

Neural-Network-Based Models Ensemble for Identification in Distributed-Parameter Systems with Application to Elastic Materials Modeling

Krzysztof Patan¹ Maciej Patan¹

¹Institute of Control and Computation Engineering, University of Zielona Góra

Clamped plate description

$$\rho \frac{\partial^2 y(x,t)}{\partial t^2} + \kappa \nabla^4 y(x,t) = p(x,t), \quad (1)$$
where $y(x,t)$ – transverse displacement, $p(x,t)$ – pressure field, x – spatial point, t – time, and
$$\kappa = \frac{Ed^3}{12(1-\nu^2)}, \quad (2)$$
where $E = 7.11 \cdot 10^{10}$ – the modulus of elasticity, $\nu = 0.3$
– the Poisson's ratio, and $\rho = 2700$ – mass density.

Domain partitioning

State-space neural network

Ensemble design and training

Figure 1. Partition of the clamped plate: our approach for R = 3 (a), Finite Element Method for 441 nodes (b)

Figure 2. Actuating and sensing of the clamped plate

Excitation – two actuators

 $p_1(x_1, x_2, t) = 20te^{-25((x_1 - 0.25)^2 + (x_2 - 0.25)^2)},$ $p_2(x_1, x_2, t) = 20(15 - t)e^{-50((x_1 - 0.75)^2 + (x_2 - 0.75)^2)}$ where t = 0, ..., 10, with sampling time $T_s = 0.1s$

Figure 4. Evolution of the actuation at 2nd second (a) and 8th second (b)

Input data

- inputs located in the centres of each partition (Fig. 1a)
- 2. inputs located as in finite element method (Fig. 1b)

Output data

- Plate displacement $y(x_1, x_2, t)$ measured at the centers of partitions
- Outputs number = R^2

Ensemble selection

Table 1. Specification of neural models for R = 3

Model number	Hidden layer	Model order	Scaling factor
1, 2, 4-6, 8	5H	2	1000
9	5H	2	5000
7	5H	2	10000

Table 2. Specification of neural models for R = 4

Model number	Hidden layer	Model order	Scaling factor
1-3,5-7,9-12,15-16	5H	2	5000
4	5H	2	10000
8	5L	2	10000
13	5H	2	20000
14	5L	2	20000

Table 3. Specification of neural models for R = 5

Model number	Hidden layer	Model order	Scaling factor
1-4, 6-20, 22-24	5H	2	5000
25	7H	3	10000
21	5H	3	40000
5	7L	3	40000

Modeling results

Displacement estimation

Figure 5. Modeling results for selected time instances: ensembles for R = 3 and 800 inputs (a); ensembles for R = 4 and 800 inputs (b); ensembles for R = 5 and 25 inputs (c); finite element method (d)

Figure 6. Modeling results: 7th partition (a) and 15th partition (b)

Figure 7. Modeling quality: blue–solid line – ensembles for R = 3, red–dashed line – ensembles for R = 4, black–dash-dot – ensembles for R = 5

IJCNN 2022, Padova, Italy, 18-24 July 2022

