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1 of 22



Introduction

• High-order iterative learning control (ILC) – to use data of more than one trial
to improve reference tracking

• High-order ILC – able to achieve better convergence than the first-order ILC

• A simple linear combination of previous control signals may not provide new
significant information

• High-order ILC – required for monotonic convergence

• Problems in question: what about nonlinear systems and nonlinear compilation
of previous control information

• Neural networks – useful to design nonlinear ILC to control of nonlinear plants

• Using data of more previous trials – more stable training of neural network
controller
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Introduction

Objectives of the paper

1. to develop a novel nonlinear high-order ILC scheme using neural network based
controller

2. to provide convergence analysis of the proposed control scheme and discuss
how convergence conditions can be incorporated into the controller training
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General idea of neural-network-based ILC

• Adaptation of so-called first-order ILC scheme (current iteration ILC)
◦ use of existing feedback controller for stabilization,
◦ adding supporting feedforward neural controller for tracking improvement,

up(k) = ufbp (k) + uffp (k)

where p – trial number
k – discrete-time index
ufb
p (k) – feedback control

uff
p (k) – ILC update

• Objective of neural controller – significant improvement of tracking for
reference trajectory yr(k)
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Structure of the neural based ILC scheme
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• Model of the process required for synthesis of the ILC controller – reasonable
application of data-driven neural modelling

• Efficient scheme in case of control of nonlinear processes supporting existing
feedback controller
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System description

Consider a class of discrete-time nonlinear systems

xp(k + 1) = g(xp(k), up(k)), k = 0, . . . , N − 1,

yp(k) = Cxp(k)

where p ≥ 0 – a trial number
N – a trial length
xp(k), up(k), yp(k) – system state, input and response
g – some nonlinear function
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Assumptions

Assumption A1. Let yr(k) be a reference trajectory defined over a discrete time
k, which is assumed to be realizable, that is there exists a unique ur(k) and an
initial state xr(0), i.e.

xr(k + 1) = g(xr(k), ur(k))

yr(k) = Cxr(k)

Assumption A2. The identical initial condition holds for all trials, i.e.

∀p xp(0) = xr(0)

Assumption A3. The nonlinear function g satisfies the global Lipschitz condition

‖g(x1, u1)− g(x2, u2)‖ ≤ L (‖x1 − x2‖+ |u1 − u2|)

where L > 0 stands for the Lipschitz constant.
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Neural controller

• The key idea – use the neural network to realize the function uffp (k)

• Let consider the controller in the form:

uffp (k) = f(ϕp−1(k))

where f is a nonlinear function

• ϕp−1(k) – regression vector, e.g.

◦ ϕp−1(k) = [up−1(k), ep−1(k)]
T – P-type controller

◦ ϕp−1(k) = [up−1(k), ep−1(k + 1)]T – D-type controller

• high-order P-type ILC controller

ϕp−1(k) = [up−1(k), ..., up−M (k), ep−1(k), ..., ep−M (k)]T

where M – order of the learning controller
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Structure of the neural network controller

• Neural network with one hidden layer

uffp (k) = f(ϕp−1(k)) = W 2,pσ(W 1,pϕp−1(k) + b1,p) + b2,p

where W 1,p, W 2,p – weight matrices
b1,p, b2,p – bias vectors

σ – hidden neurons activation function

• Network parameters are updated after each process trial

• Training process

θ?p = arg min

[
1

2

N−1∑
k=0

(yr(k)− yp(k;θp))
2 +

1

2
µp

P∑
i=1

θ2p,i

]

where θp is the vector of controller parameters
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Convergence analysis

• Controlled system

xp(k + 1) = g(xp(k), up(k)), k = 0, . . . , N − 1,

yp(k) = Cxp(k)
(1)

• Neural controller

uffp (k) = f(ϕp−1(k)) = W 2,pσ(W 1,pϕp−1(k) + b1,p) + b2,p, (2)

with
ϕp−1(k) = [up−1(k), ..., up−M (k), ep−1(k), ..., ep−M (k)]T (3)

• Define controller sensitivities (with respect to input and error, respectively)

fui+1(k) =
∂f(ϕp(k))

∂up−i(k)
, fei+1(k) =

∂f(ϕp(k))

∂ep−i(k)
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Main result

Lemma 1
Let us suppose a real positive sequence {ap}∞1 satisfying

ap ≤ β1ap−1 + β2ap−2 + . . . , βNap−M + ε,

where βi ≥ 0, ε ≥ 0 and

β =

M∑
i=1

βi < 1.

