
The Robot Toolbox for Matlab

G. PAJĄK and I. PAJĄK
University of Zielona Góra

Institute of Computer Science and Production Management
Licealna 9, 65-417 Zielona Góra, POLAND

e-mail: g.pajak@iizp.uz.zgora.pl; i.pajak@iizp.uz.zgora.pl

In the paper a Matlab toolbox for modeling and simulation manipulators described by Denavit-Hartenberg
parameters is presented. This package can be used to realistic visualization of robot motion necessary in research,
didactic process or during design of production cell. Available functions allow to show realistic model of
mechanism easily based on DH parameters only. The toolbox also provides a set of tools for creating any
polyhedrons and functions to manipulate them in 3D space. Using those objects it is possible to create own
appearance of the manipulator and its workspace. Functions implementing classical methods of trajectory
planning in configuration space allow to calculate manipulator trajectory which can be shown as an animation.
The main functions and computer examples illustrating the features of this toolbox have been presented.

Key words: robot toolbox, manipulator modeling, simulation.

1. Introduction

The visualization of manipulators and tasks realized by them plays an important role in
many applications. The validation of research results is not always possible by performing real
experiment using real robot in its environment. Even if a real manipulator is available simulation
tools allow to verify and compare obtained solution using many different mechanisms in any
designed workspace. Moreover, while teaching the basis of robotics work with real robots it is not
always possible, so simulation tools are needed. In virtual environment student can learn issues
related to description of position and orientation in 3D space, convention used to describe the
manipulator kinematics and, finally, build any mechanism. Additionally, computer modeling is
useful during programming industrial robot tasks. The simulation tools allow to design and verify a
production cell in virtual environment without occupation of mechanical robots and other
equipments. In the applications presented above performing a simulation using simplified models
may by insufficient, often it is important that manipulator and objects in its environment look like a
real workspace.

There are a lot of tools which can be used in the applications presented above. The robot
manufactures provide their own software allowing to simulate a robotic process in 3D space (Fanuc
(2011), ABB (2011)). The main drawback of such tools is their narrow specialization, they support
own robots only. This feature limits usage of this software in research and educational applications.
There are also more versatile solutions which allow to simulate a broader class of mechanism.
López-Nicolás et al. (2009) presented applications package for creating models of robots and their
workspace. The robots created in this way may be programmed and shown in a graphical simulator.
Cakir and Butun (2007) created an educational tool for interactive simulation 6-DOF industrial
robotic arms. The program is written for manipulators with revolute joints only and that it is its
main drawback. Gourdeau (1997) and Bruyninckx (2001) developed independently object oriented
programming toolboxes in C++ for synthesis and simulation of robotic manipulator models. Using
those tools it is possible to build any robotic system but knowledge of C++ programming is

necessary. Knowing LISP programming language is needed in order to use window-based robot
simulation tool developed by Bingul et al. (2002).

The tools presented above are standalone applications or libraries for certain programming
languages. However, in robotics, both research and education are often carried out using complete
environments for high-level programming and it is convenient that the simulation tool is integrated
with such an environment. The one of the most popular applications is MathWorks product Matlab
(MathWorks (2010)) but, unfortunately, it does not have specialized toolbox for robotics. There are
some independent libraries covering that gap, such as Robotic Toolbox for Matlab (Corke (1996))
and SpaceLib (Legnani (2006)). Both libraries provide many useful tools necessary for robotic
modeling and simulations, but they show poor graphics capabilities and do not allow to create the
realistic models of mechanisms. Kucuk and Bingul (2010) presented ROBOLAB toolbox which
allows users to compute forward and inverse kinematics, calculate manipulator trajectories using
classical methods and view robot animations. The main disadvantage of that tool is that it allows to
make calculations for 16 predefined 6-DOF serial manipulators only, and to create their own
appearance is not possible.

