
Robust model predictive control using neural networks

Krzysztof Patan1, Piotr Witczak2

Abstract— The paper deals with robust model predictive
control designed using recurrent neural network. A dynamic
neural network is trained to act as the one-step ahead predictor,
which is then used successively to obtain k-step ahead prediction
of the plant output. Based on the neural predictor, the control
law is derived solving a constrained optimization problem. The
robustness of the considered predictive scheme is derived using
the concept of an error model. Based on the developed robust
model, a optimization problem is redefined. Two solutions are
portrayed. The first one is to change the cost function in order
to consider the robust model of the plant, while the second one
is to impose constraints on the process output using derived
uncertainty bands.

I. INTRODUCTION

Model Predictive Control (MPC) is the subject of intensive
research for the last three decades [3], [6], [15]. This research
effort has succeeded in many practical applications [12], [5],
[1]. The attractiveness of predictive control algorithms comes
from its natural ability to consider process and technological
constraints imposed on input, output or state variables. The
second very important reason is that the operating princi-
ples are understandable and relatively easy to explain to
practitioners which seems to be a crucial aspect during
implementation of a new control scheme in the industry.

A crucial question concerning MPC is its robustness
against model uncertainty and noise. Robustness of a control
system is referenced to a specific uncertainty range and
specific stability and performance criteria. In spite of a
rich literature devoted robust control of linear systems, very
little is known about the robust control of linear systems
with constraints as well as nonlinear systems. In general,
if we talk about the robustness issues we assume that the
uncertainty of the model follows from two main sources [2],
[14]: (i) unmodelled dynamics of a plant, (ii) unmeasured
noise/disturbances which enter the plant. In the framework of
linear time-invariant systems different approaches have been
proposed, e.g. impulse/step responses, a polytopic uncer-
tainty or bounded input disturbances. Generally speaking, the
existing methods can be divided into two classes: structured
and unstructured uncertainties [3], [14]. These uncertainty
descriptions, however, are very useful in the case of lin-
ear time-invariant systems, especially using H∞ paradigm.
Unfortunately, they cannot be used in the framework of
nonlinear systems.

In this paper the nonlinear predictive control based on
Generalized Predictive Control (GPC) concept is considered.
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This kind of predictive control is well suited for single
variable control as well as for adaptive control. To deal
with a nonlinearity of a plant a dynamic neural network is
applied. Neural networks provide an interesting and valuable
alternative to classical methods, because they can easily deal
with the most complex situations which are not sufficiently
defined for deterministic algorithms to execute. They are
especially useful when there is no mathematical model of
a plant. Moreover, neural networks provide an excellent tool
for dealing with nonlinear problems [9]. These features allow
for designing adaptive control systems for complex, unknown
and nonlinear dynamic processes [7], [8], [10]. As the neural
network is a nonparametric model, it represents a plant
dynamics as well as nonlinearity in a distributed way using
all weight parameters. Thus, common approaches to robust
MPC synthesis listed in the literature cannot be used here as
they are devoted to linear systems with parametric represen-
tation [14]. Recently, neural networks has been applied to
robust MPC synthesis [16]. However, is such an approach,
recurrent neural networks are used to solve minimax oprimal
control problem.

The purpose of the paper is to propose a method which is
able to cope with the problem of the uncertainty associated
with the neural network model in the framework of robust
predictive control. The presented approach is based on the
Model Error Modelling (MEM) portrayed in the paper of
Reinelt and co-workers [13], but the MEM version in time
domain was described in the previous work of the author
[10]. The idea is to design a robust model of a plant using
available data. This data should represent well possibly wide
range of operating conditions of the plant. Using the robust
model, the uncertainty region is derived, which is then used
to redefine the open-loop optimal control problem. Two
solutions are proposed. The first one is to change the cost
function in order to consider the robust model of the plant,
while the second one is to impose constraints on the process
output using derived uncertainty bands. The process output
trajectory will be included inside the uncertainty band when
the same input is applied, in spite of uncertainties.

