minimum. Hence, we have the following result.

Theorem 15 Let (w∗1 , w
∗
2 , f
∗, g∗) be a global minimum of (NP1). Then

∑
x∈X(w∗1(x) +

w∗2(x)) = 0 and w∗1(x) = wλ(x) for all x ∈ X. Moreover, (f∗, g∗) is a pair of stationary
optimal strategies for the players in the discounted stochastic game.

In the case of single-controller stochastic game where q(y|x, a, b) is independent of a ∈
A(x) for each x ∈ X and denoted by q(y|x, b) the problem of finding optimal strategies
for the players is much simpler. We now present a result of Parthasarathy and Raghavan
(1981). Consider the following linear programming problem (LP1):

max
∑
x∈X

w(x)

subject to

λu(x, f, b) + (1− λ)
∑
y∈X

w(y)q(y|x, b) ≥ w(x), f ∈ F, w(x) ≥ 0 x ∈ X.

Note that the constraint set in (LP1) is convex.
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Theorem 16 The problem (LP1) has an optimal solution (w∗, f∗). Moreover, w∗(x) =
wλ(x) for all x ∈ X and f∗ is a stationary optimal strategy for player 1 in the single-
controller discounted stochastic game.

Remark 9 Knowing wλ one can find an optimal stationary strategy g∗ for player 2 using the
Shapley equation wλ = Tλwλ.

Let X = X1∪X2 and X = X1∩X2 = ∅. Assume that q(y|x, a, b) = q1(y|x, a) for x ∈ X1

and q(y|x, a, b) = q2(y|x, b) for x ∈ X2, a ∈ A(x), b ∈ B(x), y ∈ X. Then the game is called a
switching control stochastic game (SCSG for short). Filar (1981) studied this class of games
with discounting and showed the order field property saying that a solution to the game can
be find in the same algebraic field as the data of the game. Other classes of stochastic games
having the order field property are described in Raghavan (2003). It is interesting that
the value function wλ for the SCSG can be represented in the neighbourhood of zero by the
power series of λ, see Theorem 6.3.5 in Filar and Vrieze (1997). It should be mentioned that
every discounted SCSG can be solved by a finite sequence of linear programming problems,
see Algorithm 3.2.1 in Filar and Vrieze (1997). It was first shown by Vrieze (1987).

We can now turn to the limiting average payoff stochastic games. We know from the big
match example of Blackwell and Ferguson (1968) that stationary ε-optimal strategies may
not exist in that class of games. A characterisation of limiting average payoff games, where
the players have stationary optimal strategies was given by Vrieze (1987), see also Theorem
5.3.5 in Filar and Vrieze (1997). Below we state this result. For any function φ : X → R,
we consider the zero-sum game Γ 0

φ(x), where the payoff matrix is

P 0
φ(x) :=

[∑
x∈X

φ(y)q(y|x, i, j)

]
, x ∈ X

the zero-sum game Γ 1
φ(x), where the payoff matrix is

P̃φ(x) :=

[
u(x, i, j) +

∑
x∈X

φ(y)q(y|x, i, j)

]
, x ∈ X.

Theorem 17 Consider a function v∗ : X → R and f∗ ∈ F, g∗ ∈ G. Then v∗ is the value of
the limiting average payoff stochastic game and f∗, g∗ are stationary optimal strategies for
players 1 and 2, respectively, if and only if there exist functions φi : X → R (i = 1, 2) such
that for every x ∈ X, we have

v∗(x) + φ1(x) = valP̃φ1
(x) = min

b∈B(x)
[u(x, f∗, b) +

∑
y∈X

φ1(y)q(y|x, f∗, b)],

v∗(x) + φ2(x) = valP̃φ2
(x) = max

a∈A(x)
[u(x, a, g∗) +

∑
y∈X

φ2(y)q(y|x, a, g∗)]

and (f∗(x), g∗(x)) is a pair of optimal mixed strategies in zero-sum game with the payoff
matrix P 0

v∗(x).

