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In the paper a Matlab toolbox for modeling and simulation manipulators described by Denavit-Hartenberg 
parameters is presented. This package can be used to realistic visualization of robot motion necessary in research, 
didactic  process  or  during  design  of  production  cell.  Available  functions  allow to  show realistic  model  of 
mechanism easily  based on DH parameters  only.  The  toolbox also provides  a  set  of  tools  for  creating any 
polyhedrons and functions to manipulate them in 3D space. Using those objects it is  possible to create own 
appearance  of  the  manipulator  and  its  workspace.  Functions  implementing  classical  methods  of  trajectory 
planning in configuration space allow to calculate manipulator trajectory which can be shown as an animation. 
The main functions and computer examples illustrating the features of this toolbox  have been presented.
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1. Introduction

The visualization of manipulators  and tasks realized by them plays  an important  role in 
many applications.  The validation of research results is not always  possible by performing real 
experiment using real robot in its environment. Even if a real manipulator is available simulation 
tools  allow to  verify  and  compare  obtained  solution  using  many  different  mechanisms  in  any 
designed workspace. Moreover, while teaching the basis of robotics work with real robots it is not 
always possible, so simulation tools are needed. In virtual environment student can learn issues 
related  to  description  of  position  and orientation  in  3D space,  convention  used to  describe  the 
manipulator  kinematics  and,  finally,  build  any mechanism.  Additionally,  computer  modeling  is 
useful during programming industrial robot tasks. The simulation tools allow to design and verify a 
production  cell  in  virtual  environment  without  occupation  of  mechanical  robots  and  other 
equipments. In the applications presented above performing a simulation using simplified models 
may by insufficient, often it is important that manipulator and objects in its environment look like a 
real workspace.

There are a lot of tools which can be used in the applications presented above. The robot 
manufactures provide their own software allowing to simulate a robotic process in 3D space (Fanuc 
(2011), ABB (2011)). The main drawback of such tools is their narrow specialization, they support 
own robots only. This feature limits usage of this software in research and educational applications. 
There are also more versatile  solutions which allow to simulate  a broader class of mechanism. 
López-Nicolás et al. (2009) presented applications package for creating models of robots and their 
workspace. The robots created in this way may be programmed and shown in a graphical simulator. 
Cakir  and Butun (2007) created an educational  tool for interactive simulation 6-DOF industrial 
robotic arms. The program is written for manipulators with revolute joints only and that it is its 
main drawback. Gourdeau (1997) and Bruyninckx (2001) developed independently object oriented 
programming toolboxes in C++ for synthesis and simulation of robotic manipulator models. Using 
those  tools  it  is  possible  to  build  any  robotic  system  but  knowledge  of  C++  programming  is 



necessary.  Knowing LISP programming language is needed in order to use window-based robot 
simulation tool developed by Bingul et al. (2002).

The tools presented above are standalone applications or libraries for certain programming 
languages. However, in robotics, both research and education are often carried out using complete 
environments for high-level programming and it is convenient that the simulation tool is integrated 
with such an environment. The one of the most popular applications is MathWorks product Matlab 
(MathWorks (2010)) but, unfortunately, it does not have specialized toolbox for robotics. There are 
some independent libraries covering that gap, such as Robotic Toolbox for Matlab (Corke (1996)) 
and SpaceLib  (Legnani  (2006)).  Both libraries  provide many useful  tools  necessary for  robotic 
modeling and simulations, but they show poor graphics capabilities and do not allow to create the 
realistic models of mechanisms. Kucuk and Bingul (2010) presented ROBOLAB toolbox which 
allows users to compute forward and inverse kinematics, calculate manipulator trajectories using 
classical methods and view robot animations. The main disadvantage of that tool is that it allows to 
make  calculations  for  16  predefined  6-DOF serial  manipulators  only,  and  to  create  their  own 
appearance is not possible.

