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Introduction

® [ntelligent control — a very popular and important branch of control methods
e |terative learning control (ILC) — modern intelligent control strategy
e Neural networks — useful when dealing with nonlinear problems

o nonlinear plant modeling
o time-varying nonlinear learning controller realization

® Robustness of ILC — to consider state and output disturbances/uncertainty as
well as initial state and initial feedback controller errors

® Experimental verification — magnetic brake system

e Magnetic brakes are often used in different areas such as big trucks, high
speed railways, commercial vehicles or industrial elevators
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Problem formulation

Consider a class of discrete-time nonlinear systems

xp(k+1) = g(xp(k),up(k)) + wy(k), k=0,...,N —1,

up(k) = Cy(k) + (k). M

where p > 0 — a trial number, N — a trial length
xp(k), up(k), yp(k) — system state, input and response
wp(k), vp(k) — state and output disturbances/uncertainty
g — some nonlinear function

C - output (observation) matrix

Problem: to design a control scheme such that the tracking error
ep(k) = yr(k) — yp(k) (yr(k) — the reference trajectory) remains bounded
in the presence of model uncertainty and disturbances
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Iterative learning control

e Adaptation of so-called first-order ILC scheme (current iteration ILC)

o use of existing feedback controller for stabilization,
o adding supporting feedforward neural controller for tracking improvement,

up(k) = uf (k) +uff (k) ()

where p — trial number, u};b(k) — feedback control, u};f(k) — ILC update

I" memory: ngu']'al u£f(k) neural igp(k)
controller model
k) ra
+
k
feedback plant yp (k)

controller u;b(kJr up(k)
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e Feedback controller

zp(k+1) = Aczp(k) + Beep(k)

wP(k) = C.ozp(k) + Deey(k) (3)

where 2z, (k) — the controller state
A, B., C., D. — controller matrices

e |earning controller
uff (k) = f(up-1(k), ep1(k)) (4)

where f — a nonlinear function

Basic concept — use the neural network to provide time-varying realization of
the function ugf(k) (being implicitly an inverted model of the plant)
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Neural controller

® Neural network with one hidden layer

uif(k) = f(‘Pp—l(k)) = W2,pU(W1,p<Pp—1(k) +b1,) +bap,

where @, (k) = [up-1(k) ep-1(k)]
Wi,p, Wa p — weight matrices
b1,p, b2, p — bias vectors

o — hidden neurons activation function
e Neural network parameters are updated after each process trial

e Stochastic gradient based training algorithm

K. Patan and M. Patan, “Neural-network-based iterative learning control of
nonlinear systems,” ISA Transactions, vol. 98, pp. 445-453, 2020.
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Neural model

e System modeling — state space neural network model

&p(k+1) = g(&p(k), up(k), ep(k))
@p(k) = C@p(k)

where £, € R", up € RY, Up € R! — model state, input and output
ep(k) = yp(k) — gp(k) — prediction error

e Implementation of nonlinear function g(-,-,-):
gC.) = Ay (k) + Voo (Vigy(k) + Viup(k) + Viey(k) + V1) + V3)
where V¥ € Rvm X1 Vie Rvm X1 V7 e RYmX" Vg € R"¥Ym — weight matrices

Vi eRvm, VZZ’ € R™ — bias vectors
o : RYm — RYm — the vector-valued activation function

Um — the number of hidden neurons
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O(n—1)xn ! tunable weights
Vo= | ;
tunable weights | 01y (v, —n)

e Training in batch mode (off-line) based on historical measurement data
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Convergence analysis

Assumption Al. Let wy(k) =0, vp(k) = 0 and yr(k) be a reference defined over a
discrete-time k € N, which is assumed to be realizable, that is there exists a unique u,(k) and
an initial state @,(0), i.e.

xr(k+1) = g(@r(k), ur(K))
yr(k) = Car (k) '

