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Introduction

• The number of people suffering from epilepsy - 50 million people
worldwide,

• Approximately 1-2% of the population has seizures,

• The number of patients with epilepsy in Poland - 300-400 thousand,

• Seizure detection is difficult because of artifacts (disturbances in the
bioelectrical activity of the brain, e.g. eye movement),

• An epileptic seizure can occur at any age, and its causes are, for the
most part, unknown,
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Electroencephalography (EEG)

• A non-invasive diagnostic method to study the bioelectrical activity of
the brain,

• EEG test - appropriate placement of electrodes on the head recording
changes in electric potential on the skin surface,

• EEG tests are performed for monitoring and diagnostic purposes, e.g.
epilepsy, sleep disorders, in the diagnosis of coma and brain death,
organic brain diseases.
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Detection of epileptic seizures

• The EEG recording taken during an epileptic seizure contains the most
useful information,

Problem: such situations are observed in a relatively small number of
patients (only about 30%)

• Inter-ictal EEG recording - taken between epileptic seizures,

• These graphoelements are - correlated with epileptic seizures,

• They have the form of the so-called sharp wave or spike followed by a
slow wave,

• Detection of epilepsy in 30% - 70% of cases.
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• Spike duration - from 30 to 70 ms,

• Slow wave duration - from 70 to 100 ms,

• Spike-slow wave complex usually lasts about 250 ms,

• They can also occur as spike-slow wave complexes,

• Further in the presentation, such seizures are called short-term,

• Due to the correlation of inter-ictal seizures with epilepsy, they will be
called epileptic seizures.
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Examples of short-term epileptic seizures.

Examples of correct EEG affected by artifacts.

6 of 23



• Problem: the quality of diagnosis is greatly influenced by the so-called
artifacts,
• Artifacts are EEG signal disturbances caused by:
◦ technical reasons - voltage fluctuations,
◦ biological causes - muscle tightening, eye movement, body movement,

• Detection of epileptic seizures in the EEG inter-epileptic record - a
difficult problem to solve.
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Solution overview

• Visual inspection - EEG review by a neurologist specialist,

Disadvantages: Time-consuming; the same record may be interpreted
differently by different specialists,

• Parametric description of graphoelements – Characteristic
graphoelement can be described by parameters, e.g. duration, slope,
surface area of a part with negative and positive values,

Disadvantages: Difficulty in the automatic description of a graphite
element, often with an unusual course,

• Statistical analysis - Detection of irregularities based on the analysis
of statistical parameters of the course,

Disadvantages: Significant influence of artifacts on the quality of
seizure detection.
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• Frequency methods - Analysis of EEG signals in the frequency domain
gives a lot of valuable information; methods of representing EEG signals
in the time-frequency domain are of particular importance,

Disadvantages: High computational complexity with a large number of
channels and long time sequences,

• Classification - Detection of epileptic seizures comes down to the
problem of classification (normal status / seizure),

Disadvantages: Determining the appropriate set of attributes
representing the EEG image.
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Database of EEG records

• The data was made available by the doctors of the Neurology
Department of the University Hospital in Zielona Góra, Poland,

• Each record contains a record lasting from several to several dozen
minutes, downloaded in 16 measurement channels,

• Data set containing 1176 EEG records including 588 epileptic and 588
healthy cases was split into the training and testing sets,

• The database contains records collected from patients with diagnosed
epilepsy (104 records) as well as for healthy people (71 records),

• For each case, the database contains a specialist’s decision specifying
the characteristics of a given record.
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Application of deep learning

• Each EEG record should be given an appropriate output representation:
1 Heteroassociation - each input time sequence of n is assigned an output

sequence of n length, the values of which determine the patient’s condition
at a given moment in time,

2 Classification - each time sequence of n is assigned a number defined by
the label “ epileptic seizure ”/“ normal state ”,

• The neurologist gave estimated times of the seizure,

• The end time of the seizure is unknown (also the length of the time
sequence representing the seizure is unknown),

Proposal: Implementation of a detection system using a deep version of
the LSTM network (Long Short-Term Memory).
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The idea of processing using the LSTM network