In this paper the Matlab toolbox for modeling and simulation manipulators described by
Denavit-Hartenberg parameters is presented. The main advantage of that toolbox in comparison to
toolboxes mentioned above is possibility to make simulation of any robot manipulator.
Furthermore, a user can easily show manipulators using default 3D appearance presenting action of
mechanism in realistic manner or can define his/her own model of manipulator corresponding to the
real construction. The toolbox also provides a set of basic blocks, tools for creating any polyhedrons
and functions for manipulating position and orientation of those objects in 3D space. Using
previously created elements it is possible to define a manipulator appearance and its workspace.
Additionally, the manipulators motions can be calculated using one of the classical methods of
trajectory planning in the configuration space.

2. Description of the manipulator and its workspace

2.1. Position and orientation in 3D space

In the work, we assumed each solid is described in its own local coordinate system. Hence,
the position and orientation of that coordinate system sets the location of the solid precisely. To
determine position of the local coordinate system in any reference system 13× translation vector
describing position of the origin of the local system is required. To describe orientation solid
coordinate system in the reference system an 33× orientation matrix may be used. In compact
notation translation vector and orientation matrix may be combined together in 44× homogeneous
transformation matrix (Craig (1993)) as follows:





=

× 1310
PR

T ORG
RR

SR
S , (2.1)

where: TR
S - 44× homogeneous transformation matrix describing position and orientation of

solid local system { }S in the reference system { }R ; RR
S - 33× rotation matrix describing

orientation of solid local system { }S in the reference system { }R ; SORG
R P - 13× translation

vector describing position of origin of solid local system { }S in the reference system { }R ; 31×0 -
31× zeros vector.

Dependencies given by (2.1) are a convenient and efficient way to represent a sequence of
transformations and they are basic form of the description of position and orientation in the
presented toolbox.

2.2. Kinematics of the manipulator

In robotics applications a Denavit-Hartenberg convention is commonly used to describe the
manipulator kinematics. To determine DH parameters assigning a coordinate systems to each joint
of manipulator is needed. There are two different methodologies defining the way of coordinate
system attachment. In the first one, described by Paul (1981) and Fu, et al. (1987), origin of
coordinate system { }i is located on the axis of joint 1+i . In the second one, described by
Craig (1993), origin of coordinate system { }i is located on the axis of joint i . In presented toolbox
the second convention named “modified Denavit-Hartenberg” is used to describe manipulator
kinematics. In that case z-axis of the coordinate system { }i is placed along the axis of joint i, the x-
axis is parallel to the normal to axes of joint i and i+1, y-axis completes the right-handed coordinate
system. The DH parameters in this convention are defined as follows:

link length ()ia – distance between iZ and 1+iZ along iX ,

link twist ()iα - angle between iZ and 1+iZ around iX ,

joint offset ()id - distance between 1−iX and iX along iZ ,

joint angle ()iθ - angle between 1−iX and iX around iZ .
In the fig. 2.1 the method of coordinate system attachment and DH parameters is presented.

Fig. 2.1. Kinematic parameters determined according to the modified DH convention

3. Overview of basic functions

3.1. Position and orientation

The method of description of position and orientation used in presented toolbox has been
described in section 2.1. The homogeneous transformation matrix (2.1) may be defined using the
function

T = rp2t(R, P)

where: T - 44× homogeneous transformation matrix ; R – rotation matrix; P – translation vector.

To specify orientation, three functions defining rotation matrices around x-axis, y-axis and
z-axis have been implemented:

R = rotx(angle)
R = roty(angle)
R = rotz(angle)

where: R – rotation matrix; angle – angle of rotation around respective axis.

The composition of several transformations may be accomplished by multiplication of
transformations or rotations matrices. To determine the inverse transformation (2.1) a suitable
function, which preserves a structure of homogeneous transformation, has been implemented:

T = tinv(T)

where: T - 44× homogeneous transformation matrix.

3.2. Coordinate systems objects

The toolbox provides a set of functions for creating and working with coordinate systems.
Those functions allow to understand the description of the position and orientation in 3D space by
homogenous transformation (2.1). A coordinate system object may be created by calling following
function:

cs = csys(T)

where: cs - structure representing a coordinate system; T - 4x4 transformation matrix determining
position and orientation.

