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Introduction

e High-order iterative learning control (ILC) — to use data of more than one trial
to improve reference tracking

e High-order ILC — able to achieve better convergence than the first-order ILC

e A simple linear combination of previous control signals may not provide new
significant information

e High-order ILC — required for monotonic convergence

® Problems in question: what about nonlinear systems and nonlinear compilation
of previous control information

e Neural networks — useful to design nonlinear ILC to control of nonlinear plants
e Using data of more previous trials — more stable training of neural network

controller
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Introduction

Objectives of the paper

1. to develop a novel nonlinear high-order ILC scheme using neural network based
controller

2. to provide convergence analysis of the proposed control scheme and discuss
how convergence conditions can be incorporated into the controller training
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General idea of neural-network-based ILC

* Adaptation of so-called first-order ILC scheme (current iteration ILC)

o use of existing feedback controller for stabilization,
o adding supporting feedforward neural controller for tracking improvement,

up(k) = )’ (k) + ull (k)

where p — trial number
k — discrete-time index
ufP(k) — feedback control
uff (k) = ILC update
e Objective of neural controller — significant improvement of tracking for
reference trajectory y,. (k)
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Structure of the neural based ILC scheme
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® Model of the process required for synthesis of the ILC controller — reasonable
application of data-driven neural modelling

e Efficient scheme in case of control of nonlinear processes supporting existing
feedback controller
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System description

Consider a class of discrete-time nonlinear systems

xp(k+1) =g(xp(k),up(k)), k=0,...,N —1,
yp(k) = Czy(k)
where p > 0 — a trial number
N — a trial length

xp(k), up(k), yp(k) — system state, input and response
g — some nonlinear function
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Assumptions

Assumption Al. Let y,(k) be a reference trajectory defined over a discrete time
k, which is assumed to be realizable, that is there exists a unique u,(k) and an
initial state x,-(0), i.e.

z.(k+1) = g(x(k), ur(k))
yr(k) = Cx, (k)

Assumption A2. The identical initial condition holds for all trials, i.e.
Vp x,(0) = z,.(0)
Assumption A3. The nonlinear function g satisfies the global Lipschitz condition
lg(®1,u1) — g(®2,u2)|| < L ([|w1 — @2|| + [u1 — u2l)
where L > 0 stands for the Lipschitz constant.
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Neural controller

® The key idea — use the neural network to realize the function u}/ (k)

® |et consider the controller in the form:
ulf (k) = f(pp—1(K))

where f is a nonlinear function
® ,_1(k) — regression vector, e.g.

° p, (k)= [up—1(K), ep—1(K)]" = P-type controller

° ¢, 1 (k) = [up—1(k), ep—1(k + 1)]" — D-type controller
® high-order P-type ILC controller

¢p,1(k) = [upfl(k% [x3) up*M(k)v epfl(k% [x3) ep*M(k)]T

where M — order of the learning controller
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Structure of the neural network controller

® Neural network with one hidden layer

u]iff(k) = f(‘qu(k)) = W21PO—(W11P<Pp71(k) +b1p) + b2y

where W1 ,,, W2, — weight matrices
bi,p, b2, — bias vectors
o — hidden neurons activation function

e Network parameters are updated after each process trial
e Training process

N— 1

N =

P
* . 1
0, = argmin —yp(k; 6,) 2+§up202’i
i=1

k:O

where 6, is the vector of controller parameters
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Convergence analysis

e Controlled system

zp(k+1) = g(zp(k),up(k)), k=0,...,N —1, 1)
Yp(k) = Cz, (k)

® Neural controller

U;]:f(k‘) = flpp_1(k) =W ,0(Wi 0, 1(k) +b1p) +bayp, (2)
with
‘prl(k) = [u;ﬂfl(k% ) up*M(k)v epfl(k% ) eP*M(k)]T (3)

e Define controller sensitivities (with respect to input and error, respectively)

_ K)o 0F(ep(R)

 Oupi(k) Falk) dep—i(k)
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Main result

Lemma 1
Let us suppose a real positive sequence {a,}{° satisfying

ap < Brap—1+ Paap—2+ ..., Bnap—n + €,
where 3; > 0, € > 0 and o
B = Z Bi < 1.
i=1
Then, the following inequality holds
lim a, <

pooo LT 1=

11 of 22




Theorem 1
Let consider the second order ILC law (2)-(3) (M = 2) applied to the nonlinear
system (1) satisfying Assumptions AI-A3. If

P+ P2 <1 (4)
is satisfied then the convergence of the control law is guaranteed, i.e.

vk Zl)lglooup(k) = u, (k). (5)
where 3; = i1 + Vi2Sa
vir = sup | (K)]
Yi2 = Slip 1f£(R)C|
- (A-DN
So = — 1
« — the Lipschitz constant of the system
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——
Sketch of proof

® the proof can be obtained as an extension of the approach presented in: K.