In this paper the Matlab toolbox for modeling and simulation manipulators described by 
Denavit-Hartenberg parameters is presented. The main advantage of that toolbox in comparison to 
toolboxes  mentioned  above  is  possibility  to  make  simulation  of  any  robot  manipulator. 
Furthermore, a user can easily show manipulators using default 3D appearance presenting action of 
mechanism in realistic manner or can define his/her own model of manipulator corresponding to the 
real construction. The toolbox also provides a set of basic blocks, tools for creating any polyhedrons 
and  functions  for  manipulating  position  and  orientation  of  those  objects  in  3D  space.  Using 
previously created elements it is possible to define a manipulator appearance and its workspace. 
Additionally,  the manipulators motions  can be calculated using one of the  classical  methods of 
trajectory planning in the configuration space.

2. Description of the manipulator and its workspace

2.1. Position and orientation in 3D space

In the work, we assumed each solid is described in its own local coordinate system. Hence, 
the position and orientation of that coordinate system sets the location of the solid precisely. To 
determine position of the local coordinate system in any reference system 13×  translation vector 
describing  position  of  the  origin  of  the  local  system is  required.  To describe  orientation  solid 
coordinate system in the reference system an  33× orientation matrix may be used. In compact 
notation translation vector and orientation matrix may be combined together in 44×  homogeneous 
transformation matrix (Craig (1993)) as follows:
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vector describing position of origin of solid local system { }S  in the reference system { }R ; 31×0  - 
31×  zeros vector.

Dependencies  given  by  (2.1)  are  a  convenient  and  efficient  way  to  represent  a  sequence  of 
transformations  and  they  are  basic  form  of  the  description  of  position  and  orientation  in  the 
presented toolbox.

2.2. Kinematics of the manipulator

In robotics applications a Denavit-Hartenberg convention is commonly used to describe the 
manipulator kinematics. To determine DH parameters assigning a coordinate systems to each joint 
of manipulator is needed. There are two different methodologies defining the way of coordinate 
system attachment.  In  the  first  one,  described  by  Paul  (1981)  and Fu,  et  al.  (1987),  origin  of 
coordinate  system  { }i  is  located  on  the  axis  of  joint  1+i .  In  the  second  one,  described  by 
Craig (1993), origin of coordinate system { }i  is located on the axis of joint i . In presented toolbox 
the  second  convention  named  “modified  Denavit-Hartenberg”  is  used  to  describe  manipulator 
kinematics. In that case z-axis of the coordinate system { }i  is placed along the axis of joint i, the x-
axis is parallel to the normal to axes of joint i and i+1, y-axis completes the right-handed coordinate 
system. The DH parameters in this convention are defined as follows:

link length ( )ia – distance between iZ  and 1+iZ  along iX ,

link twist ( )iα - angle between iZ  and 1+iZ  around iX ,

joint offset ( )id - distance between 1−iX  and iX  along iZ ,

joint angle ( )iθ - angle between 1−iX  and iX  around iZ .
In the fig. 2.1 the method of coordinate system attachment and DH parameters is presented.

Fig. 2.1. Kinematic parameters determined according to the modified DH convention

3. Overview of basic functions

3.1. Position and orientation



The method of description of position and orientation used in presented toolbox has been 
described in section 2.1. The homogeneous transformation matrix (2.1) may be defined using the 
function

T = rp2t(R, P)

where: T - 44×  homogeneous transformation matrix ; R – rotation matrix; P – translation vector.

To specify orientation, three functions defining rotation matrices around x-axis, y-axis and 
z-axis have been implemented:

R = rotx(angle)
R = roty(angle)
R = rotz(angle)

where: R – rotation matrix; angle – angle of rotation around respective axis.

The  composition  of  several  transformations  may  be  accomplished  by  multiplication  of 
transformations  or  rotations  matrices.  To  determine  the  inverse  transformation  (2.1)  a  suitable 
function, which preserves a structure of homogeneous transformation, has been implemented:

T = tinv(T)

where: T - 44×  homogeneous transformation matrix.

