Echo-state-network-based iterative learning control of distributed systems

The 22nd World Congress of the International Federation of Automatic Control Yokohama, Japan, July 9-14

Krzysztof Patan, Maciej Patan

Inst. of Control and Computation Engn. University of Zielona Góra, Poland

Introduction

- Distributed-Parameter System (DPS) control - a challenging task, especially for non-linear systems
- linearization - problems in the case of non-homogeneous systems
- lumping - information loss
- Finite Element Method (FEM) - an established approach to deal with DPS
- dense mesh required
- large computational burden
- possible problems with numerical stability and convergence
- off-line procedure
- Alternative solution - to employ neural network models to represent DPS
- Objective - to apply echo-state network to design iterative learning control for a class of nonlinear distributed-parameter systems

Distributed-parameter system representation

Let us consider the system

$$
\begin{equation*}
\frac{\partial y}{\partial t}=\mathcal{F}\left(x, t, y, \nabla y, \nabla^{2} y ; u\right), \quad(x, t) \in \Omega \times T, \tag{1}
\end{equation*}
$$

subject to the boundary and initial conditions

$$
\begin{array}{ll}
\mathcal{B}(x, t, y, \nabla y ; u)=0, & (x, t) \in \partial \Omega \times T, \\
y(x, 0)=y_{0}(x), & x \in \Omega, \tag{3}
\end{array}
$$

where $y=y(x, t)$ - the system state at the point x of the spatial domain $\Omega \in \mathbb{R}^{2}$
$\mathcal{B}, \mathcal{F}, y_{0}$ - known non-linear functions
∇ and ∇^{2} - the gradient and Hessian, respectively
u - the vector of system actuating inputs

- Common approach - Finite Element Method
- Partition of the clamped plate by FEM

- Dense spatial discretization is required to assure high accuracy of solution
- Many nodes, e.g. 441 nodes $\rightarrow 800$ triangles
- DPS solving - complex method with high computation time

Echo-state neural network

- Machine learning method for mapping inputs into a high dimensional space
- The key idea - using a reservoir of non-linear processing units
- Processing units are connected using recurrent links
- Let us consider the model

$$
\begin{aligned}
\boldsymbol{x}(k+1) & =\boldsymbol{f}_{h}\left(\boldsymbol{W}^{x} \boldsymbol{x}(k)+\boldsymbol{W}^{u} \boldsymbol{u}(k+1)\right), \\
\hat{\boldsymbol{y}}(k) & =\boldsymbol{f}_{o}\left(\boldsymbol{W}^{\text {out }} \boldsymbol{x}(k)\right),
\end{aligned}
$$

where $\boldsymbol{x}(k), \boldsymbol{u}(k), \hat{\boldsymbol{y}}(k)$ - the state, input and output vectors
$\boldsymbol{W}^{x}, \boldsymbol{W}^{u}, \boldsymbol{W}^{\text {out }}$ - the reservoir, input and the output weight matrices
$\boldsymbol{f}_{h}, \boldsymbol{f}_{o}$ - activation functions of hidden and output neurons

- Weight matrices \boldsymbol{W}^{x} and \boldsymbol{W}^{u} are chosen randomly
- W^{x} is sparse (a few \% of connections)

Network structure

Training process

$$
\boldsymbol{W}^{\text {out }}=\left((\boldsymbol{X}+\mu \mathbb{I})^{-} \boldsymbol{Y}\right)^{\top}
$$

where $\boldsymbol{X}, \boldsymbol{Y}$ - state and teacher output collection matrices μ - regularization parameter, \mathbb{I} - the identity matrix

Echo-state property

$$
\sigma_{\max }\left(\boldsymbol{W}^{x}\right)<1
$$

where $\sigma_{\max }$ - the maximum singular value

Actuating and sensing

- To reduce data needed for identification the spatial domain is split into smaller regular areas
- To each area a sensor measuring the output is assigned $S_{i}, i=1, \ldots, n_{s}$
- The spatial area is actuated using a
 number of actuators $A_{i}, i=1, \ldots, n_{a}$

- Point-wise measurements are acquired $z^{i}(t)=y\left(x_{c_{i}}, t\right)$
- Data recorded by all sensors - output patterns
- Excitation of the system - a number of actuators
- Data provided by all actuators - input data

Spatial reservoir

- Identification goal - learn both the spatial and time systems characteristics
- Our proposition - to divide the reservoir into smaller sub-regions which are fed with suitable point-wise actuation
- Units are sparsely connected
- Each partition consists of n_{p} units
- Each spatial variable was divided into R sectors
- R^{2} - the number of partitions

- Units in the partition are excited only by a suitable actuations
- Number of units in the reservoir: $R^{2} \times n_{p}$