Changing position and/or orientation of the coordinate system is possible by using function:

cs = csys_move(cs, T, kind)

where: cs - structure representing a coordinate system; T - 4x4 transformation matrix determining
changes of position and orientation; kind – an optional parameter specifying the method of
calculating new position and orientation, if kind equals 0 then T is new position and orientation
(default value), if kind is equal to 1 then T describes changes of position and orientation according
to global coordinate system, if kind equals 2 then T describes changes of position and orientation
according to current coordinate system.

Each coordinate system defined by csys can by plotted in a Matlab figure window and then
it may be removed using functions:

cs = csys_plot(cs)
cs = csys_delete(cs)

where: cs - structure representing a coordinate system.

Additionally, a coordinate system object has a set of properties, which define its appearance
(color, length of axis, description etc.). Those properties can be determined while creating
coordinate system or by using appropriate function. The description of all properties is included in
the documentation of the toolbox.

3.3. Blocks objects

The blocks are basic objects in presented toolbox, they are used to define the appearance of
manipulators and may be used to create a robot workspace. Each block is approximated by
polyhedron, the primary function allowing to define any object of this type is:

b = block(p, f)

where: b - structure representing a block, p - a column matrix containing the x, y, z coordinates for
each vertex of the block; f - a cell array containing connection matrices specifying which vertices
in the p are connected.

Using of the above function requires determination of each point and each edge of the block,
so it is laborious. Therefore, additional set of functions defining elementary blocks has been
implemented: cone, cube, cuboid, cylinder, polyline, prism, pyramid, sphere,
tetrahedron. Additionally, the complex blocks can be created by merging a previously defined
blocks using the function block_merge. Detailed description of those function is included in the
documentation.

On the block objects similar operations available to coordinate systems objects can be
performed. These are the implemented functions: block_move, block_plot, block_delete,
which enable changing position and orientation, plotting and removing the block from a figure
window respectively. Those functions can be used in the same way as their equivalents defined for
coordinate systems. Additionally, local coordinate system attached to a block can be plotted using
function:

b = block_plot_csys(b)

where: b - structure representing a block.

Similarly to coordinate systems, block objects have a set of properties defining their
appearance. All properties are described in toolbox documentation in a detailed manner.

3.4. Manipulators objects

A set of functions defining and operating on manipulator objects are of crucial importance
for presented toolbox. The basic function which allows to define manipulator is:

r = robot(dh, joints, 'PropName', PropValue, ...)

where: r - structure representing a manipulator; dh - n×4 matrix containing DH parameters set
according to convention presented in section 2.2, n - number of joints; joints - n-element
character array containing joints' types, a single joint can be defined as rotate ('r') or prismatic
('p' or 'd' depending on the type of the link – see section 4.2); PropName, PropValue –
optional parameters, properties specifying the appearance of the manipulator.

For objects of that type optional properties set during their defining are particularly important. They
determine the way to plot the manipulator object in the Matlab figure window, the essentials of
them are listed below:

RobotBase transformation matrix determining position and orientation of robot base,
RobotGrasper transformation matrix determining position and orientation of the grasper

coordinate system,
RobotRange matrix containing ranges of motion in individual joints,
RobotModel method of plotting the manipulator in default 3D view, there are four allowed

values: 'config', 'configex', 'range', 'rangeex' (they will be
explained in section 4).

After creating, the manipulator object is in the configuration resulting from its DH
parameters. That configuration can be changed using function:

r = robot_config(r, conf)

where: r - structure representing a manipulator; conf – n-element vector containing new
configuration of the robot.

The same function may be used to read the current configuration if it is be called without conf
parameter. In that case an output value will be a vector containing a current configuration.

Each manipulator object defined by robot function can be plotted in Matlab figure window
using function:

r = robot_plot(r, view)

where: r - structure representing a manipulator; view – method of plotting the manipulator object,
if view equals 'line' each nonzero length and offset of the manipulator is plotted as a line, if
view is equal to 'mesh' the manipulator is plotted as wireframe 3D object, if view equals 'surf'
the manipulator is plotted as a set of patches.