The paper is organized as follows. After Introduction,
in Section II, uncertainty modelling is presented. Then, in
Section III basics about nonlinear model predictive control
based on a neural network predictor is portrayed. The next
section contains propositions and solutions for robust model
predictive control synthesis. Some experimental results are
shown and discussed in Section V. The last section contains
conclusions and final remarks.



II. MODELLING AND UNCERTAINTY DESCRIPTION

Let assume that the process is represented by the following
prediction form of the nonlinear difference equation:

ŷ(k+1) = f(y(k), . . . , y(k−na+1), u(k), . . . , u(k−nb+1)),
(1)

where f is a nonlinear mapping function, y(k) is the output
of the process at time k, na and nb are the number of past
outputs and inputs considered by the model, respectively.
To design a nonlinear model of the process artificial neural
networks can be successfully used. Neural networks proved
their usefulness in modelling of nonlinear dynamic processes
[8], [4], [10]. In the field of neural modelling the simplest
solution is to use the feedforward networks with external
dynamics [10], [8]:

ŷ(k + 1) = f(x) = σo(W 2σh(W 1x + b1) + b2), (2)

where

x = [y(k), . . . , y(k − na + 1), u(k), . . . , u(k − nb + 1)]T ,

W 1 ∈ Rna+nb×v and W 2 ∈ Rv×1 are weight matrices of
hidden and output layers, respectively, b1 ∈ Rv and b2 ∈
R1 are bias vectors of hidden and output units, respectively,
σh : Rv → Rv is the activation function of the hidden layer,
and σo : R1 → R1 is the activation function of the output
layer and v stands for the number of hidden neurons. Weight
matrices as well as bias vectors are subject of training based
on historical data recorded in a plant. Mostly, training is
carried out off-line.

A perfect identification procedure does not exist. Every
modelling procedure either for linear or nonlinear processes
suffers from the so called the model mismatch, c.f. the model
of the system is not a faithful replica of plant dynamics.
On this basis, the uncertainty can be seen as a measure of
unmodelled dynamics, noise and disturbances. Frequently,
model uncertainty is considered as located in parameters.
However, in such a case perfect decoupling residuals from
uncertainties is limited by the number of available mea-
surements. Alternative way is to propagate uncertainty into
residuals. Then, all modelling errors are represented by the
function w(k) and the plant is represented by the following
family of models:

ȳ(k + 1) = ŷ(k + 1) + w(k), (3)

where w(k) ∈ W represents the additive uncertainty and W
is a compact set. Then, the model uncertainty is defined as

w(k) 6 w(k) 6 w(k),

and all possible trajectories are included in bands that depend
on lower w(k) and upper w(k) uncertainty estimates. This
kind of uncertainties if often called global uncertainties [3].
The only assumption made here is that they are bounded. In
general w(t) may be a function of past inputs and outputs.
To estimate model uncertainty model error modelling can

be used. MEM employs prediction error methods to identify
a model from input-output data [13]. The first step illus-
trated in Fig. 1 is to model a process without uncertainty

Fig. 1. Deriving of the model uncertainty.

Fig. 2. Construction of the robust model.

considerations. Then, the uncertainty model is designed by
analyzing the residual r(k) evaluated from the inputs (Fig. 2).
The residual is a signal defined as a difference between the
process output and the output of a model:

r(k) = y(k)− ŷ(k). (4)

Modelling of residuals provides the so-called error model.
To identify an error model it is required to collect a set of
the data {u(i), r(i)}N

i=1. This can be done during testing of
the process model, preferably in closed-loop control. The
error model constitutes an estimate of the error due to un-
dermodelling. To design of the error model one can use well
known linear models such as the Finite Impulse Response
(FIR) model of the high order or the AutoRegressive with
eXogenous input (ARX) model [13]. If the accuracy of these
models is not acceptable one can use nonlinear models, e.g.
dynamic neural networks presented earlier in this section.
From general point of view the error model is described by
the following difference equation:

r̂(k + 1) = fe(r(k), . . . , r(k − nna + 1),
u(k), . . . , u(k − nnb

+ 1)),
(5)

where r̂(k + 1) represents an estimate of the residual at the
time instant k+1, nna and nnb

represents the number of past
residuals and inputs needed for designing the error model,
respectively. Final representation of a robust model is given
as:

