

Cel ćwiczenia: Celem tego zestawu ćwiczeń 3.1, 3.2 oraz 4.1 i 4.2 jest opanowanie techniki budowy i wykorzystania bibliotek parametrycznych elementów w systemie AMD 4.0

Modele parametryczne pozwalają na zmianę zarówno kształtu jak i geometrii modelu.

1. Jeżeli nie są widoczne, uaktywniamy następujące paski narzędzi (w oknie dialogowym Toolbars):

U Aby uaktywniać nowy pasek narzędzi należy najechać kursorem na dowolny pasek narzędzi i nacisnąć prawy klawisz myszy. Pojawi się okno jak po prawej stronie, w którym dokonujemy aktywizacji żądanych pasków narzędziowych

a) Modelowanie części: (standardowo widoczny po prawej stronie Przeglądarki MDT)

b) Szkic 2D (*szkicowanie i edycja 2D*)

U: poniższe ikony działają przemiennie. tzn. w tym samym miejscu wyświetlają albo pasek narzędzi

1

Szkic 2D albo Wiązania 2D

d) Widoki MDT (sterowanie widokami)

Po wykonaniu powyższych ustawień przystępujemy do wykonania przykładowego ćwiczenia.

1. W dowolnym punkcie rzutni wstawiamy punkt konstrukcyjny (Punkt konstrukcyjny) i zatwierdzamy jego wstawienie:

2. Po lewej stronie punktu konstrukcyjnego w dowolnym miejscu rysujemy okrąg o średnicy 15 mm

i zamieniamy go na profil *(Jeden profil)* W oknie *Przeglądarki MDT* powinien pojawić się nowy element o nazwie **Profil1**.

3. Wymiarujemy położenie okręgu względem punktu konstrukcyjnego w pionie i poziomie oraz średnicę okręgu.

Jeżeli po włączeniu widoczności więzów konstrukcyjnych w środku okręgu pojawi się węzeł utwierdzający (**F**), należy przed wymiarowaniem usunąć go – rys. obok.

Po wybraniu polecenia Amparadim lub ikony Super wymiarowanie

Super wymiarowanie

Nowy wymiar

ustawiamy nasz okrąg w odpowiednim miejscu względem punktu konstrukcyjnego. Po wybraniu polecenia wskazujemy za pierwszym razem okrąg, a za drugim punkt konstrukcyjny i umieszczamy wymiar poziomo pomiędzy okręgiem a punktem konstrukcyjnym (podajemy wartość 40) i zatwierdzamy operację. Ponawiamy czynności, z tym ze teraz umieszczamy wymiar pionowo względem okręgu i punktu konstrukcyjnego (podajemy wartość 0). Następnie wymiarujemy średnicę D=15 mm (lub promień okręgu R=7.5 mm). W ten sposób otrzymaliśmy okrąg (zamieniony już na profil) z wymiarami parametrycznymi i zmienionym położeniem– rys.2.

Rys.2. Profil okręgu po zwymiarowaniu względem punktu konstrukcyjnego

Jeżeli wystąpił błąd przy wymiarowaniu, możemy teraz poprawić wymiary (a tym samym położenie okręgu) za pomocą polecenia **Super edycja** (lub *Ammoddim*).

🎇 Super wymiarowanie	<u>? ×</u>
Tekst wymiarowy	Tolerancje Pasowania Włącz ✓ Górna odchyłka: □ Dolna odchyłka: □ Rodzaj:
Ib I2 Image: Comparison of the comparison of	Anuluj Zastosuj Pomo <u>c</u>

- 4. Kasujemy wymiar 0, gdyż nie będzie już więcej potrzebny
- 5. Rysujemy dwa okręgi o średnicy 120 mm i 53 mm o środku w punkcie konstrukcyjnym (*stosuje-my punkt charakterystyczny dowiązania jak w AutoCADzie-* node np. wywołane poprzez Shift + prawy klawisz myszy). Zamieniamy okręgi na profile większy okrąg Profil2, mniejszy Profil3. Następnie nadajemy im wymiary parametryczne (jak poprzednio). W rezultacie powinniśmy uzyskać widok jak na rys.3.

Rys.3. Szkic parametryczny

6. Z wykonanego parametrycznego szkicu tworzymy obiekt 3D.

Przed wykonaniem operacji 3D wygodnie jest ustawić widok izometryczny SW rozwijając menu Ľ.

ikonki Widok na płaszczyznę szkicu

Rys.4. Widok izometryczny

Za pomocą znanych już poleceń tworzymy model 3D. W oknie Przeglądarki MDT wskazujemy Profil2 i po naciśnięciu prawego klawisza myszy wybieramy polecenie Wyciągnij prosto. W oknie dialogowym, w polu odległość wpisujemy 20 i zatwierdzamy (reszta jak na rysunku). Program podje kierunek wyciagniecia (niebieska strzałka). Powinna być skierowana ku górze. Jeżeli jest odwrotnie należy wpisać "f" w celu zmiany zwrotu strzałki. Zastanie wygenerowany walec, a w Przeglądarce MDT zamiast napisu Profil2 pojawi się napis i ikona wyciągnięcia (Wyciągnięcie Ślepe2).

