
Design and Convergence
of Iterative Learning Control
Based on Neural Networks

Krzysztof Patan, Maciej Patan

Institute of Control and Computation
Engineering

University of Zielona Góra, Poland

1 of 30

Introduction

• Iterative Learning Control – modern control strategy

• Neural networks – useful when dealing with nonlinear problems

• Purpose of the paper – to adopt artificial neural networks to develop iterative
learning control

1. to build an accurate neural model of the nonlinear plant based on the
measurement from the previous trials

2. to train the neural controller based on data provided by the model assuring
convergence and stability,

2 of 30

Motivations

• Industrial robotics
(S. Arimoto (1984), R.W. Longman (1994), M. Norrlow (2002))

• Numerical control machine tools (CNC)
(D.-I. Kim, S.Kim (1996))

• Semiconductor lithography steppers
(D. de Roover, O.H. Bosgra (2000), B.G. Dijkstra (2003))

• Chemical batch reactors
(M. Mezghani, G.Roux (2002))

• Signal processing
(H. Elci, R.W. Longman, M.Q. Phan (2002))

• Robots in rehabilitation and health care
(Z. Cai, D. Tong, E. Rogers (2010))

• and many more . . .

3 of 30

General idea of neural network based ILC

• Adaptation of so-called first-order ILC scheme (current iteration ILC)

◦ use of existing feedback controller for stabilization,
◦ adding supporting feedforward neural controler for tracking improvement,

up(k) = ufb
p (k) + uff

p (k)

where p – trial number
ufb

p (k) – feedback control

uff
p (k) – ILC update

• Model of the process required for synthesis of the ILC controller – reasonable
application of data-driven neural modelling

4 of 30

Structure of the neural based ILC scheme

plantfeedback
controller

neural
controller

neural
model

update rule

memory:
trial p−1

++ +
+

+

-

yp(k)yr(k)

ŷp(k)

up(k)

uff
p (k)

ep(k) ufb
p (k)

ϕp−1(k)

• Objective of neural controller – significant improvement of tracking for
reference trajectory yr(k)

• Efficient scheme in case of control of nonlinear processes supporting existing
feedback controller
5 of 30

System description

Consider a class of dicrete-time nonlinear systems

xp(k + 1) = g(xp(k), up(k)), k = 0, . . . , N − 1,

yp(k) = Cxp(k)

where p ≥ 0 – a trial number
N – a trial length
xp(k), up(k), yp(k) – system state, input and response
g – some nonlinear function

6 of 30

Assumptions

Assumption A1. Let yr(k) be a reference trajectory defined over a discrete time
k, which is assumed to be realizable, that is there exists a unique ur(k) and an
initial state xd(0), i.e.

xr(k + 1) = g(xr(k), ur(k))

yr(k) = Cxr(k)
.

Assumption A2. The identical initial condition holds for all trials, i.e.

∀p xp(0) = xr(0).

Assumption A3. The nonlinear function g satisfies the global Lipschitz condition

‖g(x1, u1)− g(x2, u2)‖ ≤ L (‖x1 − x2‖+ |u1 − u2|) ,

where L > 0 stands for the Lipschitz constant.

7 of 30

Neural model

• System modelling – state space neural network model

x̂p(k + 1) = ĝ(x̂p(k), up(k))

ŷp(k) = Cx̂p(k)

where x̂p ∈ Rnx – model state, up ∈ R1, ŷp ∈ R1 – model input and output

• Implementation of nonlinear function ĝ(·, ·):

ĝ(x̂p(k), up(k)) = V 2σ(V x
1 x̂p(k) + V u

1 up(k) + β1) + β2),

gdzie V u
1 ∈ Rvm×1, V x

1 ∈ Rvm×nx and V 2 ∈ Rnx×vm – layers weight matrices
β1 ∈ Rvm , β2 ∈ Rnx – bias vectors
σ : Rvm → Rvm – hidden neurons activation functions
vm – number of hidden neurons

nx – model order

8 of 30

Structure of the neural network model

ŷ1(k)

ŷny(k)
C

z−1

z−1

x̂1(k+1)

x̂nx(k+1)u1(k)

unu(k)

1 1β1 β2

V x
1

V u
1

V 2

σ

σ

σ

• Training in batch mode (off-line) based on previous measurement data

• Training algorithms
◦ dynamic backward propagation
◦ dynamic Newton methods
◦ modified Levenberg-Marquardt

9 of 30

Neural controller

• The key idea – use the neural network to provide the realization of the
function uff

p (k) (being implicitly an inverted model of the plant)

• Let consider the controller in the form:

uff
p (k) = f(ϕp−1(k)),

where f is a nonlinear function,

• ϕp−1(k) – regression vector, e.g.