Patan: Robust and fault-tolerant control. Neural-network-based solutions,
Springer, 2019

e proof is based on deriving uniform convergence property

lim wu,(k) = u,(k),

p—0o0

through analysis of the induced norm imposed on the control law

lz(B)llx = sup o **|[z(k)]
ke[0,N—1]

® to deal with a nonlinear representation, the learning controller is expanded into
Taylor series
® recursive nature of the state-space representation is also used
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Corollary 1

Let consider M order ILC law (2)-(3) applied to the nonlinear system (1)
satisfying Assumptions AI-A3. If

M
Zﬁl <1 (6)
i=1

is satisfied then the convergence of the control law is guaranteed, i.e.

VE lim uy(k) = ur (k). (7)
p—00
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Sketch of proof

e the proof can be obtained as an extension of Theorem 1 and using Lemma 1
e expanding the proof of Theorem 1 to M-order controller

M
1Aup 1 (R)[[x <Y (vin +viz- S| Auppi1 (B)]I s

i=1
where i1 = sup [ (k)] iz = sup [ 7 (k) Cl.

o |et define
Bi = vi1 + Viz* Sa,

® based on Lemma 1 we obtain
M
> pi<l
i=1
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lllustrative example — pneumatic servomechanism

Py
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V1, Vo — cylinder volumes
A;, Ay — chamber areas

Py, P, — chamber pressures
P, — supplied pressure

P, — exhaust pressure

m — load mass

y — piston position
S1,...,84 — operating valves
u — control signal

S1 and Sy are open for u > 0
S5 and S5 are open for u < 0



Synthesis of ILC neural controller

e investigated controllers: M =1,...,4

e structure of the neural controller: the umber of hidden neurons
v=1,...,100, the activation function ¢;, = tanh

e controller parameters — randomly initiated

e performance index:

where e, (k) = y, (k) — yp(k)

17 of 22




Experiment 1

Comparison of convergence rates for v = 20

0.4 T
* 1st order
— — —2nd order
— = 3rd order [|
4th order
5 i
= ]
005 L L L L L L — L —— T L
0 5 10 15 20 25 30 35 40 45 50
Trial p
Performance index ILC order
1 2 3 4
lleso (K) ] 0.0702 0.0673 0.0627 0.0603

18 of 22
B~



Experiment 2

Convergence rate vs. the number of hidden units

0.4 T
“““ 3 neurons
— =10 neurons
0.35- — — — 20 neurons |
30 neurons
=025 4
S
> |
2‘5 3‘0 3‘5 4‘0 4‘5 50
Trial p
Performance Neuron number
index 7 10 12 15 20 30
lleso (k)] 0.0648 0.0634 0.061 0.06094 0.0603 0.0581
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Experiment 3

Reference trajectory tracking

reference trajectory
— — plant output

m]

piston position [i

100 200 300 400 500
Trial p
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a plant output was disturbed by a white noise of the magnitude equal
to 2% of the maximum output value of the plant

quality of the fourth-order neural controller: .J,, = ||es0(k)|| = 0.0603.

for linear fourth-order controller:
up-i-l( - up + Z qiCp— z

Ji = |leso(k)|| = 0.0659

relative error represented as

. 100% = 9.3% (8)
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Concluding remarks

® A novel approach for synthesis of nonlinear high-order ILC based on neural
networks was proposed

The proposed control scheme may lead to significant improvement of the
convergence rate

Advantages of the proposed approach:

1. flexibility of neural controller in adaptation to plant nonlinearities
2. versality in terms of developing different ILC schemes, e.g. D-type ILC

® There is still open problems:

o automatic selection of ILC order as a trade-off between the controller
complexity and control performance
o developing more robust optimization procedures for neural network training
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