A counterpart to the optimisation problem (NP1) with non-convex constraints can also
be formulated for the limiting average payoff case. Consider the problem (NP2):

min
∑
x∈X

(v1(x) + v2(x))

subject to f ∈ F, g ∈ G, x ∈ X, a ∈ A(x), b ∈ B(x) and∑
y∈X

v1(y)q(y|x, a, g) ≤ v1(x), u(x, a, g) +
∑
y∈X

φ1(y)q(y|x, a, g) ≤ v1(x) + φ1(x)

and∑
y∈X

v2(y)q(y|x, f, b) ≤ v2(x), −u(x, f, b) +
∑
y∈X

φ2(y)q(y|x, f, b) ≤ v2(x) + φ2(x).
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Theorem 18 If (φ∗1, φ
∗
2, v
∗
1 , v
∗
2 , f
∗, g∗) is a feasible solution of (NP2) with the property that∑

x∈X(v1(x) + v2(x)) = 0, then it is a global minimum and (f∗, g∗) is a pair of optimal
stationary strategies. Moreover, v∗1(x) = R(x, f∗, g∗) for all x ∈ X.

For a proof consult Filar et al. (1991) or pages 127-129 in Filar and Vrieze (1997).
Single-controller average payoff stochastic games can also be solved by linear programming.
The formulation is more involved than in the discounted case and generalises the approach
known in the theory of Markov decision processes. Two independent studies on this topic are
given in Hordijk and Kallenberg (1981) and Vrieze (1981). Similarly as in the discounted
case, the SCSG with the average payoff criterion can be solved by a finite sequence of nested
linear programs, see Vrieze et al. (1983).

If X = X1 ∪X2, X = X1 ∩X2 and A(x) (B(x)) is a singleton for each x ∈ X1 (x ∈ X2),
then the stochastic game is of perfect information. Raghavan and Syed (2003) gave a policy-
improvement type algorithm to find optimal pure stationary strategies for the players in
discounted stochastic games of perfect information. Avrachenkov et al. (2012) proposed
two algorithms to find the uniformly optimal strategies in discounted games. Such strategies
are also optimal in the average payoff stochastic game.

Computation of the uniform value is a difficult task. Chatterjee et al. (2008) provided
a finite algorithm for finding the approximation of the uniform value. As mentioned in the
previous section, Bewley and Kohlberg (1976a) showed that the function λ → wλ is a
semi-algebraic function of λ. It can be expressed as a Taylor series in fractional powers of λ
(called Puiseux series) in the neighbourhood of zero. By Mertens and Neyman (1981), the
uniform value v(x) = limλ→0+ wλ(x). Chatterjee et al. (2008) noted that, for a given α > 0,
determining whether v > α is equivalent to finding the truth value of a sentence in the theory
of real-closed fields. A generalisation of the quantifier elimination algorithm of Tarski (1951)
due to Basu (1999) (see also Basu et al. (2003)) can be used to compute this truth value.
The uniform value v is bounded by the maximum payoffs of the game, it is therefore sufficient
to repeat this algorithm for finitely many different values of α to get a good approximation
of v. n ε-approximation of v(x) at a given state x can be computed in time bounded by an
exponential in a polynomial of the size of the game times a polynomial function of log(1/ε).
This means that the approximating uniform value v(x) lies in the computational complexity
class EXPTIME, see Papadimitriou (1994). Solan and Vieille (2010) applied the methods of
Chatterjee et al. (2008) to calculate the uniform ε-optimal strategies described by Mertens
and Neyman (1981). These strategies are good for all sufficiently long finite horizon games
as well as for all (normalised) discounted games with λ sufficiently small. Moreover, they use
an unbounded memory. As shown in Bewley and Kohlberg (1976a), similarly as the value
wλ, any pair of stationary optimal strategies in the discounted games (which is a function
of λ) can also be represented by a Taylor series of fractional powers of λ for λ ∈ (0, λ0) with
λ0 sufficiently small. This result, the theory of real-closed fields and the methods of formal
logic developed in Basu (1999) are basic for Solan and Vieille (2010). A complexity bound
on the algorithm of Solan and Vieille (2010) is not determined yet.

9 Zero-sum stochastic games with incomplete information or imperfect
monitoring

The following model of a general two-player zero-sum stochastic game, say G is described in
Sorin (2003a).

• X is a finite state space.
• A and B are finite admissible action sets for players 1 and 2, respectively.
• Ω is a finite state of signals.
• r : X ×A×B → [0, 1] is a payoff function to player 1.
• q is a transition probability mapping from X ×A×B to Pr(X ×Ω).

