1. Metodą indukcji pokazać prawdziwość następujących wzorów:

 (a) $1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6}$

 (b) $1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2$

 (c) $1 + 2^2 + \cdots + 2^{n-1} = 2^n - 1$

 (d) $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{n \cdot (n + 1)} = \frac{n}{n + 1}$

2. Udowodnić, że jeżeli $x > -1$, to zachodzi nierówność

 $(1 + x)^n \geq 1 + nx \quad (n > 1)$

 przy czym znak równości ma miejsce tylko dla $x = 0$.

3. Udowodnić nierówność

 $|x - y| \geq ||x| - |y||$.

4. Rozwiązać nierówności

 (a) $|x + 1| < 0.01$, \quad (b) $|x - 2| \geq 10$, \quad (c) $|x| > |x + 1|$, \quad (d) $|2x - 1| < |x - 1|$, \quad (e) $|x + 2| + |x - 2| \leq 12$, \quad (f) $|x + 2| - |x| > 1$, \quad (g) $|x + 1| - |x - 1| < 1$, \quad (h) $|x(1 - x)| < 0.05$.

5. Udowodnić tożsamość

 $\left(\frac{x + |x|}{2}\right)^2 + \left(\frac{x - |x|}{2}\right)^2 = x^2$.

6. Określić dziedziny poniższych funkcji:

 (a) $y = \frac{x^2}{1 + x}$, \quad (b) $y = \text{arc} \cos(2 \sin x)$,

 (c) $y = \sqrt{3x - x^3}$, \quad (d) $y = (x - 2)\sqrt{\frac{1 + x}{1 - x}}$,

 (e) $y = (x + |x|)\sqrt{x \sin^2(\pi x)}$, \quad (f) $y = \text{ctg}(\pi x) + \text{arc} \cos(2x)$,

 (g) $y = \sqrt{\sin(\sqrt{x})}$, \quad (h) $y = \text{arc} \sin \left(\frac{2x}{1 + x}\right)$.

7. Zdefiniujmy funkcję

 \[\text{sgn}(x) = \begin{cases}
 -1 & \text{jeżeli } x < 0, \\
 0 & \text{jeżeli } x = 0, \\
 1 & \text{jeżeli } x > 0.
 \end{cases} \]

 Narysować jej wykres oraz pokazać, że

 $|x| = x \text{ sgn}(x)$.

8. Funkcję $y = [x]$ określa się następująco: jeśli $x = n + r$, gdzie n — liczba całkowita oraz $0 \leq r < 1$, to $[x] = n$. Narysować wykres tej funkcji.
9. Niech \(y = \pi(x) \quad (x > 0) \)
oznacza liczbę liczb pierwszych nie przekraczających \(x \). Narysować wykres tej funkcji dla wartości argumentu \(0 \leq x \leq 20 \).

10. Określić przeciwdziedziny poniższych funkcji dla zadaną dziedzin \(D \):

\[
y = x^2, \quad D = \{ -1 \leq x \leq 2 \},
\]
\[
y = \frac{1}{\pi} \arctg(x), \quad D = \{ -\infty < x < \infty \},
\]
\[
y = \text{ctg} \left(\frac{\pi x}{4} \right), \quad D = \{ 0 < |x| \leq 1 \},
\]
\[
y = |x|, \quad D = \{ 1 \leq |x| \leq 2 \}.
\]

11. Znaleźć \(f(0), f(1), f(2), f(3), f(4) \) jeżeli

\[
f(x) = x^4 - 6x^3 + 11x^2 - 6x.
\]

12. Znaleźć \(f(0.9), f(0.99), f(0.999), f(1) \) jeżeli

\[
f(x) = 1 + |x|.
\]

13. Znaleźć \(f(-2), f(-1), f(0), f(1), f(2) \) jeżeli

\[
f(x) = \begin{cases} 1 + x & \text{dla } x \leq 0, \\ 2^x & \text{dla } x > 0. \end{cases}
\]

14. Znaleźć \(f(0), f(-x), f(x+1), f(x+1), 1/f(x) \) jeżeli

\[
f(x) = \frac{1 - x}{1 + x}.
\]

15. Znaleźć wartości \(x \), dla których (i) \(f(x) = 0 \), (ii) \(f(x) > 0 \), (iii) \(f(x) < 0 \), jeżeli

(a) \(f(x) = x - x^3 \),
(b) \(f(x) = \sin \left(\frac{\pi}{x} \right) \),
(c) \(f(x) = (x + |x|)(1 - x) \).

16. Znaleźć

\[
\varphi(x) = \frac{f(x+h) - f(x)}{h},
\]
jeżeli (a) \(f(x) = ax + b \), (b) \(f(x) = x^2 \), (c) \(f(x) = ax \).

17. Znaleźć wartości nieznanych współczynników funkcji

\[
f(x) = ax + b
\]
jeżeli wiadomo, że \(f(0) = -2 \) oraz \(f(3) = 5 \). Określić wartości \(f(1) i f(2) \).

18. Znaleźć wartości nieznanych współczynników funkcji

\[
f(x) = ax^2 + bx + c
\]
jeżeli wiadomo, że \(f(-2) = 0 \), \(f(0) = 1 \) oraz \(f(1) = 5 \). Określić wartości \(f(-1) i f(0.5) \).

19. Funkcja \(f(u) \) jest określona dla \(0 < u < 1 \). Znaleźć obszary określoności funkcji

(a) \(f(\sin(x)) \),
(b) \(f \left(\frac{|x|}{x} \right) \).

20. Znaleźć \(\varphi[\varphi(x)], \psi[\psi(x)], \varphi[\psi(x)] \) oraz \(\psi[\varphi(x)] \) jeżeli

(a) \(\varphi(x) = x^2 \) oraz \(\psi(x) = 2^x \),
(b) \(\varphi(x) = \text{sgn}(x) \) oraz \(\psi(x) = \frac{1}{x} \),
(c) \(\varphi(x) = \begin{cases} 0 & \text{dla } x \leq 0, \\ x & \text{dla } x > 0, \end{cases} \) oraz \(\psi(x) = \begin{cases} 0 & \text{dla } x \leq 0, \\ -x^2 & \text{dla } x > 0. \end{cases} \)