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Introduction

ã Model Predictive Control (MPC) – modern control strategy

ã MPC derives a control signal by solving at each sampling time finite
horizon open-loop optimal control problem

ã Predictive control algorithms are able to consider constraints imposed
on both controls and process outputs (states)

ã Stability problems

unconsidered nonlinearities, e.g. inequalities imposed on
process variables, may result in degraded performance of the
closed-loop control and may lead to stability problems
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Stability of MPC strategies

ã Rich literature about linear/nonlinear MPC represented in the
state-space (survey paper: Mayne et al. 2000)

1 Cost in the form of a Lyapunov candidate function

terminal constraint (Keerthi and Gilbert, 1988)
infinite output prediction horizon (Keerthi and Gilbert 1988)
terminal cost function (Rawlings and Muske, 1993)
terminal costraint set methods
(Scokaert, Mayne and Rawlings, 1999)

2 Requirement that the state is decreasing in some norm
(Bemporad, 1998)

ã High level of maturity
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ã Stability of MPC using GPC concept for linear systems

infinite horizon GPC (GPC∞)
(Scokaert and Clarke, 1994)
Constrained Receding-Horizon Predictive Control (CRHPC)
(Clarke and Scatollini, 1991)
Stable Generalized Predictive Control (SGPC)
(Gossner, Kouvaritakis and Rossiter, 1997)
min-max GPC
(Kim, Kwon and Lee, 1998)

ã This paper proposes nonlinear predictive control using a dynamic
neural network

ã The stability is investigated checking the monotonicity of the cost –
extension of the approach proposed by Scokaert and Clarke, (1994)

predictor is nonlinear
prediction horizon is finite
control horizon is not greater than the prediction horizon
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Nonlinear MPC

Cost based on the GPC criterion

J =

N2∑
i=N1

e2(k + i) + ρ

Nu∑
i=1

∆u2(k + i− 1)

where e(k + 1) = r(k + i)− ŷ(k + i)
r(k + i) – the future reference signal
ŷ(k + i) – the prediction of future outputs
∆u(k + i− 1) = u(k + i− 1)− u(k + i− 2)
∆u(k + i− 1) – control change
ρ – the factor penalizing changes in the control signal
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Constraints on control moves

∆u(k + i) = 0, Nu 6 i 6 N2 − 1

Constraints on process variable v

v 6 v(k + j) 6 v, ∀j ∈ [0, Nv]

where Nv – constraint horizon
v – lower limits
v – upper limits

Terminal constraints, e.g.

e(k + Np + j) = 0, ∀j ∈ [1, Nc],

where Nc – terminal constraint horizon
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Neural predictor

Prediction can be done by successive recursion of a one-step ahead nonlinear
model

One-step ahead prediction

ŷ(k + 1) = f(y(k), ..., y(k − na + 1), u(k), ..., u(k − nb + 1)) (1)

where na and nb represent number of past outputs and inputs, respectively

Function f can be realized using dynamic neural network

i-step ahead prediction

ŷ(k + i)=f(y(k + i− 1), ..., y(k + i− na), u(k + i− 1), ...u(k + i− nb)) (2)

Measurements of the output are available up to time k – one should
substitute predictions for actual measurements since these do not exist

y(k + i) = ŷ(k + i), ∀i > 1
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Problem definition

Let us redefine the nonlinear model predictive control based on the
following open-loop optimization problem

u(k)
M
= min

u
J (3a)

s.t. e(k + N2 + j) = 0, ∀j ∈ [1, Nc], (3b)

∆u(k + Nu + j) = 0, ∀j > 0, (3c)

u 6 u(k + j) 6 u, ∀j ∈ [0, Nu − 1], (3d)

where Nc – the terminal constraints horizon
u – lower control bound
u – upper control bound
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Stability conditions

Proposition

The nonlinear model predictive control system (3) using the predictor
(2) is asymptotically stable if the following conditions are satisfied:

i) ρ 6= 0,

ii) Nc = max [na + 1, max [0, nb + Nu −N2]],

regardless the choice of N1, N2, and Nu.
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Sketch of the proof

The cost function at time k has the form:

J(k) =

N2∑
i=N1

e2(k + i) + ρ

Nu∑
i=1

∆u2(k + i− 1)

u(k) – is the optimal control at time k
u∗(k + 1) – the suboptimal control postulated at time k + 1

if u(k) = [u(k), u(k + 1), . . . u(k + Nu − 1)]T then
u∗(k + 1) = [u(k + 1), . . . , u(k + Nu − 1), u(k + Nu − 1)]T

J∗(k + 1) =

N2+1∑
i=N1+1

e2(k + i) + ρ

Nu∑
i=2

∆u2(k + i− 1)
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Sketch of the proof

Difference of cost J(k) and J∗(k + 1)

J∗(k + 1)− J(k) = e2(k + N2 + 1)− e2(k + N1)− ρ∆u2(k)
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Sketch of the proof

Difference of cost J(k) and J∗(k + 1)

J∗(k + 1)− J(k) = e2(k + N2 + 1)︸ ︷︷ ︸
=0

− e2(k + N1)− ρ∆u2(k)
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Sketch of the proof

