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Introduction

• Intelligent control – a very popular and important branch of control methods

• Iterative learning control (ILC) – modern intelligent control strategy

• Neural networks – useful when dealing with nonlinear problems

◦ nonlinear plant modeling
◦ time-varying nonlinear learning controller realization

• Robustness of ILC – to consider state and output disturbances/uncertainty as
well as initial state and initial feedback controller errors

• Experimental verification – magnetic brake system

• Magnetic brakes are often used in different areas such as big trucks, high
speed railways, commercial vehicles or industrial elevators
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Problem formulation

Consider a class of discrete-time nonlinear systems

xp(k + 1) = g(xp(k), up(k)) +wp(k), k = 0, . . . , N − 1,

yp(k) = Cxp(k) + vp(k),
(1)

where p ≥ 0 – a trial number, N – a trial length
xp(k), up(k), yp(k) – system state, input and response
wp(k), vp(k) – state and output disturbances/uncertainty
g – some nonlinear function

C – output (observation) matrix

Problem: to design a control scheme such that the tracking error
ep(k) = yr(k)− yp(k) (yr(k) – the reference trajectory) remains bounded
in the presence of model uncertainty and disturbances
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Iterative learning control

• Adaptation of so-called first-order ILC scheme (current iteration ILC)

◦ use of existing feedback controller for stabilization,
◦ adding supporting feedforward neural controller for tracking improvement,

up(k) = ufbp (k) + uffp (k) (2)

where p – trial number, ufbp (k) – feedback control, uffp (k) – ILC update
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• Feedback controller

zp(k + 1) = Aczp(k) +Bcep(k)

ufbp (k) = Cczp(k) +Dcep(k)
, (3)

where zp(k) – the controller state

Ac, Bc, Cc, Dc – controller matrices

• Learning controller
uffp (k) = f(up−1(k), ep−1(k)) (4)

where f – a nonlinear function

Basic concept – use the neural network to provide time-varying realization of
the function uffp (k) (being implicitly an inverted model of the plant)
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Neural controller

• Neural network with one hidden layer

uffp (k) = f(ϕp−1(k)) =W 2,pσ(W 1,pϕp−1(k) + b1,p) + b2,p,

where ϕp−1(k) = [up−1(k) ep−1(k)]
W 1,p, W 2,p – weight matrices
b1,p, b2,p – bias vectors

σ – hidden neurons activation function

• Neural network parameters are updated after each process trial

• Stochastic gradient based training algorithm

K. Patan and M. Patan, “Neural-network-based iterative learning control of
nonlinear systems,” ISA Transactions, vol. 98, pp. 445–453, 2020.
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Neural model

• System modeling – state space neural network model

x̂p(k + 1) = ĝ(x̂p(k), up(k), εp(k))

ŷp(k) = Cx̂p(k)

where x̂p ∈ Rn, up ∈ R1, ŷp ∈ R1 – model state, input and output

εp(k) = yp(k)− ŷp(k) – prediction error

• Implementation of nonlinear function ĝ(·, ·, ·):

ĝ(·, ·, ·) = Ax̂p(k) + V 2σ(V
x
1 x̂p(k) + V

u
1up(k) + V

ε
1εp(k) + V

b
1) + V

b
2)

where V u
1 ∈ Rvm×1, V ε

1 ∈ Rvm×1, V x
1 ∈ Rvm×n, V 2 ∈ Rn×vm – weight matrices

V b
1 ∈ Rvm , V b

2 ∈ Rn – bias vectors
σ : Rvm → Rvm – the vector-valued activation function

vm – the number of hidden neurons
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A =


0 . . . 0 0
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

 , C =
[
1 0 . . . 0

]
,

V x
1 =

[
tunable weights
0(vm−n)×n

]
,

V 2 =

[
0(n−1)×n tunable weights

tunable weights 01×(vm−n)

]
.

• Training in batch mode (off-line) based on historical measurement data
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Convergence analysis

Assumption A1. Let wp(k) = 0, vp(k) = 0 and yr(k) be a reference defined over a
discrete-time k ∈ N , which is assumed to be realizable, that is there exists a unique ur(k) and
an initial state xr(0), i.e.

xr(k + 1) = g(xr(k), ur(k))

yr(k) = Cxr(k)
.