Let p be an initial probability distribution onX×Ω. The game evolves as follows. At stage
one the nature chooses (x1, ω1) according to p and the players learn ω1. Then, simultaneously
player 1 selects a1 ∈ A and player 2 selects b1 ∈ B. The stage payoff r(x1, a1, b1) is payed
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by player 2 to player 1 and a pair (x2, ω2) is drawn according to q(·|x1, a1, b1). The game
proceeds to stage two and the situation is repeated. The standard stochastic game with
incomplete information is obtained, when Ω = A × B. Such a game with finite horizon
of play was studied by Krausz and Rieder (1997), who showed the existence of the game
value and presented an algorithms to compute optimal strategies for the players via linear
programming. Their model assumes incomplete information on one side, i.e., player 2 is
never informed about the state of the underlying Markov chain in contrast to player 1. In
addition, both players have perfect recall. Renault (2006) studied a similar model. Namely,
he assumed that the sequence of states follows a Markov chain, i.e., q is independent of the
actions of the players. At the beginning of each stage, only player 1 is informed of the current
state, the actions are selected simultaneously and they are observed by both players. The
play proceeds to the next stage. Renault (2006) showed that such a game has a uniform
value and the second player has an optimal strategy.

Clearly, if Ω is a singleton, the game is a standard stochastic game. For general stochastic
games with incomplete information, little is known, but some classes were studied in the
literature. For Big Match games Sorin (1984, 1985) and Sorin and Zamir (1991) proved the
existence of the maxmin value and of the minmax value. These values may be different.
Moreover, they showed that the values of the n-stage games (λ-discounted games with
normilised payoffs) converge as n→∞ (as λ→ 0+) to the maxmin value.

Another model was considered by Rosenberg et al. (2004). Namely, at the beginning of
the game ω is chosen according to p ∈ Pr(Ω). Only player 1 is informed of ω. At stage n ∈ N
players simultaneously choose actions an ∈ A and bn ∈ B. The stage payoff rω(xn, an, bn)
is incurred and the next state xn+1 is drawn according to q(·|xn, an, bn). Both players are
informed of (an, bn, xn+1). Note that In this setting rω(xn, an, bn) is told to player 1, but
not to player 2. Rosenberg et al. (2004) proved the following result.

Theorem 19 If player 1 controls the transition probability, the game value exists. If player
2 controls the transition probability, both the minmax value and maxmin value exist.

The recursive games with incomplete information on one side were studied by Rosenberg
and Vieille (2000), who proved that the maxmin value exists and is equal to the limit of the
values of n-stage games (λ-discounted games) as n → ∞ (as λ → 0+). Rosenberg (2000),
on the other hand, considered absorbing games. She proved the existence of the limit of the
values of finitely repeated absorbing games (discounted absorbing games) with incomplete
information on one side as number of repetitions goes to infinity (λ → 0+). An additional
discussion on stochastic games with incomplete information on one side the reader can find
in Sorin (2003b) or Laraki and Sorin (2015).

Coulomb (1992, 1999, 2001) was the first to study stochastic games with imperfect
monitoring. These games are played as follows. At every stage, the game is in one of finitely
many states. Each player chooses an action, independently of his opponent. The current
state, together with the pair of actions, determine a daily payoff, a probability distribution
according to which a new state is chosen, and a probability distribution over pairs of signals,
one for each player. Each player is then informed of his private signal, and of the new state.
However, no player is informed of his opponent’s signal and of the daily payoff, see also
the detailed model in Coulomb (2003a). Coulomb (1992, 1999, 2001) studied the class of
absorbing games, and proved that the uniform maxmin and minmax values exist. In addition,
he provided a formula for both values. One of his main findings is that the maxmin value
does not depend on the signalling structure of player 2. Similarly, the minmax value does not
depend on the signalling structure of player 1. In general, the maxmin and minmax values
do not coincide, hence stochastic games with imperfect monitoring need not have a uniform
value. Based on these ideas Coulomb (2000c) and Rosenberg et al. (2003) independently
proved that the uniform maxmin value always exists in a stochastic game, in which each
player observes the state and his/her own action. Moreover, the uniform maxmin value is
independent of the information structure of player 2. Symmetric results hold for the uniform
minmax value.

We now consider the general model of zero-sum dynamic game presented in Mertens
et al. (2015) or Coulomb (2003b). These games are are known as games of incomplete
information on both sides.
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• X, A and B are as above.
• S and T are finite signal spaces for players 1 and 2, respectively.
• The payoff function is defined as above and the transition probability function is q :
X ×A×B → Pr(X × S × T ).