3.2. Coordinate systems objects

The toolbox provides a set of functions for creating and working with coordinate systems. 
Those functions allow to understand the description of the position and orientation in 3D space by 
homogenous transformation (2.1). A coordinate system object may be created by calling following 
function:

cs = csys(T)

where: cs - structure representing a coordinate system; T - 4x4 transformation matrix determining 
position and orientation.

Changing position and/or orientation of the coordinate system is possible by using function:

cs = csys_move(cs, T, kind)

where: cs - structure representing a coordinate system; T - 4x4 transformation matrix determining 
changes  of  position  and  orientation;  kind –  an  optional  parameter  specifying  the  method  of 
calculating new position and orientation, if  kind equals 0 then  T is new position and orientation 
(default value), if kind is equal to 1 then T describes changes of position and orientation according 
to global coordinate system, if kind equals 2 then T describes changes of position and orientation 
according to current coordinate system.

Each coordinate system defined by csys can by plotted in a Matlab figure window and then 
it may be removed using functions:



cs = csys_plot(cs)
cs = csys_delete(cs)

where: cs - structure representing a coordinate system.

Additionally, a coordinate system object has a set of properties, which define its appearance 
(color,  length  of  axis,  description  etc.).  Those  properties  can  be  determined  while  creating 
coordinate system or by using appropriate function. The description of all properties is included in 
the documentation of the toolbox.

3.3. Blocks objects

The blocks are basic objects in presented toolbox, they are used to define the appearance of 
manipulators  and  may  be  used  to  create  a  robot  workspace.  Each  block  is  approximated  by 
polyhedron, the primary function allowing to define any object of this type is:

b = block(p, f)

where: b - structure representing a block, p - a column matrix containing the x, y, z coordinates for 
each vertex of the block; f - a cell array containing connection matrices specifying which vertices 
in the p are connected.

Using of the above function requires determination of each point and each edge of the block, 
so  it  is  laborious.  Therefore,  additional  set  of  functions  defining  elementary  blocks  has  been 
implemented:  cone,  cube,  cuboid,  cylinder,  polyline,  prism,  pyramid,  sphere, 
tetrahedron. Additionally, the complex blocks can be created by merging a previously defined 
blocks using the function block_merge. Detailed description of those function is included in the 
documentation.

On  the  block  objects  similar  operations  available  to  coordinate  systems  objects  can  be 
performed. These are the implemented functions:  block_move,  block_plot,  block_delete, 
which enable  changing position and orientation,  plotting and removing the block from a figure 
window respectively. Those functions can be used in the same way as their equivalents defined for 
coordinate systems. Additionally, local coordinate system attached to a block can be plotted using 
function:

b = block_plot_csys(b)

where: b - structure representing a block.

Similarly  to  coordinate  systems,  block  objects  have  a  set  of  properties  defining  their 
appearance. All properties are described in toolbox documentation in a detailed manner.

3.4. Manipulators objects

A set of functions defining and operating on manipulator objects are of crucial importance 
for presented toolbox. The basic function which allows to define manipulator is:

r = robot(dh, joints, 'PropName', PropValue, ...)



where: r - structure representing a manipulator; dh - n×4  matrix containing DH parameters set 
according  to  convention  presented  in  section  2.2,  n - number  of  joints;  joints - n-element 
character array containing joints' types, a single joint can be defined as rotate ('r') or prismatic 
('p' or  'd' depending on  the  type  of  the  link  – see  section  4.2);  PropName,  PropValue – 
optional parameters, properties specifying the appearance of the manipulator.

For objects of that type optional properties set during their defining are particularly important. They 
determine the way to plot the manipulator object in the Matlab figure window, the essentials of 
them are listed below:

RobotBase transformation matrix determining position and orientation of robot base,
RobotGrasper transformation  matrix  determining  position  and  orientation  of  the  grasper 

coordinate system,
RobotRange matrix containing ranges of motion in individual joints,
RobotModel method of plotting the manipulator in default 3D view, there are four allowed 

values:  'config',  'configex',  'range',  'rangeex' (they  will  be 
explained in section 4).