ȳ(k) = ŷ(k) + r̂(k). (6)

Assuming that r̂(k) has the normal distribution, statistical
properties of the error model output can be used to estimate



the uncertainty of the model. The confidence region forms
uncertainty bands around response of the robust model: the
upper band

w(k) = ȳ(k) + tασ (7)

and the lower band

w(k) = ȳ(k)− tασ, (8)

where tα is a tabulated value of the normal distribution
N (0, 1) assigned to 1−α confidence level, σ is the standard
deviation of r̂ calculated over a testing set of data. The centre
of the uncertainty region is the signal ȳ(k) [10].

III. NONLINEAR MODEL PREDICTIVE CONTROL

Let us consider a nonlinear version of generalized predic-
tive control. Let introduce the cost function:

J =
N2∑

i=N1

e2(k + i) + ρ

Nu∑
i=1

∆u2(k + i− 1), (9)

where e(k + i) = yr(k + i) − ŷ(k + i) is the tracking
error, yr(k + i) is the reference at time k + i, ŷ(k + i) is
the prediction of future process outputs, ∆u(k + i − 1) =
u(k + i − 1) − u(k + i − 2), u(k) is the control signal at
time k, N1 is the minimum prediction horizon, N2 is the
prediction horizon, Nu is the control horizon, ρ represents a
factor penalizing changes in the control signal. Additionally,
the following constraints are considered:
• constraints on control moves

∆u(k + i) = 0, Nu 6 i 6 N2 − 1,

• constraints on process variables

v 6 v(k + j) 6 v, ∀j ∈ [Nv1, Nv2],

where Nv1 and Nv2 are the lower and upper constraint
horizons, respectively, and [v, v] defines the allowed
space for a variable v,

• terminal constraints

e(k + Np + j) = 0, ∀j ∈ [1, Nc],

where Nc is the terminal constraint horizon.
A nonlinear model predictive control can be defined as the
following open-loop optimization problem:

u(k) M= arg minJ (10a)
s.t. e(k + N2 + j) = 0, ∀j ∈ [1, Nc], (10b)

∆u(k + Nu + j) = 0, ∀j > 0, (10c)
u 6 u(k + j) 6 u, ∀j ∈ [0, Nu − 1], (10d)
y 6 ŷ(k + j) 6 y, ∀j ∈ [N1, N2], (10e)

where u and u are lower and upper control bounds, y and y
limit the allowed space for the predictions of the plant output.
The objective of an optimization procedure is to find the op-
timal control sequence satisfying all constraints but the first
element of this sequence is used for the control purposes. The
optimization procedure should assure fast convergence and
numerical robustness. Second-order optimization algorithms

based on Newton and Levenberg-Marquardt methods seem
to be a reasonable choice [8], [11]. Moreover, they allow
relatively easy to consider constraints imposed on process
variables, i.e. using a penalty cost.

IV. ROBUST MPC SYNTHESIS

A. Unmeasured disturbances

To deal with unmeasured disturbances discussed in Section
II, the model of a process can be equiped with the additional
term d(k). This term stands for the disturbance model defined
in the following way:

d(k) = Kr(k) + d(k − 1), (11)

where r(k) is a residual defined by (4), K represents the
gain of the disturbance model. As the disturbance model (11)
includes an integrator, the offset-free steady-state behaviour
of the control system can be achieved [3], [15]. Frequently,
K is assumed to be equal to 1 and d(k) is assumed to be
constant within the prediction horizon [3]. Another idea is
to use very simple form based on the residual [3]:

d(k) = Kr(k). (12)

Considering unmeasured disturbances d(k) the predictor (2)
can be rewritten in the form:

ŷ(k + 1) = f(x) + d(k), (13)

and assuming that d(k) is constant within the prediction
horizon, implementation of the optimization procedure of the
problem (10) does not change. The only problem here is to
find a proper description of the unmeasured disturbances.
Representations (11) and (12) are only propositions.

