# Neural-Network-Based Models Ensemble for Identification in DistributedParameter Systems with Application to Elastic Materials Modeling 

Krzysztof Satan ${ }^{1} \quad$ Maciej Ratan ${ }^{1}$

${ }^{1}$ Institute of Control and Computation Engineering, University of Zielona Góra

## Clamped plate description

$$
\begin{equation*}
\rho \frac{\partial^{2} y(x, t)}{\partial t^{2}}+\kappa \nabla^{4} y(x, t)=p(x, t) \tag{1}
\end{equation*}
$$

where $y(x, t)$ - transverse displacement, $p(x, t)$ - pressure field, $x$ - spatial point, $t$ - time, and

$$
\begin{equation*}
\kappa=\frac{E d^{3}}{12\left(1-\nu^{2}\right)}, \tag{2}
\end{equation*}
$$

where $E=7.11 \cdot 10^{10}$ - the modulus of elasticity, $\nu=0.3$

- the Poisson's ratio, and $\rho=2700$ - mass density.


## Domain partitioning



Figure 1. Partition of the clamped plate: our approach for $R=3$ (a), Finite Element Method for 441 nodes (b)


Figure 2. Actuating and sensing of the clamped plate

## State-space neural network



Figure 3. Neural network architecture
$\alpha$ and $\beta$ - adaptable weight matrices
where

$$
\begin{gathered}
\boldsymbol{\varphi}(k)=[\hat{\boldsymbol{x}}(k), \boldsymbol{u}(k), e(k)], \\
e(k)=y(k)-\hat{y}(k),
\end{gathered}
$$

and
$g(\boldsymbol{\varphi}(k))=\boldsymbol{\alpha} \tanh (\boldsymbol{\beta} \boldsymbol{\varphi}(k))$.

## Ensemble design and training

## Excitation - two actuators

$p_{1}\left(x_{1}, x_{2}, t\right)=20 t e^{-25\left(\left(x_{1}-0.25\right)^{2}+\left(x_{2}-0.25\right)^{2}\right)}$,
$p_{2}\left(x_{1}, x_{2}, t\right)=20(15-t) e^{-50\left(\left(x_{1}-0.75\right)^{2}+\left(x_{2}-0.75\right)^{2}\right)}$
where $t=0, \ldots, 10$, with sampling time $T_{s}=0.1 \mathrm{~s}$


Figure 4. Evolution of the actuation at and second (a) and 8 th second (b) Input data

1. inputs located in the centres of each partition (Fig. 1a)
2. inputs located as in finite element method (Fig. bb)

## Output data

- Plate displacement $y\left(x_{1}, x_{2}, t\right)$ measured at the centers of partitions
- Outputs number $=R^{2}$


## Ensemble selection

Table 1. Specification of neural models for $R=3$ | Model number | Hidden layer | Model order | Scaling factor |
| :---: | :---: | :---: | :---: |
| $1,2,4-6,8$ | 5 H | 2 | 1000 |
| 9 | 5 H | 2 | 5000 |
| 7 | 5 H | 2 | 10000 |

Table 2. Specification of neural models for $R=4$ Model number Hidden layer Model order Scaling factor

| $1-3,5-7,9-12,15-16$ | 5 H | 2 | 5000 |
| :---: | :---: | :---: | :---: |
| 4 | 5 H | 2 | 10000 |
| 8 | 5 L | 2 | 10000 |
| 13 | 5 H | 2 | 20000 |
| 14 | 5 L | 2 | 20000 |

Table 3. Specification of neural models for $R=5$

| Model number | Hidden layer | Model order | Scaling factor |
| :---: | :---: | :---: | :---: |
| $1-4,6-20,22-24$ | 5 H | 2 | 5000 |
| 25 | 7 H | 3 | 10000 |
| 21 | 5 H | 3 | 40000 |
| 5 | 7 L | 3 | 40000 |

## Modeling results

## Displacement estimation




Figure 6. Modeling results: 7th partition (a) and 15th partition (b)

## Comparative study



Figure 7. Modeling quality: blue-solid line - ensembles for $R=3$, red-dashed line - ensembles for $R=4$, black-dash-dot - ensembles for $R=5$