Rys.5. Wyciągnięcie profilu 2

Powtarzamy operacje dla Profil1. Przy czym w polu **Operacja** podajemy **Wycięcie**, a w **Odległość** jak poprzednio 20. Kierunek wyciagnięcia powinien być zgodny z poprzednim (do góry). W efekcie nastąpi wycięcie otworu o średnicy 15 mm w profilu zewnętrznym.

		533
🗱 Wyciąg	nięcie proste	<u>? ×</u>
Qperacja: Zakończer Qdległość: Kąt pochyłe OK	Wycięcie Slepe ▼ <u>Qdw</u> 20 enia: 0 Anuluj Pomo <u>c</u>	

Rys.6. Wyciągnięcie profilu 1

Następnie wyciągamy *Profil3*, z tym że podajemy opcje *Połączenie* a w polu **Odległość** 50. Kierunek wyciągnięcia przeciwny do poprzedniego.

Rys.7. Model po operacjach wyciągania

7. Wykonujemy teraz otwory na całym obwodzie tarczy. W tym celu wybieramy polecenie *Amarray* lub ikonę *Szyk elementów* i wskazujemy walec symbolizujący otwór ϕ 15.

W oknie dialogowym wybieramy tablice kołową (Szyk Kolowy), wpisujemy liczbę elementów 6 oraz wypełnienie na całym okręgu (Kąt pelny)

Rys.8. Model po wykonaniu kopii otworu tablicą kołową

8. Model drugiej części sprzęgła

Drugi etap obejmuje budowę drugiej części sprzęgła, która będzie współpracowała z pierwszą. Najpierw w oknie **Przeglądarki MDT** klikamy prawym klawiszem myszy i wybieramy polecenie Nowa Część. Po zaakceptowaniu nazwy pojawi się ikona nowego elementu – części 2. (Część2_1). Można wyłączyć widoczność pierwszej części na czas modelowania drugiego elementu.

Rys. 9. Okno Przeglądarki MDT z nowym elementem (Część2_1) oraz wyłączanie widoczności części 1.

Nasz projekt będzie zawierał dwie niezależne części. Jeżeli, jedną z nich zamierzamy edytować musimy ja uaktywnić (wywołujemy menu podręczne na danej części w Przeglądarce MDT i wybieramy polecenie *Uaktywnij część* lub dwukrotnie klikamy na polu nazwy części). Aktywna część posiada zaciemniona ikonę, nieaktywna pustą – rys.9.

9. Tworzymy nową płaszczyznę konstrukcyjną (opcje LUW i Utwórz płaszczyznę szkicu)

Następnie na tej płaszczyźnie tworzymy jak poprzednio:

- nowy punkt konstrukcyjny 📗
- okrąg o średnicy 120 oraz o średnicy 15, zamieniamy na profile i ustawiamy mniejszy okrąg względem punktu konstrukcyjnego (wymiary parametryczne, usuwamy więzy F) jak poprzednio;
- wyciągamy jak poprzednio oba profile, z tym ze teraz otwór o średnicy 15 mm wyciągamy w przeciwnym kierunku (w dół) z włączoną opcją **Połącz** (dołącz) na odległość 16 mm a otwór 120 mm do góry na 20 mm;

wykonujemy kopię w postaci tablicy kołowej walca 15 mm;

Rys. 10. Fragment drugiej części po wykonaniu opisanych operacji modelowania

10. Tworzymy nową płaszczyznę konstrukcyjną na górnej powierzchni części 2 (równoległa do pierwszej i przesunięta o 20) – włączamy opcje jak na rysunku poniżej. Następnie wskazujemy naszą pierwszą płaszczyznę konstrukcyjną i zatwierdzamy.

Rys.11. Tworzenie nowej płaszczyzny konstrukcyjnej

Następnie rysujemy współśrodkowy do tarczy okrąg o średnicy 75 mm i wyciągamy go z opcją **Połącz** na odległość 50 mm do góry. Nasz element powinien wyglądać jak na rysunku poniżej – rys.12 a). W oknie Przeglądarki MDT na nazwie Część2_1 uruchamiamy menu podręczne (prawy klawisz myszy) i wybieramy *Cechy-Kolor* (właściwości – kolor) i zmieniamy kolor na czerwony – rys.12 b).

Rys.12. Model drugiej części a) oraz sposób zmiany koloru części b).

Włączamy widoczność pierwszej części. Zapisujemy wykonane modele do pliku dyskowego.

Przygotowane parametryczne modele sprzęgła

Koniec części 3.1.