Neural networks in design of iterative learning control for nonlinear systems

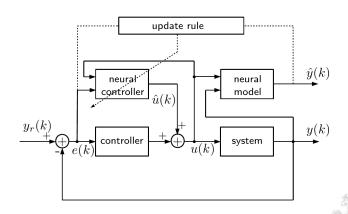
Krzysztof Patan, Maciej Patan and Damian Kowalów

Institute of Control and Computation Engineering University of Zielona Góra, Poland

Introduction

- Iterative Learning Control modern control strategy
- Neural networks useful when dealing with nonlinear problems
- Purpose of the paper to adopt artificial neural networks to develop iterative learning control
 - 1. to build an accurate neural model of the nonlinear plant based on the measurements from the previous trials
 - 2. to train the neural controller based on data provided by the model

General idea of neural network based ILC



Neural model

Let consider a nonlinear system

$$y_p(k+1) = g(y_p(k), u_p(k), k), k = 0, \dots, N-1$$
 (1)

where $p\geq 0$ – the trial (cycle number) N – a length of a trial $u_p(k)$ – a system input along the p-th trial g – a nonlinear function

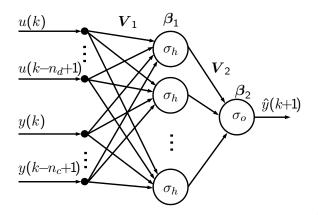
ullet Function g can be realized using dynamic neural network

$$\hat{y}(k+1) = \hat{g}(\phi(k)) = \sigma_o(\mathbf{V}_2^\mathsf{T}\sigma_h(\mathbf{V}_1^\mathsf{T}\phi(k) + \beta_1) + \beta_2)$$
(2)

where
$$\phi(k) = [y(k), \dots, y(k-n_c+1), u(k), \dots, u(k-n_d+1)]^\mathsf{T}$$

 V_1, V_2, β_1 and β_2 – weight matrices
 σ_h and σ_o – activation functions

Structure of the neural network model



Neural controller

- The key idea use the neural network to provide the realization of the function f (being implicitly an inverted model of the plant)
- Let consider the controller in the form:

$$\hat{u}_{p+1}(k+1) = \hat{f}(\varphi_p(k)),$$
 (3)

where \hat{f} is a nonlinear function

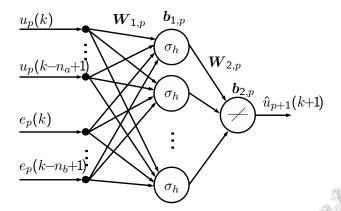
$$\varphi_{p+1}(k) = [u_p(k), \dots, u_p(k-n_a+1), e_p(k), \dots, e_p(k-n_b+1)]^{\mathsf{T}}$$

Let consider a neural network model with one hidden layer:

$$\hat{u}_{p+1}(k+1) = \hat{f}(\varphi_p(k)) = W_{2,p}^{\mathsf{T}} \sigma_h(W_{1,p}^{\mathsf{T}} \varphi_p(k) + b_{1,p}) + b_{2,p},$$
(4)

where $W_{1,p}$, $W_{2,p}$, $b_{1,p}$ and $b_{2,p}$ are weight matrices σ_h is the activation function

Structure of the neural network controller



Update rule

After each trail the controller parameters are updated according to:

$$\theta_{p+1} = \theta_p + \Delta \theta_p, \tag{5}$$

where θ_p – the generalized network parameter $\Delta\theta_p$ – a correction term

ullet Learning objective – at each trial p minimize the criterion

$$J = J_0 + \frac{1}{2}\lambda \sum_{i=1}^{M} \theta_i^2, \quad J_0 = \frac{1}{2} \sum_{k=1}^{N} (y_r(k) - y(k))^2$$
 (6)

where M – the number of the controller parameters

 λ – a parameter governing how strongly large weights are penalized

· Using the gradient descent

$$\Delta\theta = -\eta \frac{\partial J_0}{\partial \theta} - \lambda\theta,\tag{7}$$

where η – the learning rate $_{8 \text{ of } 22}$

ullet The gradient of the cost function J with respect to the parameter heta

$$\frac{\partial J_0}{\partial \theta} = -\sum_{k=1}^{N} e(k) \frac{\partial y(k)}{\partial \theta} = -\sum_{k=1}^{N} e(k) \frac{\partial y(k)}{\partial u(k-1)} \frac{\partial u(k-1)}{\partial \theta}.$$
 (8)