After  creating,  the  manipulator  object  is  in  the  configuration  resulting  from  its  DH 
parameters. That configuration can be changed using function:

r = robot_config(r, conf)

where:  r - structure  representing  a  manipulator; conf –  n-element  vector  containing  new 
configuration of the robot.

The same function may be used to read the current configuration if it is be called without  conf 
parameter. In that case an output value will be a vector containing a current configuration.

Each manipulator object defined by robot function can be plotted in Matlab figure window 
using function:

r = robot_plot(r, view)

where: r - structure representing a manipulator; view – method of plotting the manipulator object, 
if  view equals  'line' each nonzero length and offset of the manipulator is plotted as a line, if 
view is equal to 'mesh' the manipulator is plotted as wireframe 3D object, if view equals 'surf' 
the manipulator is plotted as a set of patches.

While  creating  the  manipulator  object  gets  its  default  3D appearance  dependent  on DH 
parameters, types of joints and values of properties. In that case each nonzero length and offset is 
represented  by  a  single  cylinder.  There  is  also  possibility  to  define  own  appearance  of  the 
manipulator. For this purpose, a shape of each joint using the block objects should be determined. 
Definition of the joint appearance can be done by function:

r = robot_arm(r, nr, block, ...)

where: r - structure representing a manipulator; nr – number of joint; block,... – set of blocks 
defining the arm appearance,  position and orientation of each block are specified in joint  local 
coordinate system.



Regardless of how the manipulator is plotted,  the local coordinate systems of individual 
manipulator  joints  may be  shown using  function  robot_plot_csys.  The  manipulator  and its 
coordinate systems can be removed form Matlab figure window by function robot_delete.

The presented toolbox also provides the functions simulating manipulator motions. The first 
function creates a special panel in Matlab figure window which allows to change a configuration of 
the manipulator using set of controls (each control corresponds to single configuration variable). To 
display this panel a following function is used:

robot_panel(r)

where: r - structure representing a manipulator plotted in figure window.

The second function enables to show manipulator realizing the pre-planned trajectory:

r = robot_motion(r, q, delay)

where: r - structure representing a manipulator object; q - matrix containing pre-planned trajectory; 
delay - pause between animation steps.

3.5. Trajectory planning

Three  classical  methods  of  trajectory  planning  in  the  configuration  space  have  been 
implemented. The first one allows to generate trajectory described by cubic polynomials:

[Q,V,A,T,c] = trj_poly3(T, Q0, Qt, V0, Vt)

where: T – vector containing a set of time instants for which trajectory will be generated; Q0, Qt - 
initial and final configuration of the manipulator;  V0,  Vt – optional initial and final velocity;  Q - 
trajectory for each time instant and each joint; V, A - the instantaneous velocities and accelerations; 
c – matrix containing polynomials' coefficients describing calculated trajectory. 

If it is important to determine an acceleration at the beginning and at the end of the motion 
5-th order polynomials can be used:

[Q,V,A,T,c] = trj_poly5(T, Q0, Qt, A0, At, V0, Vt)

where:  A0,  At –  initial  and  final  acceleration;  other  parameters  have  similar  meaning  as 
trj_poly3 parameters.

The  third  trajectory  planning  method  implemented  in  the  toolbox  gives  a  trajectory 
described by linear segment with parabolic blends:

[Q,V,A,T,c] = trj_line(T, Q0, Qt, A0, At, V0, Vt)

where all parameters have similar meaning as those presented above.

4. Examples

In that section definition of two chosen manipulators and simulation of certain manipulator 
task will be presented. The properties determining the manipulator appearance and definition of the 



shape specified by user will  be discussed. Finally,  usage of implemented functions to solve the 
trajectory planning task and simulation of resulting movements of manipulator will be shown.

