1. ŚRODOWISKO

PneuDraw to aplikacja firmy SMC ułatwiająca projektowanie schematów pneumatycznych. Program działa w przeglądarce i jest dostępny pod adresem:

https://www.smc.eu/pl-pl/products/engineering-tools/pneumatic_circuits_drawing.

Do rozpoczęcia pracy nie jest potrzebna rejestracja wystarczy kliknąć przycisk Rozpocznij.

🗪 PneuDraw - rysowanie	schemató × +			\sim	_	×
\leftrightarrow \rightarrow C \square smc	eu/pl-pl/products/engineering-tools/p G	Q	ê 1	☆ 😡	*) :
Rysowanie	schematów pneumatycznych	Zacznij	ij rysowan	nie schematów		1
Zaproje	ktuj swój układ		Ro	ozpocznij		
program	nu PneuDraw Online	z	apytaj na	iszych ekspertő	w	
Rysowanie schematów	pneumatycznych - NOWOŚĆ!					+

Rysując schemat należy:

- odszukać właściwe elementy w bibliotece symboli i umieścić je w obszarze roboczym,
- połączyć odpowiednie elementy liniami,
- jeżeli jest to konieczne dopasować własności elementów.

🖙 SMC eTools // PneuDraw	× +	✓ - □ ×
\leftrightarrow \rightarrow C \square etools.smc.a	t/pneudraw/?id=pd056d1e6f-5 🔯 🍳	🖻 🖈 🛛 🚺 🗄
Plik Edytuj Widok Układ Dodatki M wvszukiwarka	menu Jarzędzia Pomoc toolbar	Wybierz kraj Zaloguj własności projektu i elementów itled Drawing wed Changes! Projekt Opcje Diagram
Podstawowe biblioteka symboli Pneumatyka biblioteka symboli Elementy przygoto kategorie elementów	obszar roboczy	Numer schematu Opis Warstwy
Zawory sterowane		↓ ■ □ : ⊡ +
	Rysunek Obiekty Spis elementów (BO	DM)

2. Rysowanie

Sposób korzystania z programu zostanie omówiony na przykładzie układu realizującego blokowanie mechaniczne [1].

Układ zbudowany jest z:

- dwóch monostabilnych zaworów 3/2: normalnie zamkniętego zaworu sterowanego ręcznie i normalnie otwartego zaworu sterowanego pneumatycznie,
- zaworu dławiąco zwrotnego dławiącego przepływ powietrza podczas ruchu powrotnego tłoczyska,
- pneumatycznego siłownika jednostronnego działania.

Wszystkie elementy schematu znajdują się w bibliotece Pneumatyka, dokładne położenie elementów zostało opisane w tabeli poniżej. Elementy można również wyszukiwać korzystając z wyszukiwarki należy jednak posługiwać się angielską nazwą elementu (nawet pomimo przestawienia, w górnym prawym

narożniku ^{Wybierz kraj}, języka programu na polski).

Element	Położenie
zawory 3/2	kategoria: Zawory sterowane mechanicznie i pneumatycznie
zawór dławiąco zwrotny	kategoria: Elementy kontroli przepływu
siłownik	kategoria: Siłowniki pneumatyczne

2.1. Wybór elementu z biblioteki

Wygląd części symboli może być modyfikowany przez użytkownika – wskazuje na to ikona koła zębatego w umieszczona obok symbolu elementu. Po kliknięciu na ikonę wyświetlane jest okno pokazujące wszystkie możliwe warianty symbolu (lista wariantów może zawierać nawet kilka stron różnych wersji symbolu co utrudnia znalezienie właściwego).

Element można pobrać bezpośrednio klikając na symbolu i przeciągając go na obszar roboczy – w przypadku elementów konfigurowalnych na obszar roboczy zostanie przeciągnięta domyślna postać symbolu. Elementy konfigurowalne można również przeciągać na obszar roboczy z poziomu okna wyświetlanego po kliknięciu na ikonę koła zębatego.

Na rysunku poniżej pokazany został stan obszaru roboczego po umieszczeniu na nim symboli niezbędnych elementów w ich wersjach domyślnych.

