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Abstract It is studied uniqueness and global attracting property of the recursive utility under uncer-
tainty related to Epstein and Zin [19] equations. The equation is specified by a temporal aggregator W
which satisfies different conditions then Marinacci and Montrucchio [40], Le Van and Vailakis [36] and
Jaśkiewicz, Matkowski and Nowak [30]. The random continuation value is parametrized by non-linear
Certainty Equivalent Substitution (CES-for short). There are studied a properties of truncation error,
operating on a solid normal cone of function space. The main results are applied to the theory of optimal
economic growth model (related with resource extraction game) with nonlinear aggregator for instance,
but they can be applicable in other economic models.
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1 Introduction

In many economic problems, the Böhm-Bawerks idea of preference for advancing the timing of future
satisfaction from different point of view makes important role. This idea has been formalized by Koopmans
[33], where it has been characterized axiomatically a class of recursive utilities. For the extension of
Koopmans result to the models under uncertainty, the reader is referred to Kreps and Porteus [35] for
finite horizon model and Epstein and Zin [19] for infinite horizon model. This class includes a classical
discounting utility of Samuelson [48] and some models of intergenerational altruism, postulated by Ramsey
[45].

Many researchers have used standard discounting rule to various sequential decision-making problems,
see Blackwell [10]; Strauch [49]; Lucas et. all [38]; Hernandez-Lerma and Lasserre [27]; and references
therein. In all aforementioned works, in order to obtain a solution of the Bellman equation, one can
directly apply the Banach Contraction Principle, if the immediate return function is bounded. In case
of unbounded instantaneous utility functions, one may combine with a weighted norm approach, see
Becker and Boyd [7]; Boyd [11]; Hernandez-Lerma and Lasserre [28], with an idea of local contractions
of Rincón-Zapatero and Rodriguez-Palmero [46]1. In some papers like Marinacci and Montrucchio [40],
Montrucchio [43], Martins-da-Rocha and Vailakis [22] a Thompson metric (see [53]) has been used on a
set of comparable functions as an alternative for standard sup-norm. In turn in Jaśkiewicz et. all [30]
unbounded utility has been obtained as a limit of corresponding recursive utilities in the models with
bounded returns.

Faculty of Mathematics, Computer Sciences and Econometrics, University of Zielona Góra, Poland.

1 See also Rincón-Zapatero and Rodriguez-Palmero [47], Nowak and Matkowski [42], Martins-da-Rocha and Vailakis [22].
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Banach Contraction Principle is applicable with more general recursive utilities like in Denardo [16];
Lucas and Stokey [37], Boyd [11] and with Blackwell and Thompson aggregator in Marinacci and Mon-
trucchio [40]. In turn in Jaśkiewicz et. all [30] a Matkowski extension of Banach Principle [41] has been
used.

In this paper it is considered multi-stage model in which single agent has a preference depending on
the utilities derived at any stage. Let (un)n∈N be a sequence of random utilities derived by the agent in a
sequential decision-making process and W is a fixed aggregator. Then, it is studied expected total utility,
which is on the form

J := lim
n→∞

(W (u1,M (W (u2, . . . ,M (W (un−1,M (W (un, 0)))))))) , (1)

where W is an aggregator, andM(·) is certainty equivalent substitution (CES for short). CES represents
uncertainty between periods or generations and it usually depends on the transition probability. This
total utility is in a spirit of Koopmans [33] and Epstein and Zin [19]. In standard dynamic programming
an aggregator, W has affine form W (u, v) = u+ βv and M is standard expectation. But the preferences
represented by expectation argue with Allais paradox2. Because of thatM can be express more generally
then expectation i.e. from a Chew - Dekel class [13,15] at the formM(·) = φ−1(Eφ(·)) with some strictly
monotone and continuous convex or concave function φ. In particularly if φ(x) = e−x then CES is said to
be risk sensitive (see [54]). Risk sensitivity has been postulated in Weil [54] and used in Jaśkiewicz and
Nowak [29] in OLG models and in Bäuerle and Jaśkiewicz [6]. To the other CES, representing different
preferences and remeding Allais paradox the reader is referred to Gul [21], Dekel [15], Chew and Epstain
[14] for example.

For other then affine aggregator the reader is referred to Jaśkiewicz et. all [30], where a constant
discount factor β has been replaced by discounting function δ i.e. aggregator has a form W (u, v) = u+δ(v).
The logarithmic aggregator has been considered by Koopmans, Diamond, and Williamson [34], and large
class of Blackwell and Thompson aggregators has been considered by Marinacci and Montrucchio [40] or
Martins da Rocha and Vailakis [22]. Under mild conditions, and nonnegative immediate utility function
it is possible to use standard Tarski-Kantorovich Theorem (see Dugundji and Granas [17] and Tarski
[52]) to prove that the limit in (1) exists and it is recursive utility. The issue is to prove that utility in
(1) is unique and obeys attracting property. In standard discounted models and its extensions to other
aggregators like in Denardo [16]; Lucas and Stokey [37]; Boyd [11]; Marinacci and Montrucchio [40];
Jaśkiewicz et. all [30]; this problem has been solved under specific assumptions. Observe that, in case of
possibly negative utilities the limit in (1) may not exist and must be replaced by lim inf or lim sup (for
example see Bich et all [9]).

In this paper it is studied existence and global attracting property of recursive utility in a form (1),
under nonlinear aggregator, sub-homogenous CES and distinct conditions then Jaśkiewicz et. all [30]
and Marinacci and Montrucchio [40]. It is proven the existence, uniqueness and attracting property of a
solution of Bellman equation in an infinite time horizon models with a fixed real-valued aggregator W .
The analysis are applicable with nonnegative and either bounded and unbounded from above immediate
return functions. In unbounded case, it is neither applied weighted norm nor local contraction idea
from [46]. Instead, it is successively extended the state space between invariant subsets of state space
corresponding this law of motion. The point is, the construction of law of motion in this paper prevents
to extend some level, since for sufficiently large state the production pull the capital down (similar law of
motion is in [50], [51] or [39]). This question for unbounded utilities from bellow is however important as
a similar models, but with a constant discount factor, were considered by Strauch [49]; Hernandez-Lerma
and Lassere [27] or seminal paper of Lucas et. all [38]. For a further discussion see also Feinberg [20], and
more general models with unbounded return [36]; [40]; [30] and in [9].

2 Let us denote (p1, x1; . . . ; pk, xk) as a lottery with output xi with probability pi (i = 1, . . . , k). Allais paradox states
that lottery l1 := (1, 100) is more preferable then l2 := (0.8, 200; 0.2, 0) for most people, while lotery l3 = (0.5, 100; 0.5, 0) is
less preferable then l4 = (0.4, 200; 0.6, 0). Observe that l3 = 1

2
l1 + 1

2
δ0, l4 = 1

2
l2 + 1

2
δ0, where δ0 = (1, 0) Hence utility on

lotteries representing this preference can not be expectation



On non-negative recursive utilities in dynamic programming with nonlinear aggregator and CES. 3

In this paper it is applied alternative technique in the proofs, applying Guo, Cho and Zhu [25] fixed
point Theorems, on a cone of nonnegative functions. Guo, Cho and Zhu fixed point theorem enables us
to have uniqueness and global attracting property of the recursive utility function, which mathematically
is a fixed point of some increasing operator. To motivate this result it is shown examples where neither
Banach Contraction Principle and nor its extension due to Matkowski [41] can be used. Similarly as
Banach Contraction Principle, Guo Cho and Zhu Theorem delivers us a truncation error convergent to
zero as fast as exponential function. This theorem has already been used in OLG models e.g. Balbus et.
all [5] and [4]. Existence, uniqueness and global attracting property of recursive utility function enables
us to obtain an existence of optimal plan as well as properties of optimal recursive utility function.
Unfortunately, the main results exclude many useful aggregators as affine, logarithmic [34] and large
class of Thompson aggregators. On the other hand all aforementioned aggregators can be described us
limit of these considered in this paper. Because of that, we comment the possibilities of approaching those
models by the models considered in this paper.