While creating the manipulator object gets its default 3D appearance dependent on DH
parameters, types of joints and values of properties. In that case each nonzero length and offset is
represented by a single cylinder. There is also possibility to define own appearance of the
manipulator. For this purpose, a shape of each joint using the block objects should be determined.
Definition of the joint appearance can be done by function:

r = robot_arm(r, nr, block, ...)

where: r - structure representing a manipulator; nr – number of joint; block,... – set of blocks
defining the arm appearance, position and orientation of each block are specified in joint local
coordinate system.

Regardless of how the manipulator is plotted, the local coordinate systems of individual
manipulator joints may be shown using function robot_plot_csys. The manipulator and its
coordinate systems can be removed form Matlab figure window by function robot_delete.

The presented toolbox also provides the functions simulating manipulator motions. The first
function creates a special panel in Matlab figure window which allows to change a configuration of
the manipulator using set of controls (each control corresponds to single configuration variable). To
display this panel a following function is used:

robot_panel(r)

where: r - structure representing a manipulator plotted in figure window.

The second function enables to show manipulator realizing the pre-planned trajectory:

r = robot_motion(r, q, delay)

where: r - structure representing a manipulator object; q - matrix containing pre-planned trajectory;
delay - pause between animation steps.

3.5. Trajectory planning

Three classical methods of trajectory planning in the configuration space have been
implemented. The first one allows to generate trajectory described by cubic polynomials:

[Q,V,A,T,c] = trj_poly3(T, Q0, Qt, V0, Vt)

where: T – vector containing a set of time instants for which trajectory will be generated; Q0, Qt -
initial and final configuration of the manipulator; V0, Vt – optional initial and final velocity; Q -
trajectory for each time instant and each joint; V, A - the instantaneous velocities and accelerations;
c – matrix containing polynomials' coefficients describing calculated trajectory.

If it is important to determine an acceleration at the beginning and at the end of the motion
5-th order polynomials can be used:

[Q,V,A,T,c] = trj_poly5(T, Q0, Qt, A0, At, V0, Vt)

where: A0, At – initial and final acceleration; other parameters have similar meaning as
trj_poly3 parameters.

The third trajectory planning method implemented in the toolbox gives a trajectory
described by linear segment with parabolic blends:

[Q,V,A,T,c] = trj_line(T, Q0, Qt, A0, At, V0, Vt)

where all parameters have similar meaning as those presented above.

4. Examples

In that section definition of two chosen manipulators and simulation of certain manipulator
task will be presented. The properties determining the manipulator appearance and definition of the

shape specified by user will be discussed. Finally, usage of implemented functions to solve the
trajectory planning task and simulation of resulting movements of manipulator will be shown.

4.1. Planar 3R manipulator

A planar manipulator of three-revolute kinematic pairs whose DH parameters are given in
the table below will be defined.

Table 1. DH parameters of 3R manipulator

i 1−iα 1−ia id iθ
1 0 0 0 1θ
2 0 0.4 0 2θ
3 0 0.36 0 3θ

Additionally, the manipulator is equipped with a grasper 0.15 units length. Grasper segment
is shifted along z-axis of the coordinate system connected to the last joint by -0.025 units.

Using the function robot such a manipulator can be defined in the following way:

r = robot([dh(0,0,0,-pi/4);dh(0,0.4,0,pi/2);...
 dh(0,0.36,0,-pi/4)], ['r', 'r', 'r'],...
 'RobotBase', rp2t(rotx(-pi/2),[0;0;0]),...
 'RobotGrasper', [0.15; 0; -0.025],...
 'RobotGrasperSize', 0.05,...
 'RobotLineWidth', 2);

First parameter in the above function call is an array containing DH parameters (joints angles are set
respectively to 4π− , 2π , 4π−). The second parameter specifies type of manipulator joints,
in that case all the joints are revolute. The following parameters are properties determining
additional features of manipulator. RobotBase transforms the base of the manipulator in such a
way as to ensure a natural position of the robot in Matlab figure window. RobotGrasper defines
the length and location of the manipulator grasper according to above specification, a non-zero
value of RobotGrasperSize causes drawing a default grasper located in the origin of the local
coordinate system. RobotLineWidth determines the line width that the manipulator will be
plotted in 'line' view. The manipulator defined above, plotted using function robot_plot, has
been shown in fig. 4.1.