Zawory 3/2 domyślnie wstawiane są jako monostabilne normalnie zamknięte ze sterowaniem pneumatycznym. Postać symbolu po jego umieszczeniu na obszarze roboczym może być zmieniona za pomocą umieszczonego po prawej stronie okna Własności. Symbol zaworu 3/2 może być np. narysowany:

- w pozycji wysterowanej (właściwość Wysterowany),
- jako normalnie zamknięty, otwarty itd. (właściwość Typ),
- ze sterowaniem pneumatycznym, ręcznie przyciskiem itd. (właściwość Rodzaj kontroli),
- z powrotem realizowanym przy pomocy sprężyny pneumatycznej, mechanicznej itd. (właściwość Rodzaj powrotu),

Produkt	Tekst	Układ	Produkt	Tekst	Układ	Produkt		Tekst	Układ
Właściwości	symbolu		Właściwości	symbolu		Właściwo	ści sy	mbolu	
Wysterowany			Wysterowany			Wysterow	any		
Тур	Normalni	e zamknię 🗙	Тур	Normalni	e zamknię 🗙	Тур		Normalni	e zamknię 🗙
Rodzaj ko	ormalnie zamł ormalnie otwa	mięty (N.C.)	Rodzaj kontro	li Sterowar	iy pneuma 🗸	Rodzaj ko	ntroli	Sterowan	y pneuma 🗸
Rodzaj pr	zepływ/Bloka	da	R Sterowan	y pneumatyc	znie	Rodzaj po	wrotu	Sprężyna	mechani 🗸
Dwukieru U	oust ciśnienia	resztkowego	D Z przycisł	dem viom i zapadl		Sprężyna p	neun	natyczna	
Odnowietrze	nie Port	~	O Przyciek	arzybkowy	^{,q}	Sprężyna i	necha	aniczna	
Zapadka		·	Zawór no Dźwignia	żny z rolką z rolką	okiorunkowa	Sprężyna r Brak	necha	aniczna i pr	neumatyczna

Zgodnie z założeniami przedstawionymi na początku tego punktu:

- dolny zawór powinien być sterowany ręcznie (za pomocą przycisku) a
- górny zawór powinien być normalnie otwarty.

W przypadku zaworu dolnego należy więc zmienić Rodzaj kontroli na Z przyciskiem a w przypadku drugiego zaworu Typ na Normalnie otwarty.

Domyślna postać symbolu zaworu dławiąco zwrotnego odpowiada przyjętym założeniom więc własności symbolu nie muszą być modyfikowane. Poprawiony musi być natomiast symbol siłownika pneumatycznego, który nie miał być wyposażony w magnetyczny sygnalizator położeń krańcowych i dodatkowo powinien być narysowany w po wypełnieniu komory tłoka powietrzem. Podstawowe własności siłownika jednostronnego działania zostały pokazane na rysunkach poniżej. Dopasowanie postaci symbolu do przyjętych założeń wymaga w tym przypadku:

- włączenia opcji Ciśnienie,
- wyłączenia opcji Magnes.

Produkt	Tekst	Układ
Właściwośc	i symbolu	
Тур	Wsunięty	~
Ciśnienie		
Magnes	~	

Po dopasowaniu właściwości symboli należy narysować wszystkie połączenia. Dodawanie połączeń jest intuicyjne, jedna z możliwości polega na:

 wskazaniu początkowego punktu połączenia (należy najechać myszą na odpowiednie przyłącze, wszystkie przyłącza wybranego elementu zaznaczane są niebieskimi krzyżykami a przyłącze wskazywane rozświetlane jest na zielono),

- wciśnięcie lewego przycisku myszy,
- wskazanie końcowego punktu połączenia.

3. ZAPIS I EKSPORT

Program pozwala na zapis schematów w formacie plikach z rozszerzeniem SPDX w folderze pamięci lokalnej (podręcznej) przeglądarki (opcje Plik>Zapisz i Plik>Zapisz jako). Ze względu, na to że przy czyszczeniu pamięci podręcznej pliki te zostaną razem z innymi usunięte warto jest pobrać przygotowane schematy do trwałej lokalizacji – operację taką umożliwia opcja Plik>Pobierz. Schematy mogą również być eksportowane do formatów DXF, HTML, JPEG, PNG, SVG (opcja Plik>Eksportuj).

Bibliografia

1. SMC, Podręcznik: Sprężone powietrze i jego zastosowanie, Rozdział 9. Podstawowe układy sterowania, Odwrócenie sygnału: zastosowanie negacji – funkcja NIE.