B. Modified cost function

Assuming the uncertainty description of the model dis-
cussed in Section II, the robust MPC can be achieved by
modifying the cost function in such a way that instead of the
output of the nominal model ŷ(k) the cost uses the output
of the robust model ȳ(k). The cost function becomes:

J̄ =
N2∑

i=N1

(yr(k+i)−ȳ(k+i))2+ρ

Nu∑
i=1

∆u2(k+i−1). (14)

In order to define the cost (14) it is needed to determine
i-step ahead predictions of the error model r̂(k + i). These
predictions can be easily calculated by successive recursion
of the one-step ahead prediction r̂(k+1). However, it should
be kept in mind that residuals are available up to time k,
then one should substitute residual predictions for actually
calculated residuals for i > 1 as follows:

r(k + i) = r̂(k + i), ∀i > 1.

As the uncertainty description is included in the robust
model itself the output constraints (10e) are not used during
optimization. However, the optimization routine becomes
slightly more complex due to the requirement of calculating
partial derivatives ∂r̂(k+i)

∂u(k) and ∂2r̂(k+i)
∂u2(k) . If the neural network

is used to design the error model, these derivatives are



calculated analogously to derivatives ∂ŷ(k+i)
∂u(k) and ∂2ŷ(k+i)

∂u2(k)
assigned to the nominal model of a process. Detailed for-
muale for determining these derivatives can be found in [8]
on pages: 183–186.

C. Output constraints

Another way to achieve robustness of MPC is to properly
define output constraints. In this case, the cost function is
based on the nominal model of the process (9) but robustness
of the control system is achieved by using output constraints
which include the uncertainty description according to (7)
and (8). Then, the inequality constraint (10e) can be repre-
sented in the following way:

gi(u) = ŷ(k + i)− w(k + i), (15)
g

i
(u) = w(k + i)− ŷ(k + i), (16)

where i ∈ [N1, N2]. A popular approach for considering
constraints is to transform the original problem to its alter-
native unconstrained form using a penalty cost. Let us use
constraints representation (15) and (16), then the penalty cost
function can be defined as follows:

J̃(k) = J(k)+λ

N2∑
i=N1

g2
i (u)S(gi(u))+λ

N2∑
i=N1

g2
i
(u)S(g

i
(u)),

(17)
where S(x) = 1 if x > 0 and S(x) = 0 otherwise. The
function S(x) makes it possible to consider a set of active
inequality constraints at the current iterate of the algorithm.
The principle of operation in this case is as follows. Before
the optimization begins, the uncertainty bands w(k + i) and
w(k + i) are determined based on the current control u(k).
Then the optimization procedure starts in order to determine
a new control sequence subject to constraints. During the
optimization, w(k + i) and w(k + i) are independent on the
variable u(k). Based on this, optimization of the penalty
function does not require to calculate additional partial
derivatives. Partial derivatives of the penalty terms use the
already defined partial derivatives ∂ŷ(k+i)

∂u(k) and ∂2ŷ(k+i)
∂u2(k) .

Taking into account a computation burden this approach is
less complex than the solution presented in the previous
section. Thus, all active inequality constraints are taken into
account during the optimization. Now, the objective is to
solve the following unconstrained problem:

u(k) M= arg min J̄(u). (18)

D. Robust performance

The performance of the proposed robust control schemes
is tested using the multiplicative output uncertainty portrayed
in Fig. 3. The presented scheme can be regarded as the para-
metric uncertainty of the plant gain. Parameter v representing
the gain is bounded within a region [vmin, vmax] and can be
represented as:

v = v̄(1 + γ∆), (19)

where v̄ is the nominal (mean) parameter value, ∆ is any
real scalar satisfying |∆| 6 1, and γ represents the relative

uncertainty in the parameter v:

γ =
vmax − vmin

vmax + vmin
. (20)

Fig. 3. Process with output multiplicative uncertainty.