The rest of the paper is structured as follows: Section 2 contains preliminaries on fixed point theorem
on solid normal cones, which may be alternative tool for standard Banach Contraction Principle and for its
extension due to Matkowski [41]. Section 3 contains description of the model with main assumptions. Main
results are contained in Sections 4 and 5. In Section 4 existence, uniqueness and global attracting property
of recursive utility is proven, and in Section 5 it is proven existence of optimal policy using Bellman
equations. In Section 6 we describe the problems with the models satisfying more general assumptions
then in this paper. For example in Subsection 6.2 the problem with no optimal policy is presented. In turn
in Subsection 6.3 we comment how to approach many models by the model satisfying our assumptions.
The last section contains concluding remarks.

2 Preliminaries

2.1 Fixed point theorems on solid normal cone

Let (V, || · ||) be a Banach space with 0 ∈ V as its zero vector.

Definition 1 A subset P ⊂ V is said to be cone if following axioms are satisfied:

– if v ∈ P , t ∈ R+ then tv ∈ P ,
– if v ∈ P , −v ∈ P then v = 0.

Each cone generates partial order relation ≤P in the following way: v ≤P w iff w − v ∈ P . In this
paper let us drop P from ≤P and let us use common notation ≤ to indicate an order generating on the
cone as well as to indicate standard order on the real line.

Definition 2 A cone P is said to be solid if its interior P o is nonempty.

Definition 3 A cone P is said to be normal if there is some positive number N such that for all v ∈ P
and w ∈ P

if 0 ≤ v ≤ w then ||v|| ≤ N ||w||.

N is said to be index of normality.

Definition 4 Let (V, || · ||) be a Banach space. Let V0 ⊂ V and T : V0 → V0 be some operator. Let
v∗ ∈ V0 be a fixed point of T . v∗ is said to have global attracting property on V0 if for all v0 ∈ V0
lim
n→∞

||Tnv0 − v∗|| = 0 (Tn := T ◦ . . . ◦ T means n-th composition of T ).

In entire paper increasing means order preserving function i.e. x ≤ y implies f(x) ≤ f(y).
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Theorem 1 (Theorem 3.1.7. in [25]) Let (V, || · ||) be a Banach space. Assume P ⊂ V is solid and
normal cone generating order ≤ with N as an index of normality. Let T : P o → P o be increasing operator
such that there exists r ∈ (0, 1) such that for all v ∈ P o, t ∈ (0, 1] it holds

T (tv) ≥ trT (v).

Then T has unique fixed point v∗ ∈ P o, with global attracting property and estimation rate

||Tnv0 − v∗|| ≤M
(

1− αr
n
)

for all n ∈ N.

Here M = 2N ||v0||, α = t0
s0

and t0 and s0 are chosen in a following way:

0 < t0 < 1 < s0 and it holds t1−r0 v0 ≤ T (v0) ≤ sr0v0.

This theorem above yields distinct assumptions then standard Banach Contraction Theorem and its
generalizations ( see [41] or [17]). Theorem 1 gives the conditions for uniqueness and global attracting
properties of fixed points. It is worth mentioning that operator T in Theorem 1 maps open set into itself.
Because of that it can be find unique fixed point in the interior of its domain. Observe that extension
of T in Theorem 1 to closure of P may have more fixed points. For example T : R+ → R+ defined as
T (x) =

√
x has two fixed points, but only one in the interior. Hence neither Banach Contraction Theorem

nor its extensions (like Matkowski [41]) are applicable in this case.

2.2 Basic notations and terminology in a space of functions and measures.

In this section we induce general notations which is used in entire paper.

– If Ω is a metric space
– then B(Ω) is a collection of Borel subsets of Ω,
– B(Ω) is a set of all Borel measurable, bounded and real valued functions on Ω,
– and it is Banach space with a sup-norm || · ||Ω i.e.

||v||Ω := sup
ω∈Ω
|v(ω)|, (2)

– by [·]Ω is an infimum operator on B(Ω) i.e.

[v]Ω = inf
ω∈Ω

v(ω)

for all v ∈ B(Ω).
– If Ω is Polish space then ∆(Ω) is denoted as a set of all Borel probability measures on Ω. Endow
∆(Ω) with a standard weak topology i.e. µn → µ as n→∞ if for all real valued continuous function
f on Ω it holds

lim
n→∞

∫
Ω

f(ω)µn(dω) =

∫
Ω

f(ω)µ(dω).

Clearly ∆(Ω) is Polish space (for example see Theorem 15.12 in [1]).



On non-negative recursive utilities in dynamic programming with nonlinear aggregator and CES. 5

3 The model

3.1 Description of the model

We shall consider a dynamical system specified by the following objects (X,Γ,Ω, u, q,W,M) where:

– X ⊂ R denotes the space of all possible capital levels; assume X = [0, x̄] where x̄ ∈ R+ or X = [0,∞);
– For each x ∈ X the correspondence Γ (x) := [0, x] denotes the set of feasible investment levels for an

agent when the current capital level is x;
– Ω := [ω, ω] (here 0 < ω ≤ ω) is a space of random shocks endowed with a Borel probability measure
ρ;

– The function q : X ×Ω → R denotes a random production function;
– u : X → R+ is a instantenous utility function (one-period utility);
– W : R+ × R+ → R+ is called aggregator function; assume it is increasing in both arguments;
– Mq : B(X) → B(X) is certainty equivalent substitution3 (CES) depending on q. In entire paper we

will denote M instead of Mq for short;

In another words it is considered a model in which a decision maker chooses a consumption level in
periods n ∈ N. If x1 ∈ X is an initial capital level then this agent decides how much to invest and how
much to consume. The investment level y1 is chosen from the set Γ (x1) := [0, x1] and the remaining part
of this capital c1 := x1 − y1 is a consumption level. Then, the immediate return for this agent u(c1) is
generated, and the next capital level is produced by the function x2 = q(y1, ω1), where ω1 ∼ ρ 4 is a
shock unobservable at state 1. In state x2 again two things happen: the agent selects an investment level
y2 ∈ [0, x2] and consumption level c2 := x2 − y2 and the return u(c2) is incurred. Next capital level is
updating by the random production function x3 = q(y2, ω2) where ω2 is unobservable shock at step 2,
independent and having distribution ρ which is the same as ω1. This procedure repeats itself yielding
the history on the capital - investment system (xn, yn)n∈N. At the same time a sequence of independent
random variables having distribution ρ, (ωn)n∈N is generated.

Let H be a set of all feasible histories. Mathematically H is a set of all sequences h := (xn, yn)∞n=1 ∈
Gr(Γ )∞. Endow H with a natural Borel product σ− algebra on (Gr(Γ ))∞. For n > 1, we denote
Hn := Gr(Γ )n−1 as the set of feasible histories before step n. A policy is a sequence of jointly Borel
measurable 5 mappings such that σ1 : X → ∆(Y ), σ1(Γ (x)|x) = 1, and for n > 1 σn : Hn ×X → ∆(Y )
such that for each (hn, x) ∈ Hn × X it holds σn(Γ (xn)|hn, xn) = 1. Let Σ be denoted as a set of all
policies. A policy σ is said to be pure if for each n ∈ N, hn ∈ Hn, x ∈ X there is some y ∈ Y such that
σn({y}|hn, x) = 1. A Markov policy is such that σn : X → ∆(Y ). σ ∈ Σ is a stationary Markov policy if
σn = s (n ∈ N) for some Borel measurable function s : X → ∆(Y ). Stationary Markov policy is identified
with s. Let x ∈ X be an initial state and (σn)n∈N be arbitrary policy. By Ionescu-Tulcea Theorem [44] a
production function q, initial capital x ∈ X and policy σ induces unique probability measure Pσx on H.

