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Introduction

e Distributed-Parameter System (DPS) control — a challenging task, especially
for non-linear systems

o linearization — problems in the case of non-homogeneous systems
o lumping — information loss

e Finite Element Method (FEM) — an established approach to deal with DPS
o dense mesh required
o large computational burden
e possible problems with numerical stability and convergence
o off-line procedure
e Alternative solution — to employ neural network models to represent DPS
¢ Objective — to apply echo-state network to design iterative learning control

for a class of nonlinear distributed-parameter systems
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Distributed-parameter system representation

Let us consider the system

0
a%s/ = F(z,t,y, Vy, Viysu), (2,t) € @x T, (1)

subject to the boundary and initial conditions

B(z,t,y,Vy;u) =0, (x,t) € 02 x T, 2)
y(:L', 0) = yo(x), x € Q, 3)

where y = y(x,t) — the system state at the point = of the spatial domain 2 € R?
B, F, yo — known non-linear functions
V and V? - the gradient and Hessian, respectively

u — the vector of system actuating inputs
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e Common approach — Finite Element Method

e Partition of the clamped plate by FEM
1

T
e Dense spatial discretization is required to assure high accuracy of solution
e Many nodes, e.g. 441 nodes — 800 triangles

e DPS solving — complex method with high computation time
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Echo-state neural network

® Machine learning method for mapping inputs into a high dimensional space
® The key idea — using a reservoir of non-linear processing units
® Processing units are connected using recurrent links

® | et us consider the model

zk+1)=f, Wx(k) + W'u(k+ 1)),
g(k) = f, Wz(k)),

where x(k), u(k), g(k) — the state, input and output vectors
W2 WY WO _ the reservoir, input and the output weight matrices
fn, f, — activation functions of hidden and output neurons

e Weight matrices W and W™ are chosen randomly

e W7 is sparse (a few % of connections)
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Network structure

W
wu Wout
u(k) (k)
x(k+1)

Training process

W = (X +pl)”Y)T,
where X, Y — state and teacher output collection matrices
1 — regularization parameter, [ — the identity matrix

Echo-state property

Omax(W™) < 1,

where Omaz — the maximum singular value




Actuating and sensing

® To reduce data needed for identification

the spatial domain is split into smaller
regular areas ‘
i T &
® To each area a sensor measuring the @ e
. . L ‘ : ‘
output is assigned S;, i =1,...,n, \‘\“\%ﬁx\\ﬁy/
® The spatial area is actuated using a
number of actuators A;, i =1,...,n,

1

e Point-wise measurements are acquired 2% (t) = y(z,,t)
e Data recorded by all sensors — output patterns

o e Excitation of the system — a number of actuators

0 - 1 ® Data provided by all actuators — input data
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Spatial reservoir

® |dentification goal — learn both the spatial and time systems characteristics

e Qur proposition — to divide the reservoir into smaller sub-regions which are fed
with suitable point-wise actuation

e Units are sparsely connected

e Each partition consists of n,
units

e Each spatial variable was divided
into R sectors

e R? — the number of partitions

e Units in the partition are excited only by a suitable actuations

e Number of units in the reservoir: R2 x Ny
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Control scheme

e Data-driven iterative learning control

upy1(K) = up(k) + Ley (k)

where Yres (k) & Yp(k)
p — the trial , T

k — the time instant ok NN\m\o\deI : A,I acqiaéim

L — a learning gain N

ep(k) = Y5 (k) — 9,(k) — the tracking error ﬁ

® Learning gain — scalar value

1. experimentally developed

L(p) = —(17000e %" 4+ 3000) (4)

2. Xu and Tan (2003)
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lllustraive example

Clamped elastic membrane

0?y(x,t) _ Ea&
P o T 12(1 02

where y(z,t) — transverse displacement, u(z,t) — pressure field,  — a spatial point, ¢t — time
p = 2700 — the mass density E = 7.11 - 10'° — the elasticity modulus

v = 0.3 — the Poisson’s ratio, d = 0.003m — the plate thickness

+ V(e t) = u(a,t), &

the initial conditions at the boundary 9€2:
ylx,t) =0 x €N

the initial conditions:

y(#,0) =0, 5(z,0)=0, zeQ
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Reference displacement

e elliptic paraboloid profile

t— 1000\  _90((21—0.4)%+(s—0.6)2
() =103 (1 = | 20((w1—0.4)%+ (22 —0.6) )
res(®) =103 (1= 0 o

the length of each trial: 20s

the sampling time: T = 0.1s

the length of the reference (number of samples): 201



Model design

® spatial variable range division: R =5

e the number of model inputs and outputs: R? = 25

e the size of the reservoir partition: n, = 10 — 250 units in the reservoir
e the neurons connection sparsity ratio: 20%

e the largest singular value of the state matrix: 0,4, = 0.95

® activation functions: f, — linear, f; — hyperbolic tangent

e input and output data were scalled to the interval [—10, 10]

® training with regularization: p = 0.1

Data gathering: an excitation was applied at different locations of the plate and the plate
displacement was recorded by sensors: Patan and Patan, 2022, Reservoir modeling of
distributed-parameter systems, ICARCV 2022
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ILC design

e ESN model was used to predict the plate displacement
o after each trial the model parameters were fine-tuned using the rule
Wit = Wad(1 =) + W™ (6)

where \ — a forgetting parameter A € (0,1)
Weut — calculated using the fundamental learnig rule

O in our study: A = 0.05

e comparative evaluation: FEM based ILC

O spatial grid: 21 x 21, 441 nodes, 800 spatial regions
o the learning gain: L(p) = —(5000e™ %127 4 2500)

e performance index: norm of the tracking error



Control results

Reference profile
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ILC Convergence
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Gains:

FEM-based: L(p) = —(5000e~-012P + 2500)

NN-basedl: L(p) = —(5000e~°-012P 4 2500)
p)

2
NN-based2: L(p) = 0.1=, o = max{W°* W4}
o
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Concluding remarks

e Proposed data-driven ILC is less computationally expensive than
FEM-based one

o ESN-ILC was three times faster than FEM-based approach
e Real-time properties of the developed control scheme

e Network parameters can be adapted on demand, not after each
operation cycle

e Future research directions:

o to select more accurately the learning gain

o to perform convergence analysis of the control scheme

o optimal selection of sub-regions
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