The progress of the game is as follows. At stage one the nature chooses (x1, s1, t1) accord-
ing to a given distribution p ∈ Pr(X ×S×T ). Player 1 learns s1 and player 2 is informed of
t1. Then, simultaneously player 1 selects a1 ∈ A and player 2 selects b1 ∈ B. The stage pay-
off r(x1, a1, b1) is incurred and a new triple (x2, s2, t2) is drawn according to q(·|x1, a1, b1).
The game proceeds to stage two and the procedure repeats. Let us denote this game by G0.
Renault (2012) proved that such a game has a value under an additional condition.

Theorem 20 Assume that player 1 can always deduce the state and player 2’s signal from
his own signal. Then, the game G0 has a uniform value.

Further examples of games for which Theorem 20 holds were recently provided by Gens-
bittel et al. (2014). In particular, they showed that if player 1 is more informed than player
2 and controls the evolution of information on the state, then the uniform value exists. This
result, from one side, extends results on Markov decision processes with partial observation
given by Rosenberg et al. (2002) and, on the other hand, it extends a result on repeated
games with an informed controller studied by Renault (2012).

An extension of the repeated game in Renault (2006) to the game with incomplete
information on both sides was examined by Gensbittel and Renault (2015). The model is
described by two finite action sets A and B, two finite sets of states S and T. The payoff
function is r : S × T ×A×B → [−1, 1]. There are given two initial probabilities p1 ∈ Pr(S)
and p2 ∈ Pr(T ) and two transition probabilities q1 : S → Pr(S) and q2 : T → Pr(T ). The
Markov chains (sn)n∈N, (tn)n∈N are independent. At the beginning of stage n ∈ N, player
1 observes sn and player 2 observes tn. Then both players simultaneously select actions
an ∈ A and bn ∈ B. Player 1’s payoff in stage n is r(sn, tn, an, bn). Then (an, bn) is publicly
announced and the play goes to stage n + 1. Notice that the payoff r(sn, tn, an, bn) is not
directly known and cannot be deduced. The main theorem states that the limn→∞ vn exists
and is a unique continuous solution to the so-called Mertens-Zamir system of equations,
see Mertens et al. (2015). Recently, Sorin and Vigeral (2015) showed in a simpler model
(repeated game model, where s1 and t1 are chosen once and they are kept through the play)
that vλ converges uniformly as λ→ 0.

In this section we should also mention the Mertens conjecture (see Mertens (1987)) and
its solution. His hypothesis is two-fold: the first statement says that in any general model
of zero-sum repeated game the asymptotic value exists, and the second one says that if
player 1 is always more informed than player 2 (in the sense that player 2’s signal can be
deduced from player 1’s private signal) then in the long run player 1 is able to guarantee the
asymptotic value. Zillotto (2016) showed that in general the Mertens hypothesis is false.
Namely, he constructed an example of seven-state symmetric information game, in which
each player has two-action sets. The set of signals is public. The game is played as the game
G described above. Although, the Mertens conjecture does not generally hold, there are some
classes of games, for which it is true. The interested reader is referred to Sorin (1984, 1985);
Rosenberg et al. (2004); Renault (2012); Gensbittel et al. (2014); Rosenberg and Vieille
(2000); Li and Venel (2016). For instance, Li and Venel (2016) dealt with a stochastic game
G0 with incomplete information on both sides and proved the following (see Theorem 5.8 in
Li and Venel (2016)).

Theorem 21 Let G0 be a recursive game such that player 1 is more informed than player
2. Then for every initial distribution p ∈ Pr(X × S × T ) both the asymptotic value and the
uniform maxmin exist and are equal, i.e.,

v∞ = lim
n→∞

vn = lim
λ→0

vλ.

Stochastic games with partial observations, in which one player observes the sequence of
states, whilst the second player observes the sequence of state-dependent signals, see Basu
and Stettner (2015) and references cited therein. A class of dynamic games in which a
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player is informed of his opponent’s actions and states after some time delay were studied
by Dubins (1957), Scarf and Shapley (1957) and Levy (2012). From the obvious reason the
aforementioned survey does not embrace all models and cases of games with incomplete
information. Further references and applications the reader may find in Laraki and Sorin
(2015) or Neyman and Sorin (2003).