Let Σ be a set of all policies. For each σ ∈ Σ, and n > 1 let us denote σn := Hn → Σ as σn :=
(σn+τ )

∞
τ=0 called n− th shift policy i.e. policy from the period n onward. Observe that σ is Markov policy

if and only if for each n ≥ 1 the σn does not depend on Hn (i.e. is ”constant” strategy). Let us state first
assumption on CES which is necessary for all further analysis.

In the entire paper we slightly abuse notation and we will denote My(·) :=M(·)(y).

Assumption 1 Let k ∈ N and Z ∈ B(Rk) and suppose that the function f : X × Z → R is jointly
measurable. Then

(y, z) ∈ X × Z →My(f(·, z))

is jointly measurable function.

3 M(·) is certainty equivalent substitution if M(v1) ≤M(v2) whenever v1 ≤ v2 and M(α) = α for each constant α.
4 real valued random variable having distribution ρ
5 That is Borel measurable with respect to corresponding product topology.
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Following Hansen and Sargent [26] for any initial state x ∈ X and σ ∈ Σ let us define a total utility
for the agent as an approach of total utilities in n-stage models. More precisely the n− stage total utility
is defined recursively as follows:

J1(x, σ) :=

∫
Γ (x)

W (u(x− y), 0)σ1(dy|x),

and for each n > 1 let

Jn(x, σ) :=

∫
Γ (x)

W
(
u(x− y),My(Jn−1(·, σ2(x, y)))

)
σ1(dy|x) (3)

and the total utility (if exists) is defined as follows

J(x, σ) = lim
n→∞

Jn(x, σ). (4)

Observe that, if σ ∈ Σ then (x′, x, y) ∈ X ×H2 → J1(x′, σ2(x, y)) must be jointly measurable, hence by
Assumption 1

(y′, x, y) ∈ X ×H2 →My′(J1(·, σ2(x, y)))

must be jointly measurable. Consequently J2 is jointly measurable. Hence, by induction we conclude the
joint measurability of all Jn, hence also its supremum. Since W is increasing in second argument and
My(·) is increasing for each y ∈ X, hence we can show that J1 ≤ J2 ≤ . . . Jn ≤ . . .. As a result the limit
in (4) always exists, although it may be infinite.
Observe that: if W (v1, v2) = v1 + βv2 and

My(v) := φ−1
(∫

Ω

φ(v(q(y, ·)))dρ(·)
)

with φ(·) := idX(·) then J is standard β− discounted utility function. If φ(x) = e−θx for some θ > 0, the
CES is called risk -sensitive.

3.2 Basic assumptions and their literature review

In Sections 4 and 5 the following assumptions are satisfied:

Assumption 2 Assume u is increasing , bounded, continuous function and u(0) ≥ 0.

Assumption 3 Assume W is jointly continuous, W (v1, v2) = 0 if and only if v1 = v2 = 0 and addition-
ally there exists r ∈ (0, 1) such that for all v1 ∈ [u(0),∞), v2 > 0 and t ∈ (0, 1) it holds

W (v1, tv2) ≥ trW (v1, v2); (5)

Assumption 4 On the transition function q assume for each ω ∈ Ω, q(·, ω) is strictly increasing and
continuous function such that q(0, ω) = 0 for each ω ∈ Ω; Moreover, there exists non-decreasing function
K : Ω → R++ such that q(x, ω) > x if 0 < x < K(ω) and q(x, ω) ≤ x if x ≥ K(ω).

Assumption 5 Assume for each y ∈ X, My satisfies:

(i) My is sub-homogenous operator i.e.

v ∈ B(X), t ∈ [0, 1] implies that My(tv) ≥ tMy(v);
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(ii) My is order continuous operator: i.e. if (vn)n∈N is a monotone sequence of the elements of B(X)
vn → v then

lim
n→∞

My(vn) =My(v);

(iii) for each measurable functions v : X → R and w : X → R, if v(ω) = w(ω) for ρq−1y − a.a. ω ∈ Ω 6

then My(w) =My(v);
(iv) My(v) is continuous in y ∈ X whenever v is.

A few comments are in order. Assumption 2 is standard. Assumption 4 means that production is
generally disturbed by random noise. At each step the noise is independent on the noise at any other step.
Classical example is Cobb-Douglas production function in case of deterministic model i.e. Ω is singleton.
More general form can be found in [50] and [51]. Random production function satisfying Assumption
4 can be found many papers on the growth model like [12], [39], [18], [2] in multigenerational altruism
[8], [3] and references therein. Classical CES is expectation operator. Expectation is homogenous and
all other properties in Assumption 5 are satisfied. For example, consider more general CES proposed in
Chew [13] or Dekel [15] at the following form:

My(v) = φ−1
(∫

X
h(q(y, ω))φ(v(q(y, ω)))ρ(dω)∫

X
h(q(y, ω))ρ(dω)

)
=, φ−1

(∫
X
h(x′)φ(v(x′))ρq−1y (dx′)∫
X
h(x′)ρq−1y (dx′)

)
(6)

for some Borel-measurable strictly positive function h and strictly monotone function φ. All of this CES
satisfies (ii)-(v) of Assumption 5, but subhomogenity is satisfied for some class of φ. Following lemma
states applicability of this class.

Lemma 1 Let h : X → R++ be an integrable function, η > 0 and φ : [0, η]→ R+ be continuous, strictly
monotone function, and differentiable on (0, η) with continuous and bounded derivative. Suppose that CES
My has a form in (6). Assume additionally at least one of the following conditions holds

(i) φ is strictly increasing and the function φ′(φ−1(·))φ−1(·) is concave or
(ii) φ is strictly increasing and the function φ′(φ−1(·))φ−1(·) is convex.

Then for each y ∈ X, CES at the form My(·) is subhomogenous and consequently satisfies Assumption
5.

Proof We only show that My satisfies point (i) in Assumption 5. Let v ∈ (B(X))o, y ∈ X and define
f : (0, 1)→ R+ as follows f(t) =My(tv). Suppose that My(v) has a form (6) with h and φ given as in
the assumptions of this lemma. By Lemma 5, f(t) > 0 for each t ∈ (0, 1). Note that, if f is differentiable

then the subhomogenity is equivalent f ′(t)t
f(t) ≤ 1 for all t ∈ (0, 1). Let ψ be a density w.r.t. measure ρq−1y

in the following form

ψ(x) :=
h(x)∫

X
h(x)ρq−1y (dx)

with x ∈ X.

Put E as expectation of ψ7. Observe that f(t) := φ−1(E(φ(tv))) and for t > 0

f ′(t)t

f(t)
=

E(tvφ′(tv))

φ′ (φ−1(Eφ(tv)))φ−1(E(φ(tv)))
.

Put Z = φ(tv). Then

f ′(t)t

f(t)
=

E(φ′(φ−1(Z))φ−1(Z))

φ′(φ−1(E(Z)))φ−1(E(Z))
. (7)

6 That is ρ ({ω ∈ Ω : v(q(y, ω)) = w(q(y, ω))}) = 1
7 i.e. E(w) :=

∫
X w(x)ψ(x)ρq−1

y (dx) for each w ∈ B(X)
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Step 1. Suppose φ is strictly increasing and φ′
(
φ−1(·)

)
φ−1(·) is concave. By standard Jensen inequality

we have

E(φ′(φ−1(Z))φ−1(Z)) ≤ φ′(φ−1(E(Z))))φ−1(E(Z))). (8)

Since φ is strictly increasing, hence φ′ is strictly positive as well as φ−1. Hence (8) together with (7)

yields f ′(t)t
f(t) ≤ 1.