V. EXPERIMENTS

As the illustrative example, a pneumatic servomechanism
for control the position of the mass is used [8]. The
pneumatic servomechanism is a system, in which power is
supplied and transmission of signals is carried out through
the medium of compressed air. Pneumatic servos have the
advantages of low cost, high power to weight ratio, easy
of maintenance, cleanliness and a readily available and
cheap power source. The system consists of the double
acting cylinder lifting an inertial weight. The cylinder is
fed from a set of four adjustable air valves. The pneumatic
servomechanism is a nonlinear system. The main nonlinear
behaviour follows from nonlinear friction forces, deadband
due to stiction and dead time due to the compressibility of air.
The scheme of the process in shown in Fig. 4 and technical
data is listed in Table I. The valves are operated in such a
way that for input signal u > 0 the valves S1 and S4 are
open and for u < 0 valves S2 and S3 are open. All valves
open proportionally to their control signals. The sampling
frequency is set to 10Hz. The considered pneumatic servo
can be viewed as a SISO system with the control signal of
valves as the input and the piston position as the output.
The specificity of the process (process is poorly damped and
includes integration action) makes it difficult to generate data
for neural network training. Then it is necessary to operate
in closed-loop control with the P controller. The gain of the
controller was set to Kp = 10.

Fig. 4. Scheme of pneumatic servomechanism



TABLE I
PROCESS SPECIFICATION

Symbol Description Value/unit
V1 cylinder volume 0.4908 liter
V2 cylinder volume 0.4123 liter
A1 chamber 1 area 19.63 cm3

A2 chamber 2 area 16.49 cm3

Ps supplied pressure 6 bar
Pr exhaust pressure 1 bar
m load mass 20 kg
y piston position [-0.245,0.245] m

A. Modelling

Training data was collected using the reference signal in
the form of random steps with levels covering possible piston
positions from the interval (−0.245, 0.245). Changes of the
reference were also triggered randomly. Additionally, the
response of the process was contaminated by the white noise
with the magnitude equal to 5% of the output signal. The
order of the model was selected after analysing the physical
properties of the process. Finally, a model of the fourth order
(na = nb = 4) was used. After some trails the number of
hidden neurons was found to be equal to 8 (v = 8). Hidden
neurons consist of hyperbolic tangent activation function
and the output neuron has the linear activation function.
Modelling results are presented in Fig. 5, where the output
of the plant is marked with the solid line, and the output of
the model with the dashed one.
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Fig. 5. Modelling results: outputs of process (solid) and model (dashed).

B. Uncertainty modelling

To estimate uncertainty associated with the neural model
the model error modelling is applied. Firstly, the classical
linear models (FIR and ARX) were applied without success.
Then, the nonlinear version of ARX model realized by means
of the neural network (2) was applied. To design the error
model the training data was recorded in closed loop control
where the predictive controller used the nominal model of the
servo. Additionally, the gain uncertainty has been modelled
according to scheme presented in Fig. 3 with γ = 0.2 and ∆
generated in a random manner every 10 time steps. During
research, the best error model was found to have 10 hidden
neurons with the hyperbolic tangent activation function and
one linear output neuron. The number of past residuals nna

was equal to 2 and the number of past inputs nnb
was equal

to 10. Uncertainty modelling results are presented in Fig. 6,
where the output of the plant is marked with the solid line,
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Fig. 6. Uncertainty modelling: outputs of process (solid), model (dashed)
and error model (dotted).

the output of the nominal model with the dashed one, and
the output of the robust model (6) with the dotted line.