4.1. Planar 3R manipulator

A planar manipulator of three-revolute kinematic pairs whose DH parameters are given in 
the table below will be defined.

Table 1. DH parameters of 3R manipulator

i 1−iα 1−ia id iθ
1 0 0 0 1θ
2 0 0.4 0 2θ
3 0 0.36 0 3θ

Additionally, the manipulator is equipped with a grasper 0.15 units length. Grasper segment 
is shifted along z-axis of the coordinate system connected to the last joint by -0.025 units.

Using the function robot such a manipulator can be defined in the following way:

r = robot([dh(0,0,0,-pi/4);dh(0,0.4,0,pi/2);...
           dh(0,0.36,0,-pi/4)], ['r', 'r', 'r'],...
          'RobotBase', rp2t(rotx(-pi/2),[0;0;0]),...
          'RobotGrasper', [0.15; 0; -0.025],...
          'RobotGrasperSize', 0.05,...
          'RobotLineWidth', 2);

First parameter in the above function call is an array containing DH parameters (joints angles are set 
respectively to 4π− , 2π , 4π− ). The second parameter specifies type of manipulator joints, 
in  that  case  all  the  joints  are  revolute.  The  following  parameters  are  properties  determining 
additional features of manipulator.  RobotBase transforms the base of the manipulator in such a 
way as to ensure a natural position of the robot in Matlab figure window. RobotGrasper defines 
the length and location of the manipulator  grasper according to above specification,  a non-zero 
value of  RobotGrasperSize causes drawing a default grasper located in the origin of the local 
coordinate  system.  RobotLineWidth determines  the  line  width  that  the  manipulator  will  be 
plotted in 'line' view. The manipulator defined above, plotted using function robot_plot, has 
been shown in fig. 4.1.

The same manipulator can be plotted in default 3D view, but due to too large default values 
of parameters specifying sizes of the blocks defining manipulator appearance the change of their 
values is required. It can be done by redefinition of the manipulator object or by modification of the 
existing object using function robot_set:

r = robot_set(r, 'RobotCylinderRadius', 0.04);

It  can  be  necessary  to  show  local  coordinate  systems  of  individual  manipulator  joints. 
Default  value of the parameter  specifying  the axis  length is  also too large  for  the manipulator 
defined in that example, so it has to be changed:

r = robot_set(r, 'CSysAxisLength', [0 0.2 0 0.2 0 0.2]);



The manipulator with its local coordinates systems plotted using functions:

r = robot_plot(r, 'surf');
r = robot_plot_csys(r, 1);

is shown in fig. 4.2.
This manipulator has been plotted using default value of the property  RobotModel (i.e. 

'config'), to improve the readability of the drawing another model can be used:

r = robot_set(r, 'RobotModel', 'cofigex');

In that model each joint is marked with additional cylinder placed along axis of the joint, it can be 
seen in fig. 4.3.

Default  3D views  may differ  from the  required  appearance  of  the  manipulator,  so it  is 
possible to create own 3D model of mechanism. For this purpose shape of each joint has to be 
determined by blocks objects (section 3.3). The Matlab code defining the own appearance of the 
manipulator  considered  in  that  section  has  been  presented  below.  The  manipulator  plotted  in 
'surf' view is shown in fig. 4.4.
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par = {'BlockColor',[0.75,0.75,0.75],'BlockEdgeColor','none'};
r1  = 0.048;  r2 = 0.036;  r3 = 0.012;
l1  = 0.4;    l2 = 0.36;   lt = 0.15;
w   = 0.05;   nr = 25;

b1 = block_move(cuboid(0.2,0.2,0.025,par{:}),rp2t(rotx(pi/2),[0;0.095;0]));
p = [[r1;0.07] arc([r1;0],[-r1,0],r1,nr) [-r1;0.07]];
b2 = block_move(prism(p,w,par{:}), [0;0;-w]);
r = robot_arm(r, 0, b1, b2);