Step 2. Suppose φ is strictly decreasing and φ′
(
φ−1(·)

)
φ−1(·) is convex. If φ is strictly decreasing

then also φ−1 and its derivative is strictly negative function. Since φ′
(
φ−1(·)

)
φ−1(·) is convex, hence

and by standard Jensen inequality the equation (8) holds with opposite inequality. Since φ is strictly
increasing, hence φ′ is strictly negative, but φ−1 is strictly positive valued. Hence equation (8) with

opposite inequality, together with (7) implies f ′(t)t
f(t) ≤ 1.

By Lemma 1 it is easy to verify that the class of CES at the form as in (6) with φ(t) = tθ with θ > 0
satisfies Assumption 5. In the risk sensitive model φ(t) = e−θt with θ > 0 and t > 0. Then φ is strictly
decreasing and φ−1(τ) = − 1

θ ln(θτ) for τ ∈
(
0, 1θ

]
. Note that

φ′
(
φ−1(t)

)
φ−1(t) = θt ln(θt),

which is convex. Hence by Lemma 1 all conditions in Assumption 5 is satisfied. For more discussion on
risk sensitive model the reader is referred to [29] and [6].

Finally, let us comment Assumption 3. Observe that standard affine aggregator does not obey As-
sumption 3, unless u(0) > 0. More details we will present in Subsection 6.3. On the other hand, the paper
of Marinacci and Montrucchio [40] includes a few aggregators satisfying Assumption 3. For example a
class of Thompson aggregators as:

W (v1, v2) =
(
vξ1 + βvη2

) 1
p

,

where, ξ > 0, 0 < η < p and β ∈ (0, 1). Indeed, for each v1 > 0, v2 > 0 and t ∈ (0, 1) we have

∂
∂v2

W (v1, v2)

W (v1, v2)
v2 =

η

r

βvη2

vξ1 + βvη2
≤ η

r
< 1.

As a result this aggregator satisfies 3. Next aggregator is a modification of the aggregator in Koopmans
et all [34]:

W (v1, y2) =
1

θ
log
(

1 + vξ1 + βvη2

)
, (9)

with θ > 0, ξ > 0 and η ∈ (0, 1). We have

∂
∂v2

W (v1, v2)

W (v1, v2)
v2 = η

βvη2

(1 + vξ1 + βvη2 ) log(1 + vξ1 + βvη2 )
≤ η sup

x>0

x

(1 + x) log(1 + x)
< 1.

As a result Assumption 3 is satisfied also in this case. Observe however that, the aggregator in [34] satisfies
η = 1.

Next example shows that Assumption 3 does not imply Thompson property (according to Marinacci
and Montrucchio [40] terminology). Namely concavity at 0 is violated.

Example 1 Let ψ : [0,∞)→ [0,∞) be defined as follows:

ψ(x) =

{
4
√
x if x ∈ [0, 1)√
x if x > 1

(10)
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and consider aggregator in the form W (v1, v2) = ψ(v1 + v2). Clearly such W satisfies Assumption 3 since
for each t ∈ (0, 1)

ψ(v1 + tv2) ≥ ψ(t(v1 + v2)) ≥ t 1
2ψ(v1 + v2).

Observe however that W is not concave in 0. Put v1 = 0.9, v2 = 1.1 and t = 1/11. Then v1 + v2 = 2 and
v1 + tv2 = 1. Hence W (v1, tv2) = 1 but

tW (v1, v2) + (1− t)W (v1, 0) =
1

11

√
2 +

10

11
4
√

0.9 ≈ 1.04 > 1 = W (v1, tv2),

which contradics concavity in 0.

4 Existence and global attracting property of recursive utility function

For each h ∈ H and n ∈ N let hn be a natural projection of h on Hn. Define

U := {U : X ×Σ → R : U is bounded and for each , σ ∈ Σ,n ∈ N

a function U(xn, σ
n(hn)) is jointly measurable in (hn, xn) ∈ Hn ×X}.

Clearly U endowed with natural sup-norm topology

||U ||X×Σ := sup
(x,σ)∈X×Σ

|U(x, σ)|

is Banach space (more precisely it is closed subspace of Banach space of bounded functions on X ×Σ).
Put U+ as a subset of nonnegative functions from U . Clearly U+ is normal cone with unit index of
normality. Moreover, it induces standard component-wise order. That is U1 ≤ U2 iff U1(x, σ) ≤ U2(x, σ)
for each (x, σ) ∈ X ×Σ.
By Lemma 5 in Appendix, it is shown that U+ is solid cone and

Uo
+ :=

{
U ∈ U+ : inf

(x,σ)∈X×Σ
U(x, σ) > 0

}
. (11)

According to [33], [7], [19] or [40] among others, we induce following definition:

Definition 5 U∗ ∈ U+ is said to be recursive utility function if for any strategy σ ∈ Σ and any initial
state x ∈ X it holds

U∗(x, σ) =

∫
Γ (x)

W
(
u(x− y),My(U∗(·, σ2(x, y)))

)
σ1(dy|x).

Observe that recursive utility function U∗ (if exists ) is a fixed point of the following operator:

TW (U)(x, σ) :=

∫
Γ (x)

W
(
u(x− y),My(U(·, σ2(x, y)))

)
σ1(dy|x).

For all δ ≥ 0 put

T δW (U)(x, σ) :=

∫
Γ (x)

W
(
uδ(x− y),My(U(·, σ2(x, y)))

)
σ1(dy|x),

where uδ(x− y) = max (u(x− y), δ) . Obviously u0 ≡ u. If u(0) > 0 then T δW ≡ TW for δ < u(0).
The purpose of this section is to construct utility function in (1) as recursive utility function. A

following lemma is needed:

Lemma 2 Assume 1, 2, 3, 4 and 5 and u ∈ B(X). Then for each δ ≥ 0
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(i) T δW maps both U+ and Uo
+ into itself;

(ii) T δW (·) is increasing operator, and for each U ∈ U+, T δW (U) is decreasing in δ;
(iii) If δ > 0 then T δW (0)(x, σ) ≥W (δ, 0) > 0;
(iv) J is well defined and if U is any fixed point of T δW then J ≤ U.

Proof Let U ∈ U+ and δ ≥ 0.
Proof of (i). We show that T δW (U) ∈ U+. For each n > 1 let hn ∈ Hn and xn ∈ X. First we show that

T δW (U)(xn, σ
n(hn)) is jointly measurable in (hn, xn). Observe that, since U ∈ U+, hence (hn+1, x

′) ∈
Hn+1 ×X → U(x′, σn+1(hn+1)) is jointly measurable, hence by Assumption 1 My′(U(·, σn+1(hn+1)) is
jointly measurable in (hn+1, y

′) ∈ Hn+1 ×X. Observe that

T δW (U)(xn, σ
n(hn)) =

∫
Γ (xn)

W (uδ(xn − yn),Myn(U(·, σn+1(hn+1))))σn(dyn|hn, xn).

Hence T δW (U)(xn, σ
n(hn)) must be jointly measurable in Hn×X. Hence T δW maps U+ into itself. To show

T δW maps Uo
+ into itself, observe that by (11) and Assumption 3 it holds TW (U)(x, σ) ≥W (0, [U ]X×Σ) >

0.
Proof of (ii) is easy by Assumptions 3 and 5.
Proof of (iii). By (ii) it holds T δW (U)(x, σ) ≥ W (δ, [U ]X×Σ) > 0. Put U = 0, then T δW (0)(x, σ) ≥

W (δ, 0) > 0.
Proof of (iv). From part (i) it follows that all Jn are well defined. From part (ii) Jn increases in n.

Indeed, J1 ≥ 0 and suppose Jk+1 ≥ Jk for some integer k. Then Jk+2 = TW (Jk+1) ≥ TW (Jk) = Jk+1.
Consequently, Jn increases in n, hence converges pointwise to J . We show that J is no greater then any
fixed point of TW . Let U be any fixed point of TW . Observe that U ≥ 0, and suppose U ≥ Jk. Then by
(ii) and induction hypothesis U = TW (U) ≥ TW (Jk) = Jk+1, consequently U is greater then J .