The same manipulator can be plotted in default 3D view, but due to too large default values
of parameters specifying sizes of the blocks defining manipulator appearance the change of their
values is required. It can be done by redefinition of the manipulator object or by modification of the
existing object using function robot_set:

r = robot_set(r, 'RobotCylinderRadius', 0.04);

It can be necessary to show local coordinate systems of individual manipulator joints.
Default value of the parameter specifying the axis length is also too large for the manipulator
defined in that example, so it has to be changed:

r = robot_set(r, 'CSysAxisLength', [0 0.2 0 0.2 0 0.2]);

The manipulator with its local coordinates systems plotted using functions:

r = robot_plot(r, 'surf');
r = robot_plot_csys(r, 1);

is shown in fig. 4.2.
This manipulator has been plotted using default value of the property RobotModel (i.e.

'config'), to improve the readability of the drawing another model can be used:

r = robot_set(r, 'RobotModel', 'cofigex');

In that model each joint is marked with additional cylinder placed along axis of the joint, it can be
seen in fig. 4.3.

Default 3D views may differ from the required appearance of the manipulator, so it is
possible to create own 3D model of mechanism. For this purpose shape of each joint has to be
determined by blocks objects (section 3.3). The Matlab code defining the own appearance of the
manipulator considered in that section has been presented below. The manipulator plotted in
'surf' view is shown in fig. 4.4.

1
2
3
4

5
6
7
8

9
10

11
12

13
14

par = {'BlockColor',[0.75,0.75,0.75],'BlockEdgeColor','none'};
r1 = 0.048; r2 = 0.036; r3 = 0.012;
l1 = 0.4; l2 = 0.36; lt = 0.15;
w = 0.05; nr = 25;

b1 = block_move(cuboid(0.2,0.2,0.025,par{:}),rp2t(rotx(pi/2),[0;0.095;0]));
p = [[r1;0.07] arc([r1;0],[-r1,0],r1,nr) [-r1;0.07]];
b2 = block_move(prism(p,w,par{:}), [0;0;-w]);
r = robot_arm(r, 0, b1, b2);

p = [arc([0;-r1],[0;r1],r1,nr) arc([l1;r2],[l1;-r2],r2,nr)];
r = robot_arm(r, 1, prism(p,w,par{:}));

p = [arc([0;-r2],[0;r2],r2,nr) arc([l2;r3],[l2;-r3],r3,nr)];
r = robot_arm(r, 2, block_move(prism(p,w,par{:}), [0;0;-w]));

b = block_move(cylinder(r3,lt,nr,par{:}), rp2t(roty(pi/2),[-lt;0;0]));
r = robot_arm(r, 4, b);

The definition of parameters determining features of the blocks and manipulator dimensions
are given in lines 1-4. Base of the manipulator (lines 5-8) is composed of two blocks: flat cuboid
and rounded prism. The first (lines 9-10) and second (lines 11-12) joint is a prism rounded on both
sides. The manipulator operates with a cylindrical tool, which is placed in the grasper coordinate
system (lines 13-14). All rounded elements have been defined using toolbox function arc which
creates an arc of a given radius that passes through two points.

Fig. 4.1. Manipulator in line view Fig. 4.2. Default 3D view, model config

Fig. 4.3. Default 3D view, model configex Fig. 4.4. User defined 3D view

4.2. Cartesian manipulator (3P)

A manipulator of three mutually perpendicular prismatic joints equipped with a grasper 3
units length will be discussed. Its DH parameters are given in the table below.

