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Introduction

I We consider the problem of allocating
sensors and frequencies of their activation

I in such a way that the balance between
the estimation accuracy of a scalar field
and energy consumption is optimized.

I We propose an extension of the theory of
optimal experiment designs by including
terms for transmission energy consumption
or penalties for region coverage into the
optimality criterion.



Introduction 2

I We state the optimality conditions,
which serve as a base for a numerical
algorithm for searching sensors’ positions
and frequencies of their activations.

I Examples of optimal allocations for a
variety of basis, spanning spatial fields,
are also provided.



Introduction 3

I Applications of wireless sensors networks
(WSN) are so wide that we have to consi-
der them in a problem dependent way,

I i.e., sensors’ locations for different tasks
should be different – there is no one
universal scheme.

I In this paper we confine our discussion to a
subclass of WSN’s, which are specialized
for estimating scalar spatial fields.



Introduction 4

Possible applications of WSN’s for estimating
scalar fields include:

I monitoring of environmental conditions:
temperature, humidity, pressure, rainfall,
chemical contamination and many others.

I diagnosis of machine parts, chemical
reactors, bridges, pipelines, vibrations etc.

I In the above applications it is possible and
economically plausible to allocate sensors
carefully, taking into account their tasks as
well as power consumption for data
transmission.



Introduction 5

I A dense network of randomly deployed and
cheap sensors also allows spatial sampling,
but – if applicable – a careful sensors’
location provides more information and
lower power consumption.

I The main goals: to cover all the area, to
ensure connectivity (so as to assure data
transmission between nodes).

I It still remains flexibility for goal-oriented
sensors’ allocation. Such point of view is
not common in the papers on WSN’s
design (see the bibliography).



Introduction 6

I The idea of using an optimal experiment
design setting for sensors’ allocation can
be traced back to early 80’s.

I The main difference: here we explicitly
take into account energy consumption for
transmission in WSN’s, incorporating it
into the goal function.

I The area is divided into plots (squares,
circles hexagons), which form a tilling.
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Network structure 2

I sensors (smaller blue circles),

I local sinks (larger blue circles), which are
simultaneously sensors and local processing
units, sufficiently powerful to solve a
standard LSQ estimation problem
(described below).

I The largest circle is a central sink.

I Arrows = a wireless data transmission.

I Data transmitted from a sensor to a local
sink = measurements, (initially processed
– verification of ranges, averaging several
measurements etc.).



Problem statement 1

I Sensors’ allocation in one, typical, plot is
optimized and replicated.

I Sensors located in each plot perform
measurements with prescribed frequencies.

I Both sensors’ locations xi’s and frequencies
pi > 0,

∑m
i=1 pi = 1 are our decision

variables, collected in a design ξ: it is
convenient represent ξ as the table:

ξ =

[
x1 x2 . . . xm

p1 p2 . . . pm

]
(1)



Problem statement 2

Observations (simplified – see the paper):

yi = aT v(xi) + εi, i = 1, 2, . . . , n, (2)

εi’s uncorrelated random errors, E(εi) = 0,
a ∈ Rd – unknown – our goal=to estimate
them, v(x) – selected basis functions, e.g., –
bivariate polynomials of the second order:

vT(x) = [1, x(1), x(2), x(1) x(2), (3)

x(1) (x(2))2, (x(1))2 x(2), (x(1))2, (x(2))2, (x(1))2 (x(2))2]

– radial basis functions,
– trigonometric polynomials, splines etc.



Problem statement 3

I Parameters a are estimated by the least
LSQ, which provides linear (in yi’s),
unbiased estimator â.

I Its covariance matrix has the form:
cov(â) ∼ M−1(ξ), where

I M(ξ) – the normalized Fisher’s information
matrix:

M(ξ) =
m∑

j=1

pj v(xj) vT(xj). (4)

I Thus, the estimation accuracy depends on
senors’ allocation xj’s and on relative
frequencies of their usage pj’s.



Problem statement 4

I It is customary to minimize D-optimality
ln(Det(M−1(ξ))), since Det of M−1(ξ) ∼
vol. of the uncertainty ellipsoid of â.
Equiv. to maximize ln(Det(M(ξ))).

I Let d(x, x0) be a user defined function,
which takes into account specific features
of data transmission in WSN’s. E.g.,

d1(x, x0) = γ
(

(x
(1)
0 − x(1))2 + (x

(2)
0 − x(2))2

)β
is the energy consumption for transmission
from sensor at x to sink at x0, where γ > 0
and β > 0 are case dependent constants.



Problem statement 5

For the coverage problem d is of the form:

d2(x, x0) = λ [((x
(1)
0 −x(1))2+(x

(2)
0 −x(2))2)1/2−ρ]2

a penalty for a sensor at x to be too far or too
close to sink x0, ρ a desired radius.
A penalty for being too far from x0:

d3(x, x0) = λ exp
[
− ||x−x0||2

2σ2

]
, where ||.|| – the

Euclidean norm, σ > 0 a spread parameter.

I Clearly, one can mix:
d(x, x0) = d1(x, x0) + d2(x, x0) or
d(x, x0) = d1(x, x0) + d3(x, x0).



Problem statement 6

As the goal function we take:

F(ξ) = ln(Det(M(ξ)))− D(ξ), where (5)

D(ξ)
def
=

m∑
j=1

pj d(xj, x0). (6)

I The first term in (5) takes into account the
estimation error.

I D(ξ) is the weighted sum of energy for
transmitting observations from sensors
placed at xi’s to the sink at x0.



Problem statement 7

I Our aim is to find ξ∗, which maximize F(ξ)
over all ξ’s such that pj ≥ 0,

∑
pj = 1:

ξ =

[
x1 x2 . . . xm

p1 p2 . . . pm

]
, xj ∈ X−typical plot

I Note: we do not require m · pj ∈ integers ,
otherwise the problem is very difficult.