Next lemma shows that, having capital level x ∈ X, we may ensure that our daily utility never pull down
below some fixed value.

Lemma 3 Assume 1, 2, 3, 4 and 5 and let x > 0. Then there exists δ > 0 and a policy σ ∈ Σ such that

Pσx

({
h := (xn, yn)n∈N : inf

n∈N
u(xn − yn) ≥ δ

})
= 1. (12)

Proof Let x > 0. We construct σ ∈ Σ in a such a way (12) to be satisfied. At the begin suppose x < K(ω).
Then by Assumption 4, q(x, ω) > x > q(0, ω) = 0. By standard Darboux Theorem there is y∗(x) ∈ (0, x)
such that q(y∗(x), ω) = x. Define σ1(x1) = y∗(x1) and for each n > 1 and history h := (xn, yn)n∈N ∈ H,
σn(·|hn, xn) ≡ y∗(x1) . We show that such σ is feasible. We show more:

Pσx

(
h = (xn, yn)n∈N : inf

n∈N
xn ≥ x1

)
= 1. (13)

Since x1 < K(ω), hence by Assumption 4 we have

x2 = q(y∗(x1), ω1) ≥ q(y∗(x1), ω) = x1.

Suppose xk ≥ x1 P
σ
x− a.s. Then repeating the reasoning above xk+1 ≥ x1 as desired. Therefore, such σ

is feasible and (13) holds, hence also (12) with δ = u(x1 − y∗(x1)) > 0. Now assume x1 ≥ K(ω). Put any
x0 ∈ (0,K(ω)). Then let us define σ1(x1) = y∗(x0) and for n > 1, σn(·|hn−1, xn) ≡ y∗(x0). Similarly as
before we show that such σ is feasible and (12) holds, with δ = u(x0 − y∗(x0)).

First main result is existence and global attracting property of utility function in (1) under additional
assumption that u is bounded function.

Theorem 2 Assume 1, 2, 3, 4, 5 and u ∈ B(X). Then there exists unique recursive utility function such
that U∗ ∈ Uo

+:
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(i) U∗ has global attracting property on Uo
+ i.e.

lim
n→∞

||U∗ − TnW (U)||X×Σ = 0

whenever U ∈ Uo
+;

(ii) The truncation error satisfies:

||TnW (U)− U∗||X×Σ ≤M
(

1− αr
n
)

for all n ∈ N, (14)

whenever U ∈ Uo
+. Here M = 2||U ||X×Σ, α = t0

s0
and t0 and s0 are choosen in a following way:

0 < t0 < 1 < s0 and it holds t1−r0 U(·) ≤ TW (U)(·) ≤ sr0U(·).

(iii) J is recursive utility function and J(x, σ) = U∗(x, σ) for each x > 0, and σ ∈ Σ satisfying

Pσx

(
h := (xn, yn)n∈N inf

n∈N
: u(xn − yn) ≥ δ

)
= 1

for some δ > 0.

Proof We prove (i) and (ii) together. Moreover, we prove analogous thesis for all operators T δW (δ ≥ 0).
Let δ ≥ 0. Put t ∈ (0, 1), U ∈ Uo

+ and (x, σ) ∈ X ×Σ. Then it holds

T δW (tU)(x, σ) =

∫
Γ (x)

W
(
uδ(x− y),My(tU(·, σ2(x, y)))

)
σ1(dy|x)

≥
∫
Γ (x)

W
(
uδ(x− y), tMy(U(·, σ2(x, y)))

)
σ1(dy|x) (15)

≥ tr
∫
Γ (x)

W
(
uδ(x− y),My(U(·, σ2(x, y)))

)
σ1(dy|x) = trT δW (U)(x, σ). (16)

Here (15) follows from subhomogenity of My (Assumption 5) and (16) follows from Assumptions 3. As
a result, by Theorem 1 there is unique Uδ ∈ Uo

+ such that Uδ is a fixed point T δW and (after replacing
TW be T δW ) satisfies (i) and and (ii) of this theorem. In particularly, we put U∗ := U0 which satisfies (i)
and (ii).
We prove (iii). For n ∈ N let us define Jδn(x, σ) := (T δW )n(0)(x, σ) (n-th composition of 0 - function). By
Lemma 2, Jδn ∈ Uo

+ whenever δ > 0. By Theorem 1

lim
n→∞

||Jδn − Uδ||X×Σ = 0 (17)

and Uδ and satisfies (i) and (ii) of this theorem.
By Lemma 2 (iv) J ≤ U∗, hence J is always finite. We show opposite inequality. For x > 0 and δ > 0,

let us define Σx,δ ⊂ Σ in such a way: σ ∈ Σx,δ if and only if

Pσx

({
h = (xn, yn)n∈N ∈ H : inf

n∈N
u(xn − yn) ≥ δ

})
= 1. (18)

Observe that by Lemma 3, Σx,δ is nonempty. Put any σ ∈ Σ.
Let Q(·|y) := ρq−1y (·).

We show that Jn(x, σ) = (T δW )n(0)(x, σ) for n ≥ 2. By definition of J1, uδ and (18), we have

J1(x, σ) =

∫
Γ (x)

W (u(x− y), 0)σ1(dy|x) =

∫
Γ (x)

W (uδ(x− y), 0)σ1(dy|x) = T δW (0)(x, σ).
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Suppose that

Jk(x′, σ′) = (T δW )k(0)(x′, σ′) (19)

for some integer k and each (x′, σ′) ∈ X × Σx′,δ. Since σ ∈ Σx,δ, hence σ(x, y) ∈ Σx′,δ for π2− a.a.
(x, y, x′) ∈ H2 ×X, where π2 is a marginal of Pσx on H2 ×X. Hence, by (19) we have

Jk+1(x, σ) =

∫
Γ (x)

W (u(x− y),My(Jk(·, σ2(x, y))))σ1(dy|x) = (T δW )k+1(0)(x, σ). (20)

As a result for each k, Jk(x, σ) = (T δW )k(0)(x, σ). Hence and by (17), J(x, σ) coincides with Uδ for such
(x, σ). As a result J(x, σ) ≥ U∗(x, σ).

In the next theorem, we relax the requirement u to be bounded on X. The point is u is bounded on all
compact subintervals of X, since it is continuous function. Moreover, Assumption 4 prevents extension
of some fixed level of capital regardless of realization of the noise.

For each interval I ⊂ X let us consider restriction of the model (X,Γ,Ω, u, q,W,M) to that model,
where X has been replaced by I, whenever I is invariant i.e. satisfies the following condition:

x ∈ I implies that for each y ∈ Γ (x), ω ∈ Ω it holds q(y, ω) ∈ I.

The aforementioned condition means that transition probability generated by production function q
moves all states from I into perhaps another state x′ but still x′ ∈ I. Let I be a family of invariant sets.

Lemma 4 Assume 4. Then
{[0, ξ] : ξ ≥ K(ω)} ⊂ I.

Proof Suppose ξ ≥ K(ω). Then if x ≤ ξ then for each y ∈ Γ (x), ω ∈ Ω, it holds (from Assumption 4)

q(y, ω) ≤ q(ξ, ω) ≤ ξ.

By Lemma 4 all sets on the form [0, ξ], where ξ ≥ K(ω) are invariant. Hence if h = (xn, yn)n∈N is a
history generated by σ, one must happen: sup

n∈N
xn ≤ max (K(ω), x1).

For all ξ ≥ K(ω) let us define Iξ := [0, ξ]. For all ξ let us consider the models (Iξ, Γ,Ω, u, q,W,M),
where u and q(·, ω) are restricted to Iξ. Clearly u is bounded on Iξ.