10 Approachability in stochastic games with vector payoffs

In this section we consider games with payoffs in an Euclidean space Rk, where the inner
product is denoted by 〈·, ·〉 and the norm of any c̄ ∈ Rk is ‖c̄‖ =

√
〈c̄, c̄〉. Let A and B be

finite sets of pure strategies for players 1 and 2, respectively. Let u0 : A×B → Rk be a vector
payoff function. For any mixed strategies s1 ∈ Pr(A) and s2 ∈ Pr(B), ū0(s1, s2) stands for
the expected vector payoff. Consider a 2-person infinitely repeated game G∞ defined as
follows. At each stage t ∈ N every players 1 and 2 choose simultaneously at ∈ A and bt ∈ B.
Behavioural strategies π̂ and γ̂ for the players are defined in the usual way. The corresponding
vector outcome is gt = u0(at, bt) ∈ Rk. The couple of actions (at, bt) is announced to both
players. The average vector outcome up to stage n is ḡn = (g1 + · · · + gn)/n. The aim of
player 1 is to make ḡn approaching to a target set C ⊂ Rk. If k = 1, then we usually have
in mind C = [v0,∞) where v0 is the value of the game in mixed strategies. If C ⊂ Rk and
y ∈ Rk, then the distance from y to the set C is d(y, C) = infz∈C ‖y − z‖.

A non-empty closed set C ⊂ Rk is approachable by player 1 in G∞ if, for every ε > 0,
there exist a strategy π̂ of player 1 and nε ∈ N such that, for any strategy γ̂ of player 2 and
any n ≥ nε, we have

Eπ̂γ̂d(ḡn, C) ≤ ε.

The dual concept is excludability.
Let PC(y) denote the set of closest points to y in C. A closed set C ⊂ Rk satisfies the

Blackwell condition for player 1, if for any y 6∈ C, there exists z ∈ PC(y) and a mixed action
(depending on y) s1 = s1(y) ∈ Pr(A) such that the hyperplane through z orthogonal to the
line segment [yz] separates y from the set {ū0(s1, s2) : s2 ∈ Pr(B)}, i.e.,

〈ū0(s1, s2)− z, y − z〉 ≤ 0 for all s2 ∈ Pr(B).

The following two results are due to Blackwell (1956).

Theorem 22 If C ⊂ Rk is a non-empty closed set satisfying the Blackwell condition, then
C is approachable in game G∞. An approachability strategy is π̂(hn) = s1(ḡn), where hn is
the history of a play at stage n.

Theorem 23 A closed and convex set C ⊂ Rk is either approachable or excludable.

The next result was proved by Spinat (2002).

Theorem 24 A closed set C ⊂ Rk is approachable if and only if C contains a subset having
the Blackwell property.

Related results with applications to repeated games can be found in Sorin (2002);
Mertens et al. (2015). Applications to optimisation models, learning and games with partial
monitoring can be found in Cesa-Bianchi and Lugosi (2006); Cesa-Bianchi et al. (2006);
Perchet (2011a,b); Lehrer and Solan (2016). A theorem on approachability for stochastic
games with vector payoffs was proved by Shimkin and Shwartz (1993). They assumed that
the transition probability satisfies some ergodicity conditions and applied their result to a
queueing model. A more general theorem on approachability for vector payoff stochastic
games was proved by Milman (2006). Below we briefly describe his result.

Consider a stochastic game with finite state space X and action spaces A(x) ⊂ A and
B(x) ⊂ B, where A and B are finite sets. The stage payoff function is u : X ×A×B → Rk.
For any strategies π ∈ Π and γ ∈ Γ and an initial state x = x1, there exists a unique
probability measure Pπγx on the space of all plays (the Ionescu-Tulcea theorem) generated
by these strategies and the transition probability q. By PDπγ

x we denote the probability
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distribution on the stream of vector payoffs g = (g1, g2, ...). Clearly, PDπγ
x is uniquely

induced by Pπγx .

A closed set C ⊂ Rk is approachable in probability from all initial states x ∈ X, if there
exists a strategy π0 ∈ Π such that, for any x ∈ X and ε > 0, we have

lim
n→∞

sup
γ∈Γ

PDπ0γ
x ({g : d(gk, C) > ε}) = 0.

Assume that y 6∈ C and z ∈ PC(y). Let σ(z, y) := (z−y)/‖z−y‖. Consider the stochastic
game with scalarised payoffs uσ(x, a, b) := 〈u(x, a, b), σ(z, y)〉. By Mertens and Neyman
(1981) this game has a uniform value, denoted here by vσ(x), x ∈ X. An analogue to the
theorem of Blackwell (1956) due to Milman (2006) sounds as follows.