p = [arc([0;-r1],[0;r1],r1,nr) arc([l1;r2],[l1;-r2],r2,nr)];
r = robot_arm(r, 1, prism(p,w,par{:}));

p = [arc([0;-r2],[0;r2],r2,nr) arc([l2;r3],[l2;-r3],r3,nr)];
r = robot_arm(r, 2, block_move(prism(p,w,par{:}), [0;0;-w]));

b = block_move(cylinder(r3,lt,nr,par{:}), rp2t(roty(pi/2),[-lt;0;0]));
r = robot_arm(r, 4, b);

The definition of parameters determining features of the blocks and manipulator dimensions 
are given in lines 1-4. Base of the manipulator (lines 5-8) is composed of two blocks: flat cuboid 
and rounded prism. The first (lines 9-10) and second (lines 11-12) joint is a prism rounded on both 
sides. The manipulator operates with a cylindrical tool, which is placed in the grasper coordinate 
system (lines 13-14). All rounded elements have been defined using toolbox function  arc which 
creates an arc of a given radius that passes through two points.



Fig. 4.1. Manipulator in line view Fig. 4.2. Default 3D view, model config

Fig. 4.3. Default 3D view, model configex Fig. 4.4. User defined 3D view

4.2. Cartesian manipulator (3P)

A manipulator of three mutually perpendicular prismatic joints equipped with a grasper 3 
units length will be discussed. Its DH parameters are given in the table below.

Table 2. DH parameters of 3P manipulator

i 1−iα 1−ia id iθ
1 0 0 1d 0
2 2π 0 2d 2π−

3 2π− 2 3d 0

Using the function robot such a manipulator can be defined in the following way:

r = robot([0 0 5.0 0; pi/2 0 7.0 -pi/2; -pi/2 2 3.0 0],...
          ['d'; 'd'; 'p'],...
          'RobotBase', rp2t(rotx(-pi/2),[0;0;0]),... 
          'RobotGrasper', rp2t(roty(-pi/2),[0; 0; 3]),...
          'RobotGrasperSize', [0.75,1],...



          'RobotRange', [-3.5, 8.5; 1, 11; 0, 6],...
          'RobotCylinderRadius', 0.5,...
          'RobotModel', 'rangeex');

In  the  first  argument  in  the  above  function  call  DH parameters  have  been  set  with  the  initial 
configuration: 5.0, 7.0, 3.0. The second parameter specifies type of manipulator joints. In that case 
all joints are prismatic, but two different types of the link have been used – it is related to the 
method of plotting the manipulator in default 3D view (property RobotModel). If prismatic joint is 
marked as 'p' the block connected to this joint is a movable element. If prismatic joint is marked 
as 'd' the block connected to this joint is a fixed element and the next segment of kinematic chain 
moves along it. The property  RobotRange sets the ranges of motions for each joint, and in that 
case it also specifies the dimensions of the manipulator blocks in default 3D view.

The model  range/rangeex used  above is  more  natural  for  manipulator  with  prismatic 
joints.  In  default  model  config manipulator  arms  change  their  dimensions  during  the 
reconfiguration. 3P manipulator plotted using function robot_plot, in default 3D view discussed 
here has been shown in fig. 4.5. and 4.6 in models rangeex and configex respectively.

Fig. 4.5. 3P manipulator, model rangeex Fig. 4.6. 3P manipulator, model configex

4.3. Trajectory planning

The manipulators defined above can be used to simulation of their motions. In this example 
3R planar  manipulator  defined  in  section  4.1.  will  perform the  task  of  movement  from initial 
[ ]T1.102.51,2.04,-  to  final  [ ]T1.04 1.7, 1.17,-  through  its  intermediate  configuration 
[ ]T1.541.63,1.79,-  (manipulator avoids the obstacle). The Matlab code realizing this simulation 
has been presented below.