Let Σξ be a set of policies from Σ, where initial, and hence all states are restricted to Iξ. Put Uξ
+ as

a set of all U ∈ U+ restricted to Iξ × Σξ and (Uξ
+)o set of all elements of U+ having strictly positive

infimum on Iξ ×Σξ.
Let

U0 :=
⋂
ξ>0

(Uξ
+)o.

Theorem 3 Assume 1, 2, 3, 4 and 5. There exist unique recursive utility function such that U∗ ∈ U0

such that

(i) For each ξ > 0, U ∈ U0, U∗ satisfies

lim
n→∞

||U∗ − TnW (U)||Iξ×Σξ = 0;

(ii) For each ξ > 0 the truncation error satisfies:

||TnW (U)− U∗||Iξ×Σξ ≤M
(

1− αr
n
)

for all n ∈ N. (21)

Here M = 2||U ||Iξ×Σξ , α = t0
s0

and t0 and s0 are chosen in a following way:

0 < t0 < 1 < s0 and it holds t1−r0 U(·) ≤ TW (U)(·) ≤ sr0U(·).
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(iii) J is recursive utility function and J(x, σ) = U∗(x, σ) for all x > 0 and σ ∈ Σ such that

Pσx

(
h := (xn, yn)n∈N inf

n∈N
u(xn − yn) ≥ δ

)
= 1

for some δ > 0.

Proof By Theorem 2 for each ξ > 0 there are Uξ ∈ (Uξ
+)+ satisfying all condition (i)-(iv) of this theorem.

We show that there is U∗ ∈ U0 such that U∗|Iξ×Σξ ≡ Uξ. Let us define U∗(x, σ) := Uξ(x, σ) whenever,

(x, σ) ∈ Iξ ×Σξ. We show that this U∗ is well defined i.e. if ξ′ < ξ then Uξ
′

= Uξ|Iξ′×Σξ′ . Observe that,

since Uξ ∈ (Uξ
+)o and Iξ′ ×Σξ′ ⊂ Iξ ×Σξ, hence

0 < inf
(x,σ)∈Iξ′×Σξ′

Uξ(x, σ) ≤ sup
(x,σ)∈Iξ′×Σξ′

Uξ(x, σ) <∞. (22)

In particular for all (x, σ) ∈ Iξ′ ×Σξ′ it holds

Uξ(x, σ) = T (Uξ)(x, σ). (23)

Since Uξ
′

is unique function satisfying (22) and (23) hence Uξ
′

= Uξ|Iξ′×Σξ′ . As a result U∗ is well defined
function and satisfies all thesis of this theorem.

5 Bellman equations and existence of optimal program

In this section, we shall study an optimization problem and find

v∗(x) = sup
σ∈Σ

J(x, σ)

and policy σ∗ ∈ Σ realizing this supremum. Similarly as in standard dynamic programing, we construct
Bellman equation i.e.

v∗(x) = sup
y∈Γ (x)

W (u(x− y),My(v∗))

and examine existence and desired properties of the stationary optimal policy as an argmax correspon-
dence in Bellman equations.

Put
BP (v)(x) = sup

y∈Γ (x)

W (u(x− y),My(v)).

In the remaining part of this paper we slightly abuse notation and we will denote B := B+(X) and
Bo := (B+(X))o.

Theorem 4 Under Assumption 1, 2, 3, 4, 5 and u ∈ B(X), BP maps Bo+ into itself and

(i) there exists unique fixed point v∗ of BP such that v∗ ∈ Bo+;
(ii) for each v ∈ Bo+

lim
n→∞

||BPn(v)− v∗||X = 0

and the truncation error satisfies:

||BPn(v)− v∗||X ≤M
(

1− αr
n
)

for all n ∈ N. (24)

Here M = 2||v||X , α = t0
s0

and t0 and s0 are choosen in a following way:

0 < t0 < 1 < s0 and it holds t1−r0 v(·) ≤ BP (v)(·) ≤ sr0v(·);
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(iii) v∗ is increasing, continuous and satisfies

v∗(x) = sup
σ∈Σ

J(x, σ),

for each x > 0;
(iv) There exists pure and stationary optimal policy σ∗ satisfying:

W (x− σ∗(x),Mσ∗(x)(v
∗)) = max

y∈[0,x]
W (u(x− y),My(v∗)) (25)

= max
y∈[0,x]

W (u(x− y),My(ṽ)),

where ṽ(x) = sup
σ∈Σ

J(x, σ) for x > 0 and ṽ(x) = 0. Moreover, J(x, σ∗) = ṽ(x) for all x ∈ X.

Proof We show (i) and (ii) holds. First we show that BP maps Bo+ into itself. Indeed, if v ∈ Bo+ then
||v||X <∞, [v]X > 0 and for each y ∈ Γ (x)

BP (v)(x) ≥W (u(x, y),M(v)(x, y)) ≥W (0, [v]X) > 0.

Moreover,

BP (v) ≤W (||u||X , ||v||X) <∞.

To show that BP (v)(·) is measurable, observe that by Assumptions 2 BP (v)(x) must be increasing in x,
regardless on v. Hence BP (v)(·) is Borel measurable. Therefore, BP (v) ∈ Bo+. As a result BP maps Bo+
into itself.
By Assumption 3 and 5 it can be easily concluded that BP (tv)(·) ≥ trBP (v)(·) for each v ∈ Bo+ and
t ∈ (0, 1). As a result by Theorem 1 (i) and (ii) holds.

We show (iii). It is easy to see v∗ is increasing. Let σ ∈ Σ. We show that v∗(x) ≥ J(x, σ) or equivalently
v∗(x) ≥ Jn(x, σ) for each n ∈ N. For each n let σ ∈ Σ be arbitrary. For each x ∈ X it holds

v∗(x) = sup
y∈Γ (x)

W (u(x, y),My(v∗)) ≥
∫
Γ (x)

W (u(x, y1),My1(v∗))σ1(dy1|x).

Consequently, for τ ≤ n and history h := (xn, yn)n∈N

v∗(xτ ) ≥
∫
Γ (xτ )

W (u(xτ , yτ ),Myτ (v∗))στ (dyτ |hτ , xτ ).

Hence, by Lemma 2 v∗(x) ≥ TnW (v∗)(x, σ) ≥ TnW (0)(x, σ) = Jn(x, σ). As a result v∗(x) ≥ J(x, σ) and
v∗(x) ≥ sup

σ∈Σ
J(x, σ). To finish the proof, we need to show the equality for x > 0. Put ṽ(x) = sup

σ∈Σ
J(x, σ)

for x > 0 and ṽ(0) = 0. We show that ṽ is fixed point of BP . For x = 0 this theses becomes trivial. Put
x > 0, y ∈ [0, x] and consider a policy σ̃ ∈ Σ defined as follows: σ̃1(x) = y and for k > 1 let σ̃k := σk−1,
where σ ∈ Σ is chosen arbitrarily. Then by definition of ṽ and σ̃ it holds

ṽ(x) ≥W (u(x− y),My(J(·, σ)))

By Assumptions 3, 5 and above

ṽ(x) ≥ sup
y∈Γ (x)

W (u(x− y),My(ṽ)) = BP (ṽ)(x), (26)

since y is chosen arbitrarily. To show that ṽ satisfies opposite inequality, observe that for each x > 0 and
σ ∈ Σ it holds
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J(x, σ) ≤ sup
y∈Γ (x)

W (u(x− y),My(J(·, σ2(x, y))))

≤ sup
y∈Γ (x)

W (u(x− y),My(ṽ))) = BP (ṽ)(x),

hence taking a supremum over σ ∈ Σ it holds ṽ(x) ≤ BP (ṽ)(x). Together with (26) ṽ is fixed point of
BP .
Combining Lemma 3 and Theorem 2

inf
x∈X\{0}

ṽ(x) = inf
x∈X\{0}

sup
σ∈Σ

J(x, σ) > 0.