Theorem 25 A closed set C ⊂ Rk is approachable in probability from all initial states
x ∈ X if, for each y 6∈ C, there exists z ∈ PC(y) such that vσ(x) ≥ 〈z, σ(z, y)〉 for all x ∈ X.

11 Stochastic games with short stage duration and related models

Studying continuous-time Markov games entails some conceptual and mathematical difficul-
ties. One of the main issues concerns randomisation in continuous time. Zachrisson (1964)
first considered zero-sum Markov games of a finite and commonly known duration. His
method of evaluating the stream of payoffs in continuous time was simply to integrate over
time. In his approach, the players use Markov strategies - choose their actions as a func-
tion of time and the current state only. Stochastic games on Markov jump processes were
studied by many authors, see for example Guo and Hernández-Lerma (2003, 2005). The
payoff functions and transition rates are time-independent and it is assumed that using ran-
domised Markov strategies the players determine an infinitesimal operator of the stochastic
process, whose trajectories determine the stream of payoffs. The assumptions made on the
primitives imply that the players have optimal stationary strategies in the zero-sum case
(stationary equilibria in the non-zero-sum case), i.e., strategies that are independent of time,
but depends on the state that changes at random time epochs. Altman and Gaitsgory (1995)
studied zero-sum “hybrid games’, where the state evolves according to a linear continuous-
time dynamic. The parameters of the state evolution equation may change at discrete times
according to a countable state Markov chain that is directly controlled by both players.
Each player has a finite action space. The authors proposed a procedure (similar in form
to the well-known maximum principle) that determines a pair of stationary strategies for
the players, which is asymptotically a saddle point, as the number of transitions during the
finite time horizon grows to infinity. Levy (2013) studied some connections of continuous-
time (finite state and action spaces) n-person Markov games with differential games and
the theory of differential inclusions. He also gave some results on correlated equilibria with
public randomisation in an approximating game. He considered Markov strategies only. We
mention his paper here because no section on continuous-time games is included in our chap-
ter on non-zero-sum stochastic games. Other approaches to study continuous-time Markov
games, including discretisation of time, are briefly described in Laraki and Sorin (2015). The
class of games discussed here is important for many applications, e.g., in studying queueing
models involving birth and death processes and more general ones, see Altman et al. (1997).

Recently, Neyman (2013) presented a framework for fairly general strategies using an
asymptotic analysis of stochastic games with stage duration converging to zero. He was able
to establish many new results, especially on the uniform value and approximate equilibria.
There has been very little development in this direction. In order to describe briefly certain
ideas from Neyman (2013), we must introduce some notation. We assume that the state
space X and the action sets A and B are finite. Let δ > 0 and Γδ be a zero-sum stochastic
game played in stages tδ, t ∈ N. Strategies for the players are defined in the usual way, but
we should note that the players act in time epochs δ, 2δ and so on. Following Neyman
(2013), we say that δ is the stage duration. The stage payoff function uδ : X × A× B → R
is assumed to depend on δ. The evaluation of streams of payoffs in a multistage game is not
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specified at this moment. The transition probability qδ also depends on δ and is defined using
so-called transition rate function q0

δ : X ×X ×A×B → R satisfying standard assumptions

q0
δ (y, x, a, b) ≥ 0 for y 6= x, q0

δ (y, y, a, b) ≥ −1 and
∑
y∈X

q0
δ (y, x, a, b) = 0.

The transition probability is qδ(y|x, a, b) = q0
δ (y, x, a, b) if y 6= x and qδ(x|x, a, b) = q0

δ (x, x, a, b)+
1 for all x ∈ X, a ∈ A and b ∈ B. The transition rate q0

δ (x, x, a, b) represents the difference
between the probability that the next state will be y and the probability (0 or 1) that the
current state is y when the current state is x and the players’ actions are a and b, respectively.

Following Neyman (2013), we say that the family of games (Γδ)δ>0 is converging if
there exist functions µ : X ×X × A× B → R and u : X × A× B → R such that for all x,
y ∈ X, a ∈ A and b ∈ B, we have

lim
δ→0+

q0
δ (y, x, a, b)

δ
= µ(y, x, a, b) and lim

δ→0+

uδ(x, a, b)

δ
= u(x, a, b),

and the family of games (Γδ)δ>0 is exact if there exist functions µ : X×X×A×B → R and
u : X × A× B → R such that for all x, y ∈ X, a ∈ A and b ∈ B, we have q0

δ (y, x, a, b)/δ =
µ(y, x, a, b) and uδ(x, a, b)/δ = u(x, a, b).