◦ ϕp−1(k) = [up−1(k), ep−1(k)]T – P-type controller

◦ ϕp−1(k) = [up−1(k), ep−1(k + 1)]T – D-type controller

◦ ϕp−1(k) = [up−1(k), ep−1(k), ep−1(k + 1)]T – PD-type controller

10 of 30

Structure of the neural network controller

uff
p (k)

up−1(k)

ep−1(k)

W 1,p

b1,p

W 2,p

b2,p

σ

σ

σ

+

• Neural network with one hidden layer

uff
p (k) = f(ϕp−1(k)) = W 2,pσ(W 1,pϕp−1(k) + b1,p) + b2,p,

where W 1,p, W 2,p – weight matrices
b1,p, b2,p – bias vectors

σ – hidden neurons activation function

• Network parameters are updated after each process trial
11 of 30

Update rule

• After each trail the controller parameters are updated according to:

θp = θp−1 + ∆θp

where θp – the generalized network parameter

∆θp – a correction term

• Learning objective – at each trial p minimize the criterion

Jp =
1

2

N∑
k=1

(yr(k)− yp(k))2 +
1

2
µ

M∑
i=1

θ2
p,i

where M – the number of the controller parameters

µ – a parameter governing how strongly large weights are penalized

• Using the gradient descent

∆θp = −η
∂Jp

∂θp

where η – the learning rate

12 of 30

• The gradient of the cost function J with respect to the parameter θ

∂Jp

∂θp
=

N∑
k=1

(
ep(k)

∂yp(k)

∂up(k − 1)

∂up(k − 1)

∂θp

)
+ λθp (∗)

• The first partial derivative in (∗), due to the equivalence rule, can be
calculated using the neural model of the system:

∂yp(k)

∂up(k − 1)
≈ ∂ŷp(k)

∂up(k − 1)
= CV 2 (σ′ ◦ V u

1)

where V uT
1 is the weight vector associated with the input u(k − 1)

◦ – the Hadamard product (element-wise)

• The second derivative can be calculated assuming that

up(k) = uff
p (k)

13 of 30

• for weights of the first layer W 1:

∂up(k − 1)

∂W 1,p
=

(
W 2,p ◦ σ

′
)

ϕT
p−1(k − 1)

• for biases of the first layer b1:

∂up(k − 1)

∂b1,p
= W 2,p ◦ σ

′

• for weights of the second layer W 2:

∂up(k − 1)

∂W 2,p
= σ(W 1,pϕp−1(k − 1) + b1,p)

• for biases of the second layer b2:

∂up(k − 1)

∂b2,p
= 1

14 of 30

Convergence analysis

• Controlled system

xp(k + 1) = g(xp(k), up(k)), k = 0, . . . , N − 1,

yp(k) = Cxp(k)
(1)

• Neural controller

uff
p (k) = f(ϕp−1(k)) = W 2,pσ(W 1,pϕp−1(k) + b1,p) + b2,p, (2)

with P-type regression vector ϕp−1(k) = [up−1(k), ep−1(k)]T

• Define controller sensitivities (with respect to input and error, respectively)

fu(k) =
∂f(up(k), ep(k))

∂up(k)
, fe(k) =

∂f(up(k), ep(k))

∂ep(k)

15 of 30

Main result

Theorem
For nonlinear system (1), under the assumptions A1–A3 hold, convergence of the
control law (2) with the P-type regressor is guaranteed if

γ1 + γ2 ·
1−α−(λ−1)N

1−α−(λ−1)
< 1 (3)

where γ1 = sup
k
‖fu(k)‖, γ2 = sup

k
‖fe(k)C‖

α – Lipschitz constant of controlled process,
λ > 0,

16 of 30

Sketch of proof

• the proof can be obtained as an extension of the approach presented in: D.

Shen, W. Zhang, J. Xu: Iterative learning control for discrete nonlinear
systems with randomly iteration varying lengths, Systems & Control Letters,
vol. 96, pp. 81-87, 2016.