As a result a function v∗∗(x) := ṽ(x) for x > 0 and v∗∗(0) = v∗(0) is in the interior of B+. We show
that it is fixed point of BP . By Assumption 5 My(ṽ) = My(v∗∗), for all y > 0. Hence for such y
W (u(x− y),My(ṽ)) = W (u(x− y),My(v∗∗)). As a result

sup
y∈(0,x]

W (u(x− y),My(v∗)) = sup
y∈(0,x]

W (u(x− y),My(v∗∗)).

On the other hand

W (u(x− 0),M0(v∗)) = W (u(x− 0), v∗(0)) = W (u(x− 0), v∗∗(0)) = W (u(x− 0),M0(v∗∗)),

hence v∗∗ = BP (v∗) = BP (v∗∗), hence v∗∗ is fixed point of BP . Since by part (i) of this proof v∗ is
unique fixed point of BP in Bo+, hence v∗ ≡ v∗∗. As a result ṽ(x) = v∗(x) for x > 0.

Finally we show that ṽ is continuous on X \ {0}. Before we examine a continuity of v∗ on X. Clearly,
unit constant is continuous, and by proven part (ii) v∗(·) = BPn(1)(·). Moreover, this limit is uniform.
Hence, we simply need to show show that BP (v) is continuous function whenever v is continuous and
[v]X > 0. Let v be such function. Then by Assumption 5 My(v) is continuous in y, hence W (u(x −
y),My(v)) is jointly continuous. As a result by Berge Maximum Theorem (Theorem 17.31 in [1]) BR(v)(·)
must be continuous and consequently v∗ is continuous, hence ṽ is continuous on X \ {0}.

Proof of (iv). From (iii) v∗ is continuous on X \ {0}, by Assumptions 2, 3 and 5 there is σ∗ satisfying
(25). By (iii) for x > 0, on can be obtain v∗(x) = ṽ(x) = J(x, σ∗).

Let us relax assumption u ∈ B(X) in the final main theorem. Then following Theorem 5 is simple
consequence of Theorem 4.

Theorem 5 Under Assumptions 1, 2, 3, 4 and 5 , BP maps B(Iξ)
o
+ into itself for all ξ > 0 and

(i) there exists unique fixed point v∗ of BP such that v∗ ∈ Bo+(Iξ) for all ξ > 0;
(ii) for each v ∈ Bo+(Iξ)

lim
n→∞

||BPn(v)− v∗||Iξ = 0

and the truncation error satisfies:

||BPn(v)− v∗||Iξ ≤M
(

1− αr
n
)

for all n ∈ N.

Here M = 2||v||Iξ , α = t0
s0

and t0 and s0 are choosen in a following way:

0 < t0 < 1 < s0 and it holds t1−r0 v(·) ≤ BP (v)(·) ≤ sr0v(·);

(iii) v∗ satisfies
v∗(x) = sup

σ∈Σξ
J(x, σ),

for each x > 0;

We omit the proof since the argument is the same along the lines as in Theorem 3.
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6 Problems

6.1 Deterministic model with general discounting function

Consider an example of the model satisfying 2, 3, 5 but the Assumption 4 is relaxed. In this section it
is constructed a model in which an optimal policy does not exist. Consider deterministic model in which
aggregator W is on the form W (v1, v2) = v1 + β

√
v2 with β ∈ (0, 1), instantaneous utility is u(x) = x

and the production function is deterministic q(y) = y. Comparing this model with [30] this is a model
with discounting function in a form δ(x) = β

√
x, but observe that δ′(0) = ∞. We show that that there

is no optimal investment program (y∗n)n∈N. For each x ≥ 0 let us define

S(x) :=

{
(yn)n∈N ∈ R∞+ :

∞∑
n=1

yn = x

}
.

Put v∗(x) := sup
σ∈Σ

J(x, σ). Observe that maximization problem of J(x, ·) is equivalent to find a sequence

(y∗n)n∈N maximizing

lim
n→∞

(
y1 + β

√
y2 + β

√
y3 + . . .+ β

√
yn

)
,

such that (yn)n∈N ∈ S(x).
Let v0(x) = 0, and for n > 1

vn+1(x) = sup
y∈Γ (x)

(
x− y + β

√
vn(y)

)
.

It is easy to verify v1(x) = x and for n ≥ 2

vn(x) =

{
β2−21−nx2

−n
if x ≤ β2/φn−1

x− β2/φn−1 + β2/ψn−1 if x > β2/φn−1
,

where φn := 2
n+1

1− 1
2n+1 , ψn := 2

n+1

2n− 1
2 (n = 1, 2, . . .). Obviously, φn → ∞ and ψn → 1 as n → ∞. Hence

for each x ∈ X, vn(x) → ṽ(x), where ṽ(x) = x + β2 for all x > 0 and ṽ(0) = 0. Put v∗(x) = x + β2

for all x ≥ 0. Observe that ṽ and v∗ are both fixed points of BP . Repeating the reasoning in Theorem
4 one can be proven, there is unique fixed point of BP in Bo+(X), ṽ is optimal value function and (25)
is satisfied. We show that there exist no optimal program. On the contrary suppose there exist optimal
(y∗n)n∈N. Since it must hold

ṽ(x) = max
y∈[0,x]

(x− y + β
√
y + β2),

hence y∗1 = 0. Consequently y∗2 = y∗3 = . . . = 0. But this program gives x instead of x + β2. Hence no
program is optimal.

6.2 Discounting utility functions

Observe that, if W has affine form and My is expectation then the model in this paper reduces to the
standard discounting growth model. But in this model neither Assumptions 5 nor 3 are satisfied. Observe
however that fixed point does not belong to interior i.e. [v∗]X = 0. As example consider deterministic
growth model with u(x) =

√
x, β ∈ (0, 1) and q(y) =

√
y. Then Bellman equation has a form BP (v) =

sup
y∈[0,x]

(√
x− y + β

√
v(y)

)
. Then optimal value function has v∗(x) = lim

n→∞
BPn(0). Observe that vn(x) =√

1 + β2m2
n

√
x, where m1 = 0 and for n > 1 mn+1 =

√
1 + β2m2

n. It is easy to verify lim
n→∞

mn = 1
1−β2 ,

hence v∗(x) =
√

1 + β2

1−β
√
x and infx>0 v

∗(x) = 0. The same result can be obtain by limit of BPn(1),

hence neither Theorem 4 nor 5 is satisfied. For other problems with uniqueness of fixed point of BP in
discounting model the reader is reffered to Kamihigashi [32].
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6.3 Asymptotic properties of recursive utilities with varied instantaneous utilities.

Assumption 3 excludes many interesting economic models. For example excludes affine aggregator, and
consequently the standard β−discounting model, as well as risk sensitive model as in Bäuerle and
Jaśkiewicz [6], logarithmic aggregator in Koopmans et all in [34] as well as useful Thompson aggregator
in a form

W (v1, v2) =
(
vξ1 + βvη2

) 1
η

,

with ξ > 0, η > 1 and β ∈ (0, 1).

Example 2 Suppose that instantenous utility u is bounded from from bellow by strictly positive value δ
and from above by some finite value. Consider aggregator W (v1, v2) = v1 + βv2. Observe that J(x, σ) ≤
M := ||u||X

1−β for all (x, σ) ∈ X × Σ. Then aggregator W is equivalent W̃ (v1,min(M,v1)) i.e. J in (1) is

the same if we put W̃ instead of W . Then we will find r ∈ (0, 1) such that for all t ∈ (0, 1), (v1, v2) ∈ R2
+

W̃ (v1, tv2)

W̃ (v1, v2)
=
v1 + βmin(M, tv2)

v1 + βmin(M,v2)
≥ tr. (27)

Observe that tv2 ≤ v2. If M ≤ tv2 ≤ v2 we have

W̃ (v1, tv2)

W̃ (v1, v2)
= 1.