Then, the following inequality holds

lim
p→∞

ap ≤
ε

1− β .
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Theorem 1
Let consider the second order ILC law (2)-(3) (M = 2) applied to the nonlinear
system (1) satisfying Assumptions A1-A3. If

β1 + β2 < 1 (4)

is satisfied then the convergence of the control law is guaranteed, i.e.

∀k lim
p→∞

up(k) = ur(k). (5)

where βi = γi1 + γi2Sα
γi1 = sup

k
‖fui (k)‖

γi2 = sup
k
‖fei (k)C‖

Sα = 1−α−(λ−1)N

1−α−(λ−1) − 1
α – the Lipschitz constant of the system
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Sketch of proof

• the proof can be obtained as an extension of the approach presented in: K.

Patan: Robust and fault-tolerant control. Neural-network-based solutions,
Springer, 2019

• proof is based on deriving uniform convergence property

lim
p→∞

up(k) = ur(k),

through analysis of the induced norm imposed on the control law

‖z(k)‖λ = sup
k∈[0,N−1]

α−λk‖z(k)‖

• to deal with a nonlinear representation, the learning controller is expanded into
Taylor series

• recursive nature of the state-space representation is also used

13 of 22



Corollary 1
Let consider M order ILC law (2)-(3) applied to the nonlinear system (1)
satisfying Assumptions A1-A3. If

M∑
i=1

βi < 1 (6)

is satisfied then the convergence of the control law is guaranteed, i.e.

∀k lim
p→∞

up(k) = ur(k). (7)
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Sketch of proof

• the proof can be obtained as an extension of Theorem 1 and using Lemma 1

• expanding the proof of Theorem 1 to M -order controller

‖∆up+1(k)‖λ ≤
M∑
i=1

(γi1 + γi2 · Sα)‖∆up+i−1(k)‖λ,

where γi1 = sup
k
‖fui (k)‖, γi2 = sup

k
‖fei (k)C‖.

• let define
βi = γi1 + γi2 · Sα,

• based on Lemma 1 we obtain

M∑
i=1

βi < 1
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Illustrative example – pneumatic servomechanism

m
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V1, V2 – cylinder volumes
A1, A2 – chamber areas
P1, P2 – chamber pressures
Ps – supplied pressure
Pr – exhaust pressure
m – load mass
y – piston position
S1, . . . , S4 – operating valves
u – control signal

S1 and S4 are open for u > 0
S2 and S3 are open for u < 0
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Synthesis of ILC neural controller

• investigated controllers: M = 1, . . . , 4

• structure of the neural controller: the umber of hidden neurons
v = 1, . . . , 100, the activation function σh ≡ tanh

• controller parameters – randomly initiated

• performance index:

‖ep(k)‖ =

√√√√ N∑
j=1

|ep(j)|2,

where ep(k) = yr(k)− yp(k)
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Experiment 1
Comparison of convergence rates for v = 20

0 5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Trial p

‖e
p
(k
)‖

 

 

1st order

2nd order

3rd order

4th order

Performance index ILC order
1 2 3 4

‖e50(k)‖ 0.0702 0.0673 0.0627 0.0603
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Experiment 2
Convergence rate vs. the number of hidden units
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Experiment 3
Reference trajectory tracking
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• a plant output was disturbed by a white noise of the magnitude equal
to 2% of the maximum output value of the plant

• quality of the fourth-order neural controller: Jn = ‖e50(k)‖ = 0.0603.

• for linear fourth-order controller:

up+1(k) = up(k) +

3∑
j=0

qiep−i(k).

Jl = ‖e50(k)‖ = 0.0659

• relative error represented as

δ =
Jl − Jn
Jn

· 100% = 9.3% (8)
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Concluding remarks

• A novel approach for synthesis of nonlinear high-order ILC based on neural
networks was proposed

• The proposed control scheme may lead to significant improvement of the
convergence rate

• Advantages of the proposed approach:

1. flexibility of neural controller in adaptation to plant nonlinearities
2. versality in terms of developing different ILC schemes, e.g. D-type ILC

• There is still open problems:

◦ automatic selection of ILC order as a trade-off between the controller
complexity and control performance

◦ developing more robust optimization procedures for neural network training
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