Assume that (x1, a1, b1, ...) is a play in the game with stage duration δ. According to
Neyman (2013), the unnormalised payoff in the ρ-discounted game, denoted by Γδ,ρ, is

∞∑
t=1

(1− ρδ)t−1uδ(xt, at, bt).

The discount factor β in the sense of Sect. 3 is 1− δρ. It is called admissible, if limδ→0+ 1−
β(δ)/δ exists. This limit is known as an asymptotic discount rate. In the case of β(δ) = 1−ρδ,
ρ > 0 is the asymptotic discount rate. Other example of an admissible δ-dependent discount
factor is e−ρδ. Assuming that the family of games (Γδ)δ>0 is converging, it is proved that the
value of Γδ,ρ, denoted by vδ,ρ(x), converges some vρ(x) (called the asymptotic ρ-discounted
value) for any initial state x ∈ X as δ → 0 and the players have stationary optimal strategies
πρ and γρ that are independent of δ. Optimality of πρ means that πρ is ε(δ)-optimal in the
game Γδ,ρ, where ε(δ) → 0 as δ → 0. Similarly for γρ. For the details see Theorem 1 in
Neyman (2013).

For any play (x1, a1, b1, ...) and s > 0, define the average per unit time payoff gδ(s) as

gδ(s) :=
1

s

∑
1≤t<s/δ

uδ(xt, at, bt).

A family (Γδ)δ>0 of 2-person zero-sum stochastic games has an asymptotic uniform value
v(x) (x ∈ X) if for every ε > 0 there are strategies πδ of player 1 and γδ of player 2, a duration
δ0 > 0 and a time s0 > 0 such that for every δ ∈ (0, δ0) and s > s0, strategy π of player 1,
and strategy γ of player 2, we have

ε+ Eπδγx gδ(s) ≥ v(x) ≥ Eπγδx gδ(s)− ε.

Theorem 6 in Neyman (2013) states that any exact family of zero-sum games (Γδ)δ>0 has
an asymptotic uniform value.

The paper by Neyman (2013) contains also some results on the limit-average games
and n-person games with short stage duration. His asymptotic analysis is partly based on
the theory of Bewley and Kohlberg (1976a) and Mertens and Neyman (1981). His work
inspired other researchers. Cardaliaguet (2016) studied the asymptotics of a class of 2-
person zero-sum stochastic game with incomplete information on one side. Sorin and Vigeral
(2016) studied stochastic games with varying duration using iterations of non-expansive
Shapley operators that were considered successfully in the theory of discrete-time repeated
and stochastic games.
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Başar T, Olsder GJ (1995) Dynamic noncooperative game theory. Academic Press, New
York

Berge C (1963) Topological spaces. MacMillan, New York
Bertsekas DP, Shreve SE (1996) Stochastic Optimal Control: the Discrete-Time Case. Athena

Scientic, Belmont, MA
Bewley T, Kohlberg E (1976a) The asymptotic theory of stochastic games. Math Oper Res

1:197-208
Bewley T, Kohlberg E (1976b) The asymptotic solution of a recursion equation occurring

in stochastic games. Math Oper Res 1:321-336
Bewley T, Kohlberg E (1978) On stochastic games with stationary optimal strategies. Math

Oper Res 3:104-125
Bhattacharya R, Majumdar M (2007) Random dynamical systems: theory and applications.

Cambridge University Press, Cambridge
Billingsley P (1968) Convergence of probability measures. Wiley, New York
Blackwell DA, Girshick MA (1954) Theory of games and statistical decisions. Wiley and

Sons, New York
Blackwell D (1956) An analog of the minimax theorem for vector payoffs. Pac J Math 6:1-8
Blackwell D (1962) Discrete dynamic programming. Ann Math Statist 33:719-726
Blackwell D (1965) Discounted dynamic programming. Ann Math Statist 36: 226-235
Blackwell D (1969) Infinite Gδ-games with imperfect information. Zastosowania Matematyki

(Appl Math) 10:99-101
Blackwell D (1989) Operator solution of infinite Gδ-games of imperfect information. In:

Anderson TW et al (eds) Probability, Statistics, and Mathematics: Papers in Honor of
Samuel Karlin, Academic Press, New York, pp. 83-87