• The first partial derivative in (8), due to the equivalence rule, can be calculated using the model of the system (2):

$$\frac{\partial y(k)}{\partial u(k-1)} \approx \frac{\partial \hat{y}(k)}{\partial u(k-1)} = \boldsymbol{V}_{2}^{\mathsf{T}} \left(\sigma_{h}' \circ \boldsymbol{V}_{1}^{u\mathsf{T}} \right)$$
(9)

where $V_1^{u\mathsf{T}}$ is the weight vector associated with the input u(k-1) \circ – the Hadamard product (element-wise)

- ullet The second derivative can be calculated using the estimate $\hat{u}(k-1)$
- To simplify the algorithm it is assumed that regressors' dependency on the neural network weights is ignored – the recursive pseudo-linear regression method

• for weights of the first layer W_1 :

$$\frac{\partial \hat{u}(k-1)}{\partial \mathbf{W}_{1}} = \mathbf{W}_{2}^{\mathsf{T}} \left(\sigma_{h}^{'} \circ \varphi(k-1) \right) \tag{10}$$

• for biases of the first layer b_1 :

$$\frac{\partial \hat{u}(k-1)}{\partial \boldsymbol{b}_{1}} = \boldsymbol{W}_{2}^{\mathsf{T}} \boldsymbol{\sigma}_{h}^{'} \tag{11}$$

• for weights of the second layer W_2 :

$$\frac{\partial \hat{u}(k-1)}{\partial \mathbf{W}_2} = \sigma_h(\mathbf{W}_1^{\mathsf{T}} \boldsymbol{\varphi}(k) + \boldsymbol{b}_1)$$
 (12)

for biases of the second layer b₂:

$$rac{\partial \hat{u}(k-1)}{\partial oldsymbol{b}_2} = \mathbf{1}$$

13)

Neural network based ILC

- **Step 0.** Initialization. Set the feedback controller parameters, set η and λ
- Step 1. Design the neural network controller (3)
- Step 2. Design the neural network model (2)
- Step 3. Evaluate the control system and record the data

$$\{u(k), \hat{u}(k), y(k), \hat{y}(k), e(k)\}_{k=1}^{N}$$

- Step 4. Controller parameters update
 - i) using the set $\{\hat{u}(k), e(k)\}_{k=1}^{N}$ calculate derivatives (10)-(13)
 - ii) using $\{\hat{y}(k)\}_{k=1}^{N}$ calculate the derivative (9)
 - iii) using $\{e(k)\}_{k=1}^N$ calculate the gradient (8)
 - iv) update the neural network controller parameters according to (7)
- **Step 5.** Go to Step 3

Stability analysis

- Let $x(k) = [u(k), \dots, u(k-n_a+1)]^\mathsf{T}$ be a state vector of the neural controller
- Then the state of the neural controller

$$x(k+1) = W_2^{xT} \sigma_h(W_1^{xT} x(k) + W_1^{eT} e(k) + b_1) + b_2$$
 (14)

where $\boldsymbol{W}_{2}^{x\mathsf{T}} = [\boldsymbol{W}_{2}^{\mathsf{T}} \ \boldsymbol{0}]^{\mathsf{T}}$, $\boldsymbol{e}(k) = [e(k), \dots, e(k-n_b+1)]^{\mathsf{T}}$, $\boldsymbol{W}_{1}^{x\mathsf{T}}$ and $\boldsymbol{W}_{1}^{e\mathsf{T}}$ are weight matrices associated with vectors $\boldsymbol{x}(k)$ and $\boldsymbol{e}(k)$ respectively

• The system (14) can be transformed to the autonomous form

$$\boldsymbol{z}(k+1) = \boldsymbol{W}_{1}^{x\mathsf{T}} \boldsymbol{W}_{2}^{x\mathsf{T}} \bar{\sigma}(\boldsymbol{z}(k)), \tag{15}$$

where
$$\bar{\sigma}(z(k)) = \sigma_h(z(k) + v^*) - \sigma_h(v^*)$$
.

Theorem

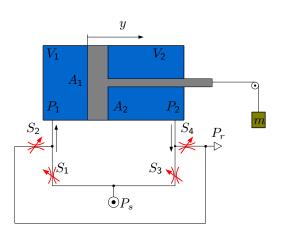
The neural system represented by (15) is globally asymptotically stable if the following condition is satisfied:

$$\|\boldsymbol{W}_{1}^{x\mathsf{T}}\boldsymbol{W}_{2}^{x\mathsf{T}}\| < 1 \tag{16}$$

Sketch of proof

- proof is based of the second method of Lyapunov
- candidate Lyapunov function a norm of the state vector
- · contraction mapping theorem is used

Illustrative example – pneumatic servomechanism



 $V_1,\ V_2$ — cylinder volumes $A_1,\ A_2$ — chamber areas $P_1,\ P_2$ — chamber pressures P_s — supplied pressure P_r — exhaust pressure m — load mass p — piston position p —