1
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r = robot([dh(0,0,0,-2.04); dh(0,0.4,0,2.51); dh(0,0.36,0,1.1)],...
          ['r', 'r', 'r'], 'RobotBase', rp2t(rotx(-pi/2),[0;0;0]),...
           'RobotGrasper', [0.15; 0; -0.025], 'RobotGrasperSize', 0.05,...
           'RobotCylinderRadius', 0.025, 'RobotModel', 'configex');

axis([-0.25 0.75 -0.5 0.5 -0.25 0.75])
csys_plot(csys(eye(4), 'CSysAxisLength', axis));
r = robot_plot(r, 'surf');
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b = block_plot(block_move(cuboid(0.05,0.2,0.1),[0.3;0;0]), 'surf');

t1 = 0:0.1:2;  t2 = 2:0.1:4;
q1 = trj_line(t1, [-2.04;2.51;1.10], [-1.79;1.63;1.54], 1, 1);
q2 = trj_line(t2, [-1.79;1.63;1.54], [-1.17; 1.7; 1.04], 1, 1);

r = robot_motion(r, [q1 q2]);

In  lines  1-4  there  is  the  definition  of  manipulator.  The  workspace  including  the  global 
coordinate system, the manipulator in the initial configuration and the obstacle (cuboid) are defined 
in lines 5-8. The linear trajectory with parabolic blends has been calculated in lines 10-11 – the first 
call of the function  trj_line computes trajectory from initial to intermediate configuration, the 
second call computes trajectory to the final configuration. In the end, the simulation of the motion is 
performed in line 12. The manipulator motion (five selected steps) and calculated trajectories for 
individual joints have been show in fig. 4.7 and 4.8.

Fig. 4.7. Motion of the manipulator Fig. 4.8. Trajectories for individual joints

5. Conclusions

In the paper a Matlab toolbox for visualization the manipulators and their workspaces in the 
realistic  manner  has  been  presented.  To  show  manipulator  in  its  default  3D  appearance  only 
Denavit-Hartenberg parameters are required,  it  is also possible to create a model of mechanism 
corresponding to its real appearance using a set of polyhedrons. Additionally, the classical methods 
of trajectory generation in configuration space have been implemented and resulting motions may 
be  shown  using  provided  functions.  The  toolbox  can  be  useful  for  educational  purposes,  for 
presentation research results and during designing and verifying the production cells.

The toolbox presented in the paper includes only a set of the basic functions necessary to 
modeling  the  manipulators  in  virtual  environment  and  it  is  still  being  developed.  In  the  next 
versions improvement connections between a structure representing a manipulator and its graphical 
representation will be implemented. Possibility of simultaneous simulation of multiply robots and 
other  objects  with  collision  detection  will  also  be  added.  Additionally,  a  new class  of  objects 
representing  the  mobile  robots  will  be  introduced.  That  robots  type  according  to  the  authors 
knowledge has not been implemented in other Matlab toolboxes.

The  Robot  Toolbox  is  freely  available  as  the  .zip  archive  file  from  its  website: 
http://www.uz.zgora.pl/~gpajak/rtoolbox.  After  downloading  the  archive  has  to  be 



unzipped to any folder on the computer and path to this folder must to be added to the Matlab 
search path. The documentation for each toolbox function is available through the Matlab function 
help, all provided examples may be run after calling function demo_robot.

Nomenclature

ia - manipulator link length of the i-th joint

id - manipulator i-th joint offset

SORG
R P - translation  vector  describing  position  of  origin  of  coordinate  system  { }S  in  the 

reference system { }R

RR
S - rotation  matrix  describing  orientation  of  coordinate  system  { }S  in  the  reference 

system { }R

TR
S - homogeneous  transformation  matrix  describing  position  and  orientation  of 

coordinate system { }S  in the reference system { }R

iα - manipulator link twist of the i-th joint

iθ - manipulator i-th joint angle
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