C. Control and robust performance

During experiments four predictive schemes have been
investigated. The first one is the model predictive control
without robustness considerations. After thorough tuning, the
MPC controller parameters are set as follows: N1 = 1,
N2 = 10, Nu = 2, ρ = 0.003. Such experiment settings
were found using trial and error procedure and assure pretty
good performance of the fundamental control system. The
control sequence is constrained with the upper control bound
u = 4, and the lower control bound u = −4. Such control
range was used during training. Additionally, three robust
schemes are investigated. The first one used the disturbance
model (12) to consider unmeasured disturbances affecting
the system. After some trials the parameter K = 0.01. The
second robust scheme used the output constraints discussed
in Section IV-C. In this case the ρ = 0.001 and λ = 0.1.
The third robust scheme is a combination of the previous
two. The performance of the proposed control schemes has
been tested using:
(i) different reference signals, namely random steps, mod-

ified ramp and sinusoidal signals,
(ii) parametric gain uncertainty (19), with γ = 0.2 and ∆

generated randomly every 10 time steps,
(iii) white noise affecting the process output.
The quality of control is represented by an index QSSE

defined as a sum of squared errors between the reference and
process output. Abbreviations used in Tables mean: MPC –
model predictive contol without robustness, MPCD – model
predictive control with disturbance model (12), RMPC –
robust model predictive control considered in Section IV-
C, RMPCD – robust model predictive control with distur-
bance model. The considered predictive schemes are also
compared with the P controller. Figures 7–9 show control
results in normal operating conditions achieved by the P
controller (dashed line) and predictive controllers (dotted
line) for different reference signals considered. For clarity of
presentation only results for RMPCD controller are presented
there. In all cases the predictive schemes performed much
better that the classical P controller. It is important to say
that it was assumed that within the prediction horizon the
reference signal is unknown. Tables II–IV include results of
control for different reference signals and different conditions
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Fig. 7. Control results: reference (solid), P controller (dashed) and MPC
(dotted).

0 50 100 150 200 250 300
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [samples]

P
is

to
n 

po
si

tio
n 

[m
]

Fig. 8. Control results: reference (solid), P controller (dashed) and RMPCD
(dotted).
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Fig. 9. Control results: reference (solid), P controller (dashed) and RMPCD
(dotted).

TABLE II
CONTROL RESULTS FOR RANDOM STEPS REFERENCE.

Controller nominal parameter noise
type work variation

MPC 2.4019 2.2632 2.3848
MPCD 2.3011 2.2555 2.2926
RMPC 2.2545 2.1151 2.2612

RMPCD 2.2455 2.1091 2.2394

TABLE III
CONTROL RESULTS FOR MODIFIED RAMP REFERENCE.

Controller nominal parameter noise
type work variation

MPC 0.1977 0.2751 0.2277
MPCD 0.1704 0.2483 0.2004

RMPC 0.1599 0.2364 0.1908

RMPCD 0.1589 0.2364 0.1895

(parameter uncertainty and external disturbances). The robust
version of MPC works pretty well. In all cases a fusion of
robust control with disturbance model gave the best results,
marked with frames.

VI. CONCLUSIONS

The purpose of the paper was to propose a new method
for robust nonlinear model predictive control synthesis. Two

TABLE IV
CONTROL RESULTS FOR SINUSOIDAL REFERENCE.

Controller nominal parameter noise
type work variation

MPC 0.128 0.1463 0.1398
MPCD 0.0852 0.0976 0.0968
RMPC 0.0856 0.0997 0.097

RMPCD 0.0849 0.0973 0.0957

solutions were described. The first one uses the modified cost
function in order to consider the robust model of the plant,
while the second one imposes constraints on the process
output using derived uncertainty bands. Both proposition are
based on the model error modelling which uses two neural
network models: fundamental model of the plant and the so-
called error model. At the moment only the second solution
was tested using different operating condition of the plant
giving promising results. The future work will be focused on
the implementation of the first solution proposed in Section
IV-B and to compare it with these considered in Section V.
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