I Define the following function:

φ(x, ξ)
def
=
[
vT(x) M−1(ξ) v(x)− d(x, x0)

]
I Its first term is the prediction variance in

estimating our scalar field at x, when ξ is
used. φ =∞, if Det[M(ξ)] = 0.



The main result

Theorem (optimality conditions):

I Assume that d(x, x0) is continuous in X as
a function of x. X is a compact set.

I There exists ξ such that Det[M(ξ)] > 0.

I ξ∗ is optimal (maxξ F(ξ)) if and only if

max
x∈X

φ(x, ξ∗) = r − D(ξ∗), (7)

where r = dim(a) – the number of param.

I Condition (7) is the base for constructing
the algorithm for searching ξ∗, by
modifying the Wynn-Fedorov method.



Search for the optimal configuration

Step 0 Select ξ0 with Det[M(ξ0)] > 0,
accuracy ε > 0 and set k = 0.

Step 1 find ηk = arg maxx∈X φ(x, ξk), if
φ(ηk, ξk) ≥ r − D(ξk) – go to 2,

Step 2 If φ(ηk, ξk)− (r − D(ξk)) < ε, then
stop, otherwise, go to Step 3.

Step 3 Select 0 < αk < 1, multiply all pj’s
in ξk by (1− αk). Add ηk as a new
sensor’s position and attach weight
αk to it. Rename this as ξk+1,
k := k + 1, go to Step 1.



Searching 2

I We omit the proof of convergence.

I In Step 1 task: ηk = arg maxx∈X φ(x, ξk) is
difficult (φ(x, ξk)) is multi-modal), but it is
not necessary to find the global maximum.
It suffices to find η̃k such that
φ(η̃k, ξk) > r − D(ξk).

I To this end: SQP with filter, evolutionary
search or selective random search (with the
normalized φ(x, ξk) as the pd.f. of search).



Searching 3

I In Step 3 one can select αk in a number of
ways: as a predefined sequence such that∑∞

k=1αk is divergent (αk = 1/(1 + k)) or
as a local minimizer of φ or by optimizing
all the weights in a spirit of Fellman and
Torsney procedure.



Searching 4

We shall describe the last possibility in more
details. Let p0

i , i = 1, 2, . . . ,m denotes
weights of a current design ξk. Then the
weights optimization runs as follows:

pl+1
i = pl

i ·
φ(xi, ξ

l
k)

r − D(ξl
k)
, (8)

until weights do not differ too much. Above
xi’s are the support points of ξk, while ξl

k is a
design with the same support, but with
weights arising from (8).



Examples – conventions

I We symmetrize sensors’ allocation

I When the plot X is rotationally symmetric
so as φ function, then the symmetrization
does not spoil the optimality of the design.

I The rationale behind the symmetrization –
tilling larger regions by sticking together
smaller domains.

I Sensors at the borders should send a part
of their measurements to different sinks.

I A generic sub-field is a unit disc.



Examples – conventions 2

I Circles (or squares) are placed at points
where sensors should be placed.

I Their areas are proportional to the
frequencies of their activations.

I In all the examples we have used the same,
intentionally badly selected, starting
design:

{+/− 0.5,+/− 0.5} 0.11
{0.75, 1.} 0.11
{−1., 0.} 0.11
{1., 0.75} 0.11
{0.75,−1.} 0.11
{0.75, 0.75} 0.11

 (9)



Example 1

Penalty d(x, t) = 2.0 ∗ (x2 + t2 − 0.25)2, linear
model with the interaction of spatial variables:
v(x, t) = [1, x, t, x t]. Optimal sensors’
allocation:

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

All weights = 0.11.



Example 2

The trigonometric base:
v(x) = [1, sin(π x(1)), cos(π x(1))]⊗

[1, sin(π x(2)), cos(π x(2))], where ⊗ is
the Kronecker product. The penalty:
d(x, t) = 5.0 ∗ (x2 + t2 − 0.5)2

In opposite to D-optimal design, frequencies
of activating sensors are different in different
locations.



Example 3

The same base as above, but with penalty
function: d(x, t) = 1.5 ∗ Exp[−4.0 ∗ (x2 + t2)].

Left panel – optimal allocation (nice tilling
possible), right panel – φ surface for optimal
allocation.



Conclusions

I The extension of the optimal experiment
design theory is proposed.

I It allows to incorporate features, which are
specific for WSN’s, e.g., the penalty for
excessive power consumption, leading to a
balance between the estimation accuracy
and the consumption for transmission.

I The modified version of the Wynn-Fedorov
algorithm + many modifications (SQP
with filter or selective random search+
weights optimization by the modified
Torsney-Fellman algorithm) occurred to be
efficient.



Conclusions 2

I The optimal allocations of sensors and the
frequencies of their activations are such
that they are easily repeatable in larger
areas.

I The approach was presented as if the
spatial field to be estimated is static
(constant in time), but for one series of
observations it is not reasonable to put so
many effort for sensors’ allocation. In fact,
the approach is useful for quasi-stationary
random fields, when the mean changes
slowly in time (e.g., environmental
pollution).



Kitchen – outline of the proof

Lemma For any sensing design ξ ∈ Ξ(X) with
nonsingular M(ξ) we have (easy to prove):

r − D(ξ) ≤ max
x∈X

φ(x, ξ). (10)

For ξ∗ the equality in (10) holds. Indeed, ∀ ξ′

d

dα
F((1− α) ξ∗ + α ξ′)

∣∣∣
α=0+

≤ 0 (11)

implies the reverse inequality. The proof of
sufficiency is more subtle (uses the strict
concavity of F(ξ)).
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