Blackwell D, Ferguson TS (1968) The big match. Ann Math Stat 39:159-163
Bolte J, Gaubert S, Vigeral G (2015) Definable zero-sum stochastic games. Math Oper Res

40:80-104
Breton M (1991) Algorithms for stochastic games. In: Stochastic Games and Related Topics,

Shapley Honor Volume, Kluwer, Dordrecht, pp. 45-58
Brown LD, Purves R (1973) Measurable selections of extrema. Ann Stat 1:902-912
Cardaliaguet P, Rainer C, Rosenberg D, Vieille N (2016) Markov games with frequent actions

and incomplete information-The limit case. Math Oper Res 41:49-71
Cesa-Bianchi N, Lugosi G (2006) Prediction, learning, and games. Cambridge University

Press, Cambridge
Cesa-Bianchi N, Lugosi G, Stoltz G (2006) Regret minimization under partial monitoring.

Math Oper Res 31:562-580



Zero-sum stochastic games 39

Charnes A, Schroeder R (1967) On some tactical antisubmarine games. Naval Res Logistics
Quarterly 14:291-311

Chatterjee K, Majumdar R, Henzinger TA (2008) Stochastic limit-average games are in
EXPTIME. Internat J Game Theory 37:219-234

Condon A (1992) The complexity of stochastic games. Inf Comput 96:203-224
Coulomb JM (1992) Repeated games with absorbing states and no signals. Internat J Game

Theory 21:161-174
Coulomb JM (1999) Generalized big-match. Math Oper Res 24:795-816
Coulomb JM (2001) Absorbing games with a signalling structure. Math Oper Res 26:286-303
Coulomb JM (2003a) Absorbing games with a signalling structure. In: Neyman A, Sorin S

(eds) Stochastic Games and Applications. Kluwer, Dordrecht, pp. 335-355
Coulomb JM (2003b) Games with a recursive structure. In: Neyman A, Sorin S (eds) Stochas-

tic Games and Applications. Kluwer, Dordrecht, pp 427-442
Coulomb JM (2003c) Stochastic games with imperfect monitoring. Int J Game Theory (2003)

32:73-96
Couwenbergh HAM (1980) Stochastic games with metric state spaces. Internat J Game

Theory 9:25-36
de Alfaro L, Henzinger TA, Kupferman O (2007) Concurrent reachability games. Theoret

Comp Sci 386:188-217
Dubins LE (1957) A discrete invasion game. In: In: Dresher M et al (eds) Contributions to

the Theory of Games III, Annals of Mathematics Studies 39, Princeton University Press,
Princeton, NJ, pp. 231-255

Dubins LE, Maitra A, Purves R, Sudderth W (1989) Measurable, nonleavable gambling
problems. Israel J Math 67:257-271

Dubins LE, Savage LJ (1976) Inequalities for stochastic processes. Dover, New York
Everett H (1957) Recursive games. In: Dresher M et al (eds) Contributions to the Theory

of Games III, Annals of Mathematics Studies 39, Princeton University Press, Princeton,
NJ, pp. 47-78

Fan K (1953) Minimax theorems. Proc Nat Acad Sci USA 39:42-47
Feinberg EA, Lewis ME (2005) Optimality of four-threshold policies in inventory systems

with customer returns and borrowing/storage options. Probab Engineering Informat Sci-
ences 19:45-71

Filar JA (1981) Ordered field property for stochastic games when the player who controls
transitions changes from state to state. J Optim Theory Appl 34:503-513

Filar JA (1985). Player aggregation in the travelling inspector model. IEEE Trans Autom
Control 30:723-729

Filar JA, Schultz TA, Thuijsman F, Vrieze OJ (1991) Nonlinear programming and stationary
equilibria of stochastic games. Math Programming, Ser. A, 50:227-237

Filar JA, Tolwinski B (1991) On the algorithm of Pollatschek and Avi-Itzhak. In: Stochastic
Games and Related Topics, Shapley Honor Volume, Kluwer, Dordrecht, pp. 59-70

Filar JA, Vrieze K (1997) Competitive Markov decision processes. Springer-Verlag, New
York

Fristedt B, Lapic S, Sudderth WD (1995) The big match on the integers. Ann Internat Soc
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Jaśkiewicz A, Nowak AS (2011) Stochastic games with unbounded payoffs: Applications to

robust control in economics. Dyn Games Appl 1: 253-279
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