• LSTM has a short-term memory that lasts for a long time - the ability
to analyze the signal in the time domain to determine where epileptic
disorders occur,
• Processing of input sequences and simultaneous storage of long-term

relationships between samples.
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LSTM processing unit

• The LSTM processing unit
consists of a memory cell, an
input gate, an output gate and
the forget gate,

• A memory cell is responsible for
storing data for an arbitrary
period of time,

• Gateways ensure data flow
(communication) in the neural
model.
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Structure of a deep LSTM network

• LSTM layers - process input sequences extracting and remembering
long-term relationships between samples,

• Full connection layer - sends LSTM processing results to the next
layer,

• Softmax layer - assigns the probability of assigning a given sequence
to the appropriate class,

• Classifying layer - assigns a label to the input sequence using the cross
entropy function.
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Classification quality evaluation

• a sensitivity (a true positive rate) tpr – for measuring the rate of
correctly identified seizures,

• a specificity (a true negative rate) tnr – for measuring the rate of
correctly detected healthy cases,

• a total accuracy acc – for measuring an overall quality of seizure
detection.

15 of 23



Sequence-to-label deep LSTM network

• Input space - 16 sequences (16 measurement channels),

• Number of outputs 1 (label healthy/seizure),

• Data set containing 588 epileptic samples and 588 samples acquired
from healthy subjects was enriched with 1040 samples acquired from
epileptic subjects but marked as the normal operation,

• Division of data into training and testing set - repeated hold-out
method with a coefficient of 0.5,

• Length of processed sequences - 1 seconds,
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Investigated network structures.

network number of nodes
1st layer 2nd layer 3rd layer 4th layer

net1 100 – – –
net2 50 50 – –
net3 50 100 – –
net4 100 70 – –
net5 10 30 50 –
net6 50 30 10 –
net7 50 50 50 –
net8 50 100 150 –
net9 100 70 40 –

net10 50 50 50 50
net11 70 60 50 50
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• Various LSTM structures containing from 1 to 4 LSTM layers and a
different number of neurons in the layers were tested,

• Each network configuration was trained 5 times with the ADAM
algorithm,

• Selecting the best network - the structure with the smallest number of
parameters, which has obtained the acceptable values of the
classification quality criteria,

• The best averaged results were achieved for the model net 5:
(tpr = 76% and acc = 88.3%).

• The highest values of tpr and acc were observed for the model net 7:
tpr = 79.8% and acc = 89.8%
• The model net 7 was selected for further experiments.
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Entire EEG record analysis

• An analysis of the full record (lasting several minutes on average) was
performed with the use of a sliding window with a length of 1 seconds,

• Cut out sequences were classified online by the developed system,

• Thus, 104 EEG records for epileptic patients and 71 EEG traces from
healthy individuals were analyzed,

• Each sequence was evaluated using indexes tpr, tnr and acc,

• For healthy subjects only the acc index was calculated (no real epileptic
seizures).
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Patients with epilepsy

• In every case the epilepsy was diagnosed with tpr reaching the
value from 20% to 100%.
• For 33 patients the system detected all seizures pointed out by a

neurologist (tpr = 100%).

• In turn, the specifity index took the values from 27.7% to 100% – in
some cases the system generated a large number of false alarms about
seizures.

• the overall accuracy was from the interval 28.2%-99.9%.

Healthy subjects
• The total accuracy took the values from the interval [68%,100%].
• In case of 66 examined subjects acc was greater than 90%.
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Dropout technique

• Improving the generalization of the best performing classifier net 7.

• The probability of dropout was set to p = 0.2.

model epileptic patients healthy subjects

tpr tnr acc acc

net 7 78.7 80.5 80.5 94.7
net 7 with dropout 78.7 84.1 84.1 95.4
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Conclusions

• The choice of LSTM networks is justified due to their structure allowing
implementation of long-term memory.

• Deep LSTM networks are able to extract characteristic relationships
between signal samples representing different levels of abstraction.

• Analyzing the obtained results, we can conclude that the proposed
approaches work quite well.

• Although the sequence-to-label model works a little better in classifying
healthy cases, the results obtained for sick cases also return very good
results and can be an alternative to imprecise methods of visual
inspection.
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Thank you very much for
attention!!!
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