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Introduction

• Distributed-Parameter System (DPS) control – a challenging task, especially
for non-linear systems

◦ linearization – problems in the case of non-homogeneous systems
◦ lumping – information loss

• Finite Element Method (FEM) – an established approach to deal with DPS

◦ dense mesh required

• large computational burden
• possible problems with numerical stability and convergence

◦ off-line procedure

• Alternative solution – to employ neural network models to represent DPS

• Objective – to apply echo-state network to design iterative learning control
for a class of nonlinear distributed-parameter systems
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Distributed-parameter system representation

Let us consider the system

∂y

∂t
= F

(
x, t, y,∇y,∇2y;u

)
, (x, t) ∈ Ω× T, (1)

subject to the boundary and initial conditions

B
(
x, t, y,∇y;u

)
= 0, (x, t) ∈ ∂Ω× T, (2)

y
(
x, 0) = y0(x), x ∈ Ω, (3)

where y = y(x, t) – the system state at the point x of the spatial domain Ω ∈ R2

B, F , y0 – known non-linear functions
∇ and ∇2 – the gradient and Hessian, respectively

u – the vector of system actuating inputs
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• Common approach – Finite Element Method

• Partition of the clamped plate by FEM

• Dense spatial discretization is required to assure high accuracy of solution

• Many nodes, e.g. 441 nodes → 800 triangles

• DPS solving – complex method with high computation time
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Echo-state neural network

• Machine learning method for mapping inputs into a high dimensional space

• The key idea – using a reservoir of non-linear processing units

• Processing units are connected using recurrent links

• Let us consider the model

x(k + 1) = fh (W xx(k) + W uu(k + 1)) ,

ŷ(k) = fo

(
W outx(k)

)
,

where x(k), u(k), ŷ(k) – the state, input and output vectors

W x, W u, W out – the reservoir, input and the output weight matrices

fh, fo – activation functions of hidden and output neurons

• Weight matrices W x and W u are chosen randomly

• W x is sparse (a few % of connections)
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Network structure

Wx

Wu W out

u(k)

x(k+1)

ŷ(k)

Training process

W out = ((X + µI)−Y )T,

where X, Y – state and teacher output collection matrices

µ – regularization parameter, I – the identity matrix

Echo-state property

σmax(W x) < 1,

where σmax – the maximum singular value
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Actuating and sensing

• To reduce data needed for identification
the spatial domain is split into smaller
regular areas

• To each area a sensor measuring the
output is assigned Si, i = 1, . . . , ns

• The spatial area is actuated using a
number of actuators Ai, i = 1, . . . , na

• Point-wise measurements are acquired zi(t) = y(xci , t)

• Data recorded by all sensors – output patterns

• Excitation of the system – a number of actuators

• Data provided by all actuators – input data
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Spatial reservoir

• Identification goal – learn both the spatial and time systems characteristics

• Our proposition – to divide the reservoir into smaller sub-regions which are fed
with suitable point-wise actuation

• Units are sparsely connected

• Each partition consists of np
units

• Each spatial variable was divided
into R sectors

• R2 – the number of partitions

• Units in the partition are excited only by a suitable actuations

• Number of units in the reservoir: R2 × np
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Control scheme

• Data-driven iterative learning control

up+1(k) = up(k) + Lep(k)

where

p – the trial

k – the time instant

L – a learning gain

ep(k) = yref (k)− ŷp(k) – the tracking error

• Learning gain – scalar value

1. experimentally developed

L(p) = −(17000e−0.02p + 3000) (4)

2. Xu and Tan (2003)

L(p) =
2

α1 + α2
, 0 < α1 <

∂fo

∂up
≤ α1 (5)
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Illustraive example

Clamped elastic membrane

ρ
∂2y(x, t)

∂t2
+ κ∇4y(x, t) = u(x, t), κ =

Ed3

12(1− ν2)

where y(x, t) – transverse displacement, u(x, t) – pressure field, x – a spatial point, t – time
ρ = 2700 – the mass density E = 7.11 · 1010 – the elasticity modulus

ν = 0.3 – the Poisson’s ratio, d = 0.003m – the plate thickness

the initial conditions at the boundary ∂Ω:

y(x, t) = 0 x ∈ ∂Ω

the initial conditions:

y(x, 0) = 0, ẏ(x, 0) = 0, x ∈ Ω
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Reference displacement

• elliptic paraboloid profile

yref (t) = 10−3

(
1− |t− 100|

100

)
e−20((x1−0.4)2+(x2−0.6)2).

• the length of each trial: 20s

• the sampling time: Ts = 0.1s

• the length of the reference (number of samples): 201
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Model design

• spatial variable range division: R = 5

• the number of model inputs and outputs: R2 = 25

• the size of the reservoir partition: np = 10 → 250 units in the reservoir

• the neurons connection sparsity ratio: 20%

• the largest singular value of the state matrix: σmax = 0.95

• activation functions: fo – linear, fh – hyperbolic tangent

• input and output data were scalled to the interval [−10, 10]

• training with regularization: µ = 0.1

Data gathering: an excitation was applied at different locations of the plate and the plate

displacement was recorded by sensors: Patan and Patan, 2022, Reservoir modeling of

distributed-parameter systems, ICARCV 2022
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ILC design

• ESN model was used to predict the plate displacement

◦ after each trial the model parameters were fine-tuned using the rule

W out
new = W out

old (1− λ) +W outλ (6)

where λ – a forgetting parameter λ ∈ (0, 1)

W out – calculated using the fundamental learnig rule

◦ in our study: λ = 0.05

• comparative evaluation: FEM based ILC

◦ spatial grid: 21× 21, 441 nodes, 800 spatial regions
◦ the learning gain: L(p) = −(5000e−0.012p + 2500)

• performance index: norm of the tracking error
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Control results

Reference profile

ESN model-based control

FEM-based control
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ILC Convergence

Gains:
FEM-based: L(p) = −(5000e−0.012p + 2500)
NN-based1: L(p) = −(5000e−0.012p + 2500)

NN-based2: L(p) = 0.1
2

α
, α = max{W outW u}
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Concluding remarks

• Proposed data-driven ILC is less computationally expensive than
FEM-based one

◦ ESN-ILC was three times faster than FEM-based approach

• Real-time properties of the developed control scheme

• Network parameters can be adapted on demand, not after each
operation cycle

• Future research directions:

◦ to select more accurately the learning gain

◦ to perform convergence analysis of the control scheme

◦ optimal selection of sub-regions
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