Assumption A2. Let ∀k ∈ N , ∀p state and output disturbances/uncertainties satisfy

‖wp(k)‖ ≤ εw, ‖vp(k)‖ ≤ εv ,

where εw ≥ 0, εv ≥ 0 are finite bounds. Moreover, ∀p the initial system state error and initial
feedback controller state satisfy

‖∆xp(0)‖ ≤ εx, ‖zp(0)‖ ≤ εz , (5)

where ∆xp(k) = xk(k)− xp(k), εx ≥ 0 and εz ≥ 0 are some positive constants.
Assumption A3. The nonlinear function g satisfies the global Lipschitz condition

‖g(x1, u1)− g(x2, u2)‖ ≤ L (‖x1 − x2‖+ |u1 − u2|)

where L > 0 stands for the Lipschitz constant.
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Theorem 1
Let us consider the nonlinear system (1) which satisfies the assumptions
(A1)–(A3) and the reference trajectory yr(k) satisfying the assumption (A1).
Then using the control of the form (2)-(4) satisfying the condition∣∣∣∣sup

k
‖fu(k)‖+ sup

k
αkL

1− β−(λ−1)N

βλ − β

∣∣∣∣ < 1 (6)

where fu(k) = ∂f

∂u
ff
p (k)

, fe(k) = ∂f
∂ep(k)

,

αk = max{‖fu(k)‖‖Bc‖, ‖fu(k)‖‖Dc‖‖C‖+ ‖fe(k)‖‖C‖},
β = max{L‖Cc‖+ ‖Ac‖, L+ L‖Dc‖‖C‖+ ‖Bc‖‖C‖},

guarantees that the tracking error is bounded, i.e.

lim
p→∞

‖yr(k)− yp(k)‖λ ≤ σ (7)

where constant σ > 0 is dependent on εw, εv, εx, εz.
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Sketch of proof

• proof has been obtained as an extension of works:

1. K. Patan and M. Patan, “Neural-network-based iterative learning control of nonlinear
systems,” ISA Transactions, vol. 98, pp. 445–453, 2020

2. C.-J. Chien, “A discrete iterative learning control for a class of nonlinear time-varying

systems,” IEEE Transactions on Automatic Control, vol. 43, no. 5, pp. 748–752, 1998

• proof is based on deriving uniform convergence property

lim
p→∞

up(k) = ur(k),

through analysis of the induced norm imposed on the control law

‖s(k)‖λ = sup
k∈[0,N−1]

β−λk‖s(k)‖

• to deal with a nonlinear representation, the learning controller is expanded into
Taylor series

• recursive nature of the state-space representation is also used
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Illustrative example – magnetic brake

• System consists of a magnet inducing currents in a rotating disc of conductive
material

• Aluminum disk with a radius of 10cm and a thickness of 1cm

• System input – the magnetic flux, system output – the angular velocity

• Initial value of velocity: 200 RPS

Scheme of magnetic brake system Reference profile
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Model developing

• Magnetic brake is a nonlinear system governed by spatio-temporal dynamics

• Problems with modeling:

◦ physical effects such as nonlinear saturation, skin effects and eddy currents induced by
motion must be considered simultaneously

◦ a fine spatial mesh is required due to very small skin depths
◦ a transient solution with time-stepping is necessary

• State-space neural networks provide an important alternative

• Investigated is stable – data recorded in the open-loop control feeding the
system with different input signals

• Structure of the state-space neural network model: the model order: 3, the
number of hyperbolic tangent neurons of the first layer: 15, the number of
linear neurons of the second layer: 3

• Model training: Levenberg-Marquardt method

• Lipschitz constant for the trained model: L = 1.66
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ILC controller synthesis

• open-loop ILC is used (without feedback controller)

• random initial neural controller parameters

• training dataset: {e(k), u(k)}Nk=1 – recorded during the previous
working cycle of the system

• structure of the neural controller: vc = 12, σh ≡ tanh

• training carried out after each trial
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Results – control

Convergence: random initial parameters (blue, red, green)
preliminarily trained controller (black)
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Results – output tracking

Output vs reference after 20 trails
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Results – convergence condition satisfaction

Convergence condition for λ = 10
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Concluding remarks

• A novel approach for robust ILC synthesis based on neural networks is
proposed

• Learning controller has time-varying structure

• Modeling uncertainty and disturbances are taken into account

• Sufficient conditions guaranteeing convergence of the proposed
neural-network-based ILC are provided

• Future research directions:
◦ experiments using current-iteration setting
◦ comparative studies with alternative control schemes dedicated to magnetic

brake system
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