If tv2 ≤M ≤ v2 we have
W̃ (v1, tv2)

W̃ (v1, v2)
=
v1 + βtv2
v1 + βM

≥ v1 + βtM

v1 + βM
.

If v2 ≤M then
W̃ (v1, tv2)

W̃ (v1, v2)
=
v1 + βtv2
v1 + βM

≥ v1 + βtv2
v1 + βv2

.

Note that,
pt+ (1− p) ≥ tr

for all t ∈ (0, 1) whenever 0 < p < r. Hence if we put r := βM
δ+βM then (27) holds. We can consider similar

procedure along the lines for aggregator W (v1, v2) = 1
θ ln

(
1 + vξ1 + βv2

)
for ξ > 0 and W (v1, v2) =

(1 + v1 + βvη2 )
1
η , for η > 1 and θ > 0.

By the above example we may consider asymptotic properties of optimal policy and value with affine
and logarithmic aggregator also and we may consider daily utility at the form uδ(x) = max(u(x), δ).
Then we may take a limit with δ → 0+ and consider approach of optimal value by optimal J whenever
u is changed by uδ.

7 Concluding remarks

This paper consider existence and uniqueness of recursive utility with nonlinear CES and aggregator.
Moreover, it is considered optimization problem by Bellman equations. For instance it is assumed law
of motion is like in growth model. This model in some sens extend general discounting models due
to Jaśkiewicz et all [30], [31]. Some Thompson aggregators (according Marinacci and Montrucchio [40]
terminology) belong to this class. But this paper contains an example of aggregator do not belonging to
Thompsons collection but satisfying assumptions of this paper. Also CES is nonlinear, hence this paper
extends deterministic models like Bich et all. [9], Felipe da Rocha and Vailakis [22] or Le Van and Vailakis
[36]. Observe, however (unlike Bich et all [9] and Nowak and Matkowski [42] or Jaśkiewicz et all [30], Le
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Van and Vailakis [36]) Assumption 3 requires that immediate return u to be bounded from bellow. To
find existence recursive utility and its optimal strategy an iterative algorithm on solid cones is proposed.
It is used Guo et. all stuff [25] as an alternative for standard Banach Contraction Principle with standard
norm or with Thompson metric (e.g. in [40] or in [22]) and its extension due to Matkowski [41] (e.g. in
[30]). The possibility of an application of various discount functions allows to take into account different
aspects of discounting discussed in the area of finance, economics, psychology, environmental management
(e.g. Frederic et. all [23], and Green et. all [24]).

On the other hand, there were not moved on another interesting open problems, solved standard
in dynamic programming, such as stability of optimal paths, differentiability of a value function, Euler
equations etc. and all of them are left as an open problem.

8 Appendix

Lemma 5 For each X ⊂ R
Bo+(X) = {v ∈ B+(X) : [v]X > 0}

Proof Let v ∈ Bo+(X). Then there is ε > 0, such that for all φ such that ||φ||X ≤ 1 the function
v(·) − εφ(·) ∈ B+(X). In particularly it holds for φ ≡ 1, hence for each x ∈ X v(x) − ε ≥ 0, hence
[v]X > ε > 0.

Conversely, suppose [v]X > 0. Then if ||φ||X = 1 then v(x)− φ(x)[v]X ≥ 0 for all x ∈ X. Indeed,

v(x)− φ(x)[v]X ≥ [v]X(1− φ(x)) ≥ 0

for all x ∈ X, hence the ball in B(X) centered in v and radius [v]X is included in B+(X). Hence
v ∈ Bo+(X).
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31. Jaśkiewicz, A., Matkowski, J. and Nowak, A.S. (2015) Persistently Optimal Policies in Stochastic

Dynamic Programming with Generalized Discounting. Mathematics of Operations Research, in print.
http://dx.doi.org/10.1287/moor.1120.0561.

32. Kamihigashi, T. (2015) An Order Theoretic Approach to Dynamic Programming: An Exposition. Kobe University.
33. Koopmans, T. C. (1960). Stationary ordinal utility and impatience. Econometrica, vol. 28, pp. 287309.
34. Koopmans, T.C., Diamond, P.A. and Williamson, R.E. Stationary utility and time perspective. Econometrica, vol.

32, pp. 82100.
35. Kreps, D.M. and Porteus, E.L. (1978) Temporal Resolution of Uncertainty and Dynamic Choice Theory. Economet-

rica, vol. 46, no. 1, pp. 185-200.
36. Le Van, C. and Vailakis, Y. (2005) Recursive utility and optimal growth with bounded or unbounded returns. Journal

of Economic Theory, vol. 123, pp. 187 - 209.
37. Lucas, R. E., and Stokey, N.L. (1984). Optimal growth with many consumers. Journal of Economic Theory, vol 32,

pp 139-171.
38. Lucas, R. E., Stokey, N. L. and Prescott, E. (1989). Recursive methods in economic dynamics. Cambridge: Harvard

University Press.
39. Majumdar, M., Sundaram, R. (1991). Symmetric Stochastic Games of Resource Extraction: The Existence of

Non-Randomized Stationary Equilibrium. ”Stochastic games and related topics”, T. Raghavan, T. Ferguson, T.
Parthasarathy, and O. Vrieez eds. Kluwer, Dordrecht.

40. Marinacci, M., and Montrucchio, L. (2010). Unique solutions for stochastic recursive utilities. Journal of Economic
Theory, 145, 17761804.

41. Matkowski, J. (1975). Integral solutions of functional equations. Dissertationes Mathematicae, vol. 127, pp. 168.
42. Matkowski, J., Nowak, A.S. (2011). On Discounted Dynamic Programming with Unbounded Returns. Economic

Theory, vol. 46, pp. 455-474.
43. Montrucchio, L. (1998). Thompson metric, contraction property and differentiability of policy functions. Journal of

Economic Behavior & Organization, vol. 33, pp. 449-466.
44. Neveu, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco.
45. Ramsey, F. P. (1928). A mathematical theory of saving. Econometrics Journal, vol. 38, pp. 543599.
46. Rincón-Zapatero, J. P., and Rodriguez-Palmero, C. (2003). Existence and uniqueness of solutions to the Bellman

equation in the unbounded case. Econometrica, vol. 71, pp. 1519-1555.
47. Rincón-Zapatero, J. P., and Rodriguez-Palmero, C. (2009). Corrigendum to ”Existence and uniqueness of solutions

to the Bellman equation in the unbounded case. Econometrica, vol. 71, pp. 1519-1555”. Econometrica, vol. 77, pp.
317-318.

48. Samuelson, P. (1937). A note on measurement of utility. Review of Economic Studies vol. 4, pp. 155161.
49. Strauch, R. (1966). Negative dynamic programming. Annals of Mathematical Statistics, vol 37, pp. 871890.
50. Sundaram, R. (1989). Perfect Equilibrium in Non-randomized Strategies in a Class of Symmetric Dynamic Games.

Journal of Economic Theory, vol. 47, pp. 153-177.
51. Perfect Equilibrium in Non-randomized Strategies in a Class of Symmetric Dynamic Games. Corrigendum. Journal

of Economic Theory, vol. 49, pp. 385-387



20  Lukasz Balbus

52. Tarski, A. (1955). A lattice theoretical fixpoint theorem and its application. Pacific Journal of Mathematics, vol.5,
pp. 285-309.

53. Thompson, A.C., (1963). On certain contraction mappings in a partially ordered vector space. Proceeding of American
Mathematical Society, vol. 14, pp. 438-434.

54. Weil, P. (1993). Preauctionary savings and the permanent hypothesis. The Reviev of Economic Studies, vol. 60, no.
2, pp. 367–383.