Difference of cost J(k) and J∗(k + 1)

J∗(k + 1)− J(k) = −e2(k + N1)− ρ∆u2(k)
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Sketch of the proof

Difference of cost J(k) and J∗(k + 1)

J∗(k + 1)− J(k) = −e2(k + N1)− ρ∆u2(k)6 0
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Sketch of the proof

Difference of cost J(k) and J∗(k + 1)

J∗(k + 1)− J(k) = −e2(k + N1)− ρ∆u2(k)6 0

Tracking error equality constraints hold for all j > 1 if:

i) Nc = na + 1, assuming that na > nb + Nu −N2,

ii) Nc = nb + Nu −N2, Nc > 0, assuming that na < nb + Nu −N2.
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Sketch of the proof

Difference of cost J(k) and J∗(k + 1)

J∗(k + 1)− J(k) = −e2(k + N1)− ρ∆u2(k)6 0

Tracking error equality constraints hold for all j > 1 if:

i) Nc = na + 1, assuming that na > nb + Nu −N2,

ii) Nc = nb + Nu −N2, Nc > 0, assuming that na < nb + Nu −N2.

Setting the constraint horizon on the value:

Nc = max [na + 1,max [0, nb + Nu −N2]]

quarantees that tracking error equality constraints hold not only for
j ∈ [1, Nc] but for all j > 1
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Sketch of the proof

Moreover u∗(k + 1) satisfies all constraints at time k + 1, and
subsequently the vector ∆u∗(k + 1) also satisfies constraints

Assuming u(k + 1) as the optimal solution of the optimization problem
time k + 1 then

J(k + 1) 6 J∗(k + 1)

and

∆J(k + 1) = J(k + 1)− J(k) 6 −e2(k + N1)− ρ∆u2(k)

Finally, for ρ 6= 0 the cost is monotonically decreased with respect to time
and the control system is stable �
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Constrained optimization

Let us recall the optimization problem as follows:

u(k)
M
= min

u
J(u) (4a)

s.t. h1i(u) = 0, ∀i ∈ [1, Nc], (4b)

h2i(u) = 0, ∀i > 0 (4c)

g1i(u) 6 0, ∀i ∈ [0, Nu − 1], (4d)

g2i(u) 6 0, ∀j ∈ [0, Nu − 1], (4e)

where h1i(u) = e(k + N2 + i)
h2i(u) = ∆u(k + Nu + i)
g1i(u) = u(k + i)− u
g2i(u) = u− u(k + i)
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Let us define Lagrangian

L(u,µ1,µ2,µ3) = J(u)+
Nc∑
i=1

µ1ih1i(u)+
Nu−1∑
i=1

µ2ig1i(u)+
Nu−1∑
i=1

µ3ig2i(u) (5)

with Lagrange multiplier vectors µ1, µ2, µ3

Transformation of the original problem to its unconstrained form

J̄(u) = J(u) + µ

Nc∑
i=1

h2
1i

(u), (6)

Objective – to solve an unconstrained problem:

u(k)
M
= min

u
J̄(u), (7)

where µ is suitably large constant

If uµ is a solution of the problem (5), and excluding inequality constraints (4d)
and (4e) it can be shown that as µ→∞ there obtains uµ → u∗, where u∗ is
solution of (4)
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Inequality constraints handling

Solution projection

1: for i := 0 to Nu − 1 do
2: if u(k + i) > u then
3: u(k + i) := u
4: else if u(k + i) < u then
5: u(k + i) := u
6: end if
7: end for

Projection of the solution onto a feasible region

This simple solution can deteriorate the optimal solution but
quarantees that inqequality constraints stay satisfied
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Tank unit

Boiler

Storage tank
Pump

V1

LTLRC

FT1 FT2

F1 F2

PDT dP

PT P

CV – control value
dP – pressure difference on

the valve V1

P – pressure before the valve V1

F1 – flow (electromagnetic
flowmeter)

F2 – flow (Vortex flowmeter)
L – water level in the boiler



SYSTOL 2013, Nice, France, 9–11 October 2013 k.patan@issi.uz.zgora.pl

Experiments

best performing model (NNOE): one input (CV ), one output (L), 7
tangensoidal neurons in the hidden layer, one linear output neuron,
the number of input delays nb = 2 and the number of delayed outputs
na = 2

prediction horizon Np = 15

control horizon Nu = 2

constraint horizon Nc = 3

penalty factor ρ = 10−6

upper control bound u = 100

lower control bound u = 40
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Process output (solid) and reference signal (dashed) (upper graph), the control
signal (lower graph)
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Evolution of the cost function without terminal constraint (upper graph), with
terminal constraints (lower graph).
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Concluding remarks

ã The presented neural network based MPC quarantees the stable
work of the control system

ã The proposed numerical solution is very simple to implement and
no time consuming

ã Unfortunately the presented solution can cause a ringing effect in
the control directly caused by control projection onto the feasible
region

ã This effect can be eliminated using a more robust constrained
optimization procedure
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