• proof is based on deriving uniform convergence property

lim
p→∞

up(k) = u∗(k),

through analysis of the induced norms imposed on the control law

‖z(k)‖λ = sup
k∈[0,N−1]

α−λk‖z(k)‖

• to deal with a nonlinear representation, the learning controller is expanded into
Taylor series

• possible generalizations toward D-type and PD-type update rules

17 of 30

Illustrative example – pneumatic servomechanism

m

Ps

y

S4S2

S3S1

Pr

V1

A1

P1

V2

A2 P2

V1, V2 – cylinder volumes
A1, A2 – chamber areas
P1, P2 – chamber pressures
Ps – supplied pressure
Pr – exhaust pressure
m – load mass
y – piston position
S1, . . . , S4 – operating valves
u – control signal

S1 and S4 are open for u > 0
S2 and S3 are open for u < 0

18 of 30

Modelling

• investigated nonlinear system is poorly damped and includes integration action

• data recorded in the closed-loop control with the P controller

• reference: random steps trigerred randomly with levels covering possible piston
positions from the interval (−0.245, 0.245)

• neural model setting: number of delayed outputs and inputs nx = 3, number
of hidden neurons vm = 5, activation function of hidden neurons σh ≡ tanh,

• training process carried out for 100 epochs

• modelling quality – Sum of Squared Errors is SSE=0.0438

19 of 30

Exemplary interval of training data: the output (a), the control (b)
a)

500 1000 1500 2000 2500 3000 3500 4000

−0.2

−0.1

0

0.1

0.2

Discrete time [samples]

P
is

to
n
 p

o
s
it
io

n
 [
m

]

b)

500 1000 1500 2000 2500 3000 3500 4000
−2

−1

0

1

2

Discrete time [samples]

C
o

n
tr

o
l
s
ig

n
a

l

20 of 30

Synthesis of ILC neural controller

• random initial neural controller parameters

• training dataset: {e(k), u(k)}N
k=1 – recorded during the evaluation of

the closed-loop control with the feedback controller

• structure of the neural controller: vc = 3, σh ≡ tanh

• training carried out after each trial
◦ learning rate: η = 0.05
◦ penalty factor: µ = 0.0001
◦ iteration number: 100

• performance index: norm of tracking error (for P-type controller:
‖e(k)‖ = 0.4843)

21 of 30

Convergence condition

• Convergence condition can be rewritten in the form

‖W 2,pW
u
1,p‖+ ‖W 2,pW

e
1,p‖ < 1

• easy to check during retraining of neural controller

• in the case of infeasibility parameter update is not executed at given
trial

• safety margin can also be introduced (some value < 1); if the
convergence condition if violated controller weights will bring back to
the best ones stored during learning

22 of 30

Q-Filter

• spectrum of reference signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

5

10

15

Frequency [Hz]

M
a
g
n
it
u
d
e

• cutoff frequency fc = 1, 75Hz

• transfer function

Q(z) =
0.63

z − 0.37
.

23 of 30

Experiment 1
Control with convergence verification

Error norm convergence

0 5 10 15 20 25 30 35 40 45 50

0.35

0.4

0.45

0.5

Trial

‖
e
p
(k

)‖

learning transient�
��

a) without Q-filter – red,
b) with Q-filter – blue

24 of 30

Evolution of the convergence condition - Exp. 1

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Trial

C
o

n
v
e

rg
e

n
c
e

 c
o

n
d

it
io

n

25 of 30

Experiment 2
Control without convergence verification

Error norm convergence

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

Trial

‖
e
p
(k

)‖

26 of 30

Evolution of the convergence condition - Exp. 2

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

Trial

C
o
n
v
e
rg

e
n
c
e
 c

o
n
d
it
io

n

27 of 30

Comparison to a conventional technique

Linear update rule: up+1(k) = up(k) + 0.5ep(k)

Error norm convergence

0 5 10 15 20 25 30

0.35

0.4

0.45

0.5

Trial

‖
e
p
(k

)‖

neural controller – red,
linear rule without Q-filter – black,

linear rule with Q-filter – blue

28 of 30

Control quality

Reference trajectory tracking

0 100 200 300 400 500 600
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time [samples]

P
is

to
n

po
si

tio
n

[m
]

Reference

Feedback only

Feedback+ILC

29 of 30

Concluding remarks

• A novel approach for ILC synthesis based on neural networks was proposed

• The proposed control scheme may lead to significant improvement of control
system performance.

• Advantages of the proposed approach are the great flexibility of neural
controller in adaptation to plant nonlinearities and simplicity of the ultimate
training algorithm

• The solution was tested on the pneumatic servomechanism using different
working conditions of the plant with promising results

• There is still a room for refinements:

◦ improving the performance of neural controller
◦ neural Q-filter implementation
◦ adaptation of high-order ILC schemes
◦ developing robust neural network based ILC

30 of 30

	ECC 2018, Limassol, Cyprus, 12--15 June 2018 k.patan@issi.uz.zgora.pl