 S_1 and S_4 are open for $u \geqslant 0$ S_2 and S_3 are open for u < 0

Modelling

- data recorded in the closed-loop control with the PI controller
- reference: random steps trigerred randomly with levels covering possible piston positions from the interval (-0.245, 0.245)
- neural model setting: number of delayed outputs and inputs $n_c=4$, $n_d=2$, number of hidden neurons $v_m=5$, activation function of hidden neurons $\sigma_h=\tanh$, $sigma_o$ linear function
- training process carried out for 100 epochs
- modelling quality Sum of Squared Errors is SSE=0.0438

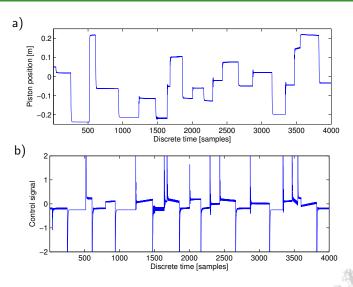


Figure: Exemplary interval of training data: the output signal (a), the control (b)

Neural controller

- neural controller design to mimic the behaviour of the fundamental controller
- input signal the tracking error e(k),
- desired output the control signal u(k)
- training set $\{e(k), u(k)\}_{k=1}^N$ recorded during the evaluation of the closed-loop control with the feedback controller
- structure of the neural controller $v_c=$ 5, $n_a=$ 2, $n_b=$ 2, $\sigma_h=$ tanh, σ_o was linear one
- training carried out off-line for 100 steps
- neural controller will not change the stability properties; according to Theorem 1

$$\|\boldsymbol{W}_{1}^{x\mathsf{T}}\boldsymbol{W}_{2}^{x\mathsf{T}}\| = 0.7965 < 1$$

ILC synthesis

- reference trajectory ramp signals with different slopes
- at each trail the neural controller is retrained according to presented algorithm
 - \circ learning rate: $\eta = 0.1$
 - decay parameter: $\lambda = 0.00005$
 - o small number of training epochs: 5
 - when the value of the error at the current trial is larger that the norm derived at the previous one the controller weights are restored from the previous trial
 - at each learning epoch the stability is checked, if violated weights are restored
- each trial was examined using the criterion in the form of the tracking error vector norm
- in the case of the PI control ||e(k)|| = 0.5057

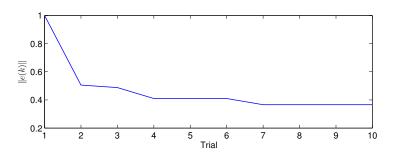


Figure: Norm of the tracking error over 8 trials.

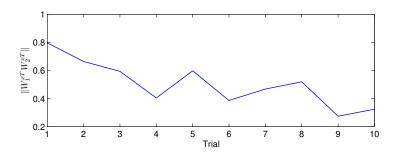


Figure: Stability: values of the criterion (16) along trials.

Concluding remarks

- A new approach for ILC synthesis based on neural networks was proposed
- The proposed control scheme may lead to significant improvement of control system performance.
- Advantages of the proposed approach are the great flexibility of neural controller in adaptation to plant nonlinearities and simplicity of the ultimate training algorithm
- The solution was tested on the pneumatic servomechanism using different working conditions of the plant with promising results
- There is still a room for refinements:
 - improving the performance of neural controller
 - o developing robust neural netwotrk based ILC

Proof.

Let V(z) = ||z|| be a Lyapunov function for the system (15). This function is positive definite with the minimum at z(k) = 0. The difference along the trajectory of the system is given as follows:

$$\Delta V(z(k)) = \|z(k+1)\| - \|z(k)\| = \|W_1^{x\mathsf{T}}W_2^{x\mathsf{T}}\bar{\sigma}(z(k))\| - \|z(k)\|.$$
 (17)

The activation function σ_h is a short map with the Lipschitz constant L=1. Then $\bar{\sigma}$ is also a short map, with the property $\|\bar{\sigma}(z(k))\| \leq \|z(k)\|$, and (17) can be expressed in the form

$$\Delta V(z(k)) \le \|W_1^{x\mathsf{T}} W_2^{x\mathsf{T}} z(k)\| - \|z(k)\| \le (\|W_1^{x\mathsf{T}} W_2^{x\mathsf{T}}\| - 1)\|z(k)\|.$$
 (18)

From (18) one can see that if

$$\|\boldsymbol{W}_{1}^{x\mathsf{T}}\boldsymbol{W}_{2}^{x\mathsf{T}}\| < 1, \tag{19}$$

then $\Delta V(z(k))$ is negative definite and the system (15) is globally asymptotically stable, which completes the proof.