Table 2. DH parameters of 3P manipulator

i 1−iα 1−ia id iθ
1 0 0 1d 0
2 2π 0 2d 2π−

3 2π− 2 3d 0

Using the function robot such a manipulator can be defined in the following way:

r = robot([0 0 5.0 0; pi/2 0 7.0 -pi/2; -pi/2 2 3.0 0],...
 ['d'; 'd'; 'p'],...
 'RobotBase', rp2t(rotx(-pi/2),[0;0;0]),...
 'RobotGrasper', rp2t(roty(-pi/2),[0; 0; 3]),...
 'RobotGrasperSize', [0.75,1],...

 'RobotRange', [-3.5, 8.5; 1, 11; 0, 6],...
 'RobotCylinderRadius', 0.5,...
 'RobotModel', 'rangeex');

In the first argument in the above function call DH parameters have been set with the initial
configuration: 5.0, 7.0, 3.0. The second parameter specifies type of manipulator joints. In that case
all joints are prismatic, but two different types of the link have been used – it is related to the
method of plotting the manipulator in default 3D view (property RobotModel). If prismatic joint is
marked as 'p' the block connected to this joint is a movable element. If prismatic joint is marked
as 'd' the block connected to this joint is a fixed element and the next segment of kinematic chain
moves along it. The property RobotRange sets the ranges of motions for each joint, and in that
case it also specifies the dimensions of the manipulator blocks in default 3D view.

The model range/rangeex used above is more natural for manipulator with prismatic
joints. In default model config manipulator arms change their dimensions during the
reconfiguration. 3P manipulator plotted using function robot_plot, in default 3D view discussed
here has been shown in fig. 4.5. and 4.6 in models rangeex and configex respectively.

Fig. 4.5. 3P manipulator, model rangeex Fig. 4.6. 3P manipulator, model configex

4.3. Trajectory planning

The manipulators defined above can be used to simulation of their motions. In this example
3R planar manipulator defined in section 4.1. will perform the task of movement from initial
[]T1.102.51,2.04,- to final []T1.04 1.7, 1.17,- through its intermediate configuration
[]T1.541.63,1.79,- (manipulator avoids the obstacle). The Matlab code realizing this simulation
has been presented below.

1
2
3
4

5
6
7

r = robot([dh(0,0,0,-2.04); dh(0,0.4,0,2.51); dh(0,0.36,0,1.1)],...
 ['r', 'r', 'r'], 'RobotBase', rp2t(rotx(-pi/2),[0;0;0]),...
 'RobotGrasper', [0.15; 0; -0.025], 'RobotGrasperSize', 0.05,...
 'RobotCylinderRadius', 0.025, 'RobotModel', 'configex');

axis([-0.25 0.75 -0.5 0.5 -0.25 0.75])
csys_plot(csys(eye(4), 'CSysAxisLength', axis));
r = robot_plot(r, 'surf');

8

9
10
11

12

b = block_plot(block_move(cuboid(0.05,0.2,0.1),[0.3;0;0]), 'surf');

t1 = 0:0.1:2; t2 = 2:0.1:4;
q1 = trj_line(t1, [-2.04;2.51;1.10], [-1.79;1.63;1.54], 1, 1);
q2 = trj_line(t2, [-1.79;1.63;1.54], [-1.17; 1.7; 1.04], 1, 1);

r = robot_motion(r, [q1 q2]);

In lines 1-4 there is the definition of manipulator. The workspace including the global
coordinate system, the manipulator in the initial configuration and the obstacle (cuboid) are defined
in lines 5-8. The linear trajectory with parabolic blends has been calculated in lines 10-11 – the first
call of the function trj_line computes trajectory from initial to intermediate configuration, the
second call computes trajectory to the final configuration. In the end, the simulation of the motion is
performed in line 12. The manipulator motion (five selected steps) and calculated trajectories for
individual joints have been show in fig. 4.7 and 4.8.

Fig. 4.7. Motion of the manipulator Fig. 4.8. Trajectories for individual joints

5. Conclusions

In the paper a Matlab toolbox for visualization the manipulators and their workspaces in the
realistic manner has been presented. To show manipulator in its default 3D appearance only
Denavit-Hartenberg parameters are required, it is also possible to create a model of mechanism
corresponding to its real appearance using a set of polyhedrons. Additionally, the classical methods
of trajectory generation in configuration space have been implemented and resulting motions may
be shown using provided functions. The toolbox can be useful for educational purposes, for
presentation research results and during designing and verifying the production cells.