Assumption A2. Let Vk € N, Vp state and output disturbances/uncertainties satisfy
lwp(R)|| < €w, Nlvp(k)|| < €v,

where €,y > 0, €, > 0 are finite bounds. Moreover, Vp the initial system state error and initial
feedback controller state satisfy

Az, O)]| < €xs [[2p(0)]] < ez, (5)

where Axp (k) = xk (k) — xp(k), €2 > 0 and €, > 0 are some positive constants.
Assumption A3. The nonlinear function g satisfies the global Lipschitz condition

llg(x1,u1) — g(mz, u2)|l < L ([le1 — 2| + Jur — uz|)
Wherge le8> 0 stands for the Lipschitz constant.
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Theorem 1

Let us consider the nonlinear system (1) which satisfies the assumptions
(A1)—(A3) and the reference trajectory y,. (k) satisfying the assumption (Al).
Then using the control of the form (2)-(4) satisfying the condition

k Pl P 6
su ” +supapli—— | <

1 )]+ supan L= ©)
where fu( ) P ff %) fe(k) Bep(k)

ag fmaX{Hfu(k)lHIB I 1 fu (R INDeANNCH + I fe(RNICIT
B =max{L||Cc|l + || Acll, L + L|| Dc||[C|| + | BcICII},
guarantees that the tracking error is bounded, i.e.

tim (k) = gp(F) s < o ”)

where constant o > 0 is dependent on €,,, €,, €, €.
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Sketch of proof

e proof has been obtained as an extension of works:

1. K. Patan and M. Patan, “Neural-network-based iterative learning control of nonlinear
systems,” ISA Transactions, vol. 98, pp. 445-453, 2020

2. C.-J. Chien, "A discrete iterative learning control for a class of nonlinear time-varying
systems,” |EEE Transactions on Automatic Control, vol. 43, no. 5, pp. 748-752, 1998

® proof is based on deriving uniform convergence property

lim wu,(k) = u,(k),

p—o

through analysis of the induced norm imposed on the control law

Is(k)Ix = sup  B™[|s(k)|
ke[0,N—1]

® to deal with a nonlinear representation, the learning controller is expanded into
Taylor series

® recursive nature of the state-space representation is also used
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lllustrative example — magnetic brake

e System consists of a magnet inducing currents in a rotating disc of conductive

material
® Aluminum disk with a radius of 10cm and a thickness of 1cm
e System input — the magnetic flux, system output — the angular velocity
e Initial value of velocity: 200 RPS

Scheme of magnetic brake system Reference profile
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Model developing

Magnetic brake is a nonlinear system governed by spatio-temporal dynamics

Problems with modeling:

O physical effects such as nonlinear saturation, skin effects and eddy currents induced by
motion must be considered simultaneously

O a fine spatial mesh is required due to very small skin depths

O a transient solution with time-stepping is necessary

State-space neural networks provide an important alternative

Investigated is stable — data recorded in the open-loop control feeding the
system with different input signals

Structure of the state-space neural network model: the model order: 3, the
number of hyperbolic tangent neurons of the first layer: 15, the number of
linear neurons of the second layer: 3

Model training: Levenberg-Marquardt method

Lipschitz constant for the trained model: L = 1.66
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ILC controller synthesis

e open-loop ILC is used (without feedback controller)

e random initial neural controller parameters

e training dataset: {e(k),u(k)}_, — recorded during the previous
working cycle of the system

e structure of the neural controller: v. = 12, o}, = tanh

e training carried out after each trial
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Results — control

Convergence: random initial parameters (blue, red, green)
preliminarily trained controller (black)
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Results — output tracking

Output vs reference after 20 trails
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Results — convergence condition satisfaction

Convergence condition for A = 10
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Concluding remarks

A novel approach for robust ILC synthesis based on neural networks is
proposed

e Learning controller has time-varying structure

e Modeling uncertainty and disturbances are taken into account

e Sufficient conditions guaranteeing convergence of the proposed
neural-network-based ILC are provided

e Future research directions:

o experiments using current-iteration setting

o comparative studies with alternative control schemes dedicated to magnetic
brake system
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