Control scheme

- Data-driven iterative learning control

$$
\boldsymbol{u}_{p+1}(k)=\boldsymbol{u}_{p}(k)+L \boldsymbol{e}_{p}(k)
$$

where
p - the trial
k - the time instant
$L-$ a learning gain
$\boldsymbol{e}_{p}(k)=\boldsymbol{y}_{r e f}(k)-\hat{\boldsymbol{y}}_{p}(k)$ - the tracking error

- Learning gain - scalar value

1. experimentally developed

$$
\begin{equation*}
L(p)=-\left(17000 e^{-0.02 p}+3000\right) \tag{4}
\end{equation*}
$$

2. $X u$ and $\operatorname{Tan}(2003)$

$$
\begin{equation*}
L(p)=\frac{2}{\alpha_{1}+\alpha_{2}}, \quad 0<\alpha_{1}<\frac{\partial \boldsymbol{f}_{o}}{\partial \boldsymbol{u}_{p}} \leq \alpha_{1} \tag{5}
\end{equation*}
$$

Illustraive example

Clamped elastic membrane

$$
\rho \frac{\partial^{2} y(x, t)}{\partial t^{2}}+\kappa \nabla^{4} y(x, t)=u(x, t), \quad \kappa=\frac{E d^{3}}{12\left(1-\nu^{2}\right)}
$$

where $y(x, t)$ - transverse displacement, $u(x, t)$ - pressure field, x - a spatial point, t - time $\rho=2700$ - the mass density $E=7.11 \cdot 10^{10}$ - the elasticity modulus
$\nu=0.3$ - the Poisson's ratio, $d=0.003 m$ - the plate thickness
the initial conditions at the boundary $\partial \Omega$:

$$
y(x, t)=0 \quad x \in \partial \Omega
$$

the initial conditions:

$$
y(x, 0)=0, \quad \dot{y}(x, 0)=0, \quad x \in \Omega
$$

Reference displacement

- elliptic paraboloid profile

$$
y_{r e f}(t)=10^{-3}\left(1-\frac{|t-100|}{100}\right) e^{-20\left(\left(x_{1}-0.4\right)^{2}+\left(x_{2}-0.6\right)^{2}\right)} .
$$

- the length of each trial: $20 s$
- the sampling time: $T_{s}=0.1 \mathrm{~s}$
- the length of the reference (number of samples): 201

Model design

- spatial variable range division: $R=5$
- the number of model inputs and outputs: $R^{2}=25$
- the size of the reservoir partition: $n_{p}=10 \rightarrow 250$ units in the reservoir
- the neurons connection sparsity ratio: 20%
- the largest singular value of the state matrix: $\sigma_{\max }=0.95$
- activation functions: \boldsymbol{f}_{o} - linear, \boldsymbol{f}_{h} - hyperbolic tangent
- input and output data were scalled to the interval $[-10,10]$
- training with regularization: $\mu=0.1$

Data gathering: an excitation was applied at different locations of the plate and the plate displacement was recorded by sensors: Patan and Patan, 2022, Reservoir modeling of distributed-parameter systems, ICARCV 2022

ILC design

- ESN model was used to predict the plate displacement
- after each trial the model parameters were fine-tuned using the rule

$$
\begin{equation*}
\boldsymbol{W}_{\text {new }}^{\text {out }}=\boldsymbol{W}_{\text {old }}^{\text {out }}(1-\lambda)+\boldsymbol{W}^{\text {out }} \lambda \tag{6}
\end{equation*}
$$

where λ - a forgetting parameter $\lambda \in(0,1)$
$\boldsymbol{W}^{\text {out }}$ - calculated using the fundamental learnig rule
○ in our study: $\lambda=0.05$

- comparative evaluation: FEM based ILC
- spatial grid: $21 \times 21,441$ nodes, 800 spatial regions
- the learning gain: $L(p)=-\left(5000 e^{-0.012 p}+2500\right)$
- performance index: norm of the tracking error

Control results

Reference profile

ESN model-based control

FEM-based control

ILC Convergence

Gains:
FEM-based: $L(p)=-\left(5000 e^{-0.012 p}+2500\right)$
NN-based1: $L(p)=-\left(5000 e^{-0.012 p}+2500\right)$
NN-based2: $L(p)=0.1 \frac{2}{\alpha}, \alpha=\max \left\{\boldsymbol{W}^{\text {out }} \boldsymbol{W}^{u}\right\}$

Concluding remarks

- Proposed data-driven ILC is less computationally expensive than FEM-based one
- ESN-ILC was three times faster than FEM-based approach
- Real-time properties of the developed control scheme
- Network parameters can be adapted on demand, not after each operation cycle
- Future research directions:
- to select more accurately the learning gain
- to perform convergence analysis of the control scheme
- optimal selection of sub-regions