The toolbox presented in the paper includes only a set of the basic functions necessary to
modeling the manipulators in virtual environment and it is still being developed. In the next
versions improvement connections between a structure representing a manipulator and its graphical
representation will be implemented. Possibility of simultaneous simulation of multiply robots and
other objects with collision detection will also be added. Additionally, a new class of objects
representing the mobile robots will be introduced. That robots type according to the authors
knowledge has not been implemented in other Matlab toolboxes.

The Robot Toolbox is freely available as the .zip archive file from its website:
http://www.uz.zgora.pl/~gpajak/rtoolbox. After downloading the archive has to be

unzipped to any folder on the computer and path to this folder must to be added to the Matlab
search path. The documentation for each toolbox function is available through the Matlab function
help, all provided examples may be run after calling function demo_robot.

Nomenclature

ia - manipulator link length of the i-th joint

id - manipulator i-th joint offset

SORG
R P - translation vector describing position of origin of coordinate system { }S in the

reference system { }R

RR
S - rotation matrix describing orientation of coordinate system { }S in the reference

system { }R

TR
S - homogeneous transformation matrix describing position and orientation of

coordinate system { }S in the reference system { }R

iα - manipulator link twist of the i-th joint

iθ - manipulator i-th joint angle

References

ABB (2011): RobotStudio: of offline robot programming for ABB robots. - http://www.abb.com.

Bingul Z., Koseeyaporn P., Cook G. E. (2002): Windowsbased robot simulation tools. - 7th
International Conference on Control, Automation, Robotics and Vision, Singapore.

Bruyninckx H. (2001): Open robot control software: the OROCOS project. - IEEE International
Conference on Robotics and Automation (ICRA), pp. 2523–2528.

Corke P. I. (1996): A robotics toolbox for MATLAB. - IEEE Robotics and Automation Magazine,
vol. 3, No.1, pp. 24-32.

Craig J. J. (1989): Introduction to Robotics. - Cambridge, Massachusetts: Addison Wesley.

Fanuc (2011): ROBOGUIDE: a family of offline robot simulation software. -
http://www.fanucrobotics.com.

Fu K. S., Gonzalez R. C., Lee C. S. G. (1987): Robotics. Control, Sensing, Vision and Intelligence.
– New York: McGraw-Hill.

Gourdeau R. (1997): Object oriented programming for robotic manipulators simulation. - IEEE
Robotics and Automation Magazine, vol.4, No.3.

Kucuk S., Bingul Z. (2010): An off-line robot simulation toolbox. - Computer Application in
Engineering Education, 18, pp. 41-52, DOI 10.1002/cae.20236.

Legnani G. (2006): SPACELIB: a software library for the Kinematic and dynamic analysis of
systems of rigid bodies. - U. di Brescia. http://www.ing.unibs.it/~glegnani/

López-Nicolás G., Romeo A., Guerrero J. J. (2009): Project Based Learning of Robot Control and
Programming. - ICEE & ICEER, pp. 1-8.

MathWorks, Inc. (2010): Matlab Programming Fundamentals – Natick, Massachusetts.

Paul R. P. (1981): Robot Manipulators: Mathematics, Programming and Control. - Cambridge,
Massachusetts: MIT Press.

	1. Introduction
	2. Description of the manipulator and its workspace
		2.1. Position and orientation in 3D space
		2.2. Kinematics of the manipulator
	3. Overview of basic functions
		3.1. Position and orientation
		3.2. Coordinate systems objects
		3.3. Blocks objects
		3.4. Manipulators objects
		3.5. Trajectory planning

	4. Examples
		4.1. Planar 3R manipulator
		4.2. Cartesian manipulator (3P)
		4.3. Trajectory planning

	5. Conclusions
	Nomenclature
	References

