Partial Autocorrelation Function (PACF).

November 10, 2020

[Econometrics](#page-19-0)

We consider the time series $AR(p)$ in the form:

$$
X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + \epsilon_t,
$$

where $\phi_1, \phi_2, \ldots, \phi_p$ are unknown parameters. Simple example shows that $AR(p)$ may be stationary or not:

- the model $AR(1)$ in the form $X_t=X_{t-1}+\epsilon_t$ is not stationary;
- the model $AR(1)$ in the form $X_t = \phi X_{t-1} + \epsilon_t$ is stationary if and only if $\phi \in (-1,1)$;

- Assume that our model $AR(p)$ is stationary.
- We find the preliminary estimator of $\phi_1, \phi_2, \ldots, \phi_p$ using Yule-Walker formula.

Yule-Walker formula

We have derived the Yule-Walker formula:

Remarks:

- **1** The matrix \mathbf{R}_{ρ} of correlations of the vector (X_1, X_2, \ldots, X_n) is positively definite, hence nonsingular;
- $\, {\bf 2} \,$ Hence there exists an inverse matrix ${\sf R}^{-1}_{\rho};$
- \bullet The vector ϕ is uniquely determined $\phi = \mathsf{R}^{-1}_\rho \tilde{\rho},$ i.e. only such a vector determines a stationary model type $AR(p)$;

The preliminary estimation of parameters of stationary time series AR(p)

Since we observe X_1, X_2, \ldots, X_n we can obtain the sampling autocorrelations:

$$
\hat{\rho}_h = \frac{\hat{\gamma}_h}{\hat{\gamma}_0},
$$

where for $h > 0$ we have

$$
\hat{\gamma}_h = \frac{1}{n} \sum_{t=1}^{n-h} (X_t - \bar{X}) (X_{t+h} - \bar{X})
$$

and

$$
\bar{X} = \frac{1}{n} \sum_{t=1}^{n} X_t.
$$

[Econometrics](#page-0-0)

 QQ

The preliminary estimation of parameters of stationary time series AR(p)

Substituting ρ_h by its estimator $\hat{\rho}_h$ the Yule-Walker furmula provide

Multiplying both sides by the corresponding inverse matrix we have the preliminary estimator of $\phi_1, \phi_2, \ldots, \phi_p$

$$
\hat{\phi}^{YW} = \mathsf{R}_{\hat{\rho}}^{-1} \ast \hat{\tilde{\rho}}.
$$

The preliminary estimation of parameters of stationary time series AR(p)

The $\hat{\phi}^{YW}$ is a preliminary estimator of ϕ and cannot be a final estimation due to the following reasons:

- \bullet The model AR(p) is not always stationary, in practice the assumption of stationarity is not reasonal;
- **2** Even if the model AR(p) is stationary the value of $\hat{\phi}^{YW}$ is sensitive to rounding errors, especially if the parameters of $AR(p)$ are close to the *edge* of stationarity;
- **3** But because we usually are not aware the value of p, $\hat{\phi}^{YW}$ is usefull as a preliminary estimator, which we apply for determining p (the details later);
- \bullet The final estimator of ϕ will be determined using the maximum likelihood method method.

Yule Walker formula. What else?

If X_t type AR(p) in the form

$$
X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + \epsilon_t
$$

can be embedded into $AR(p+1)$ as well:

$$
X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + 0 * X_{t-(p+1)} + \epsilon_t
$$

and consequently in the arbitrary $AR(p + m)$

$$
X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + ... + \phi_{p}X_{t-p}
$$

+
$$
\underbrace{\phi_{p+1}X_{t-(p+1)} + \phi_{p+2}X_{t-(p+2)} + ... + \phi_{p+m}X_{t-(p+m)}}_{\text{Here } \phi_{p+1} = \phi_{p+2} = ... = \phi_{p+m} = 0}
$$

+
$$
\epsilon_{t}.
$$

Now we can say X_t is AR(p) if

$$
\phi_{p} \neq 0 \quad \text{and} \quad \phi_{p+1} = \phi_{p+2} = \ldots = 0,
$$

hence ϕ_p is the last non-zero coefficient;

- If X_t is really type $AR(p)$, but we compute Yule-Walker formula $AR(p+m)$ for some $m > 0$ one can obtain:
	- $\hat{\phi}_p^{YW}$ relatively far from 0, and all next coefficients $\hat{\phi}_j^{YW}$
($j > p$) should be relatively close to 0:
	- intuitively, whe should obtain

$$
|\hat{\phi}_{p}^{YW}|> \text{ a threshold }, \hat{\phi}_{p+1}^{YW}\approx 0, \hat{\phi}_{p+2}^{YW}\approx 0, \ldots, \text{ and } \hat{\phi}_{p+m}^{YW}\approx 0,
$$

and the values $\hat{\phi}_1^{\mathsf{\scriptscriptstyle YW}}, \hat{\phi}_2^{\mathsf{\scriptscriptstyle YW}}, \ldots, \hat{\phi}_{p-1}^{\mathsf{\scriptscriptstyle YW}}$ are less informative for our analysis.

For using Yule-Walker formula:

- \bullet We presume X_t is stationary and is in type of $AR(p)$, but we are not aware the size of p ;
- \bullet We are able to predict the real value of p;
- \bullet Having the prediction p, we pass to further analysis with AR(p), and we further ignore the value $\hat{\phi}^{YW}$ (it is a preliminary estimator only);
- \bullet We find estimators of $\phi_1, \phi_2, \ldots, \phi_p$ using maximum likelihood method (it will be later).

We construct a Partial Autocorrelation Function (PACF)

- We base on time series X_1, X_2, \ldots, X_n ;
- We apply algorithm of Yule-Walker $n-1$ times successively extending the model from AR(1) through $AR(2), AR(3), ..., AR(p).$
- To distinguish Yule-Walker estimators obtained by distinct models AR(p) we denote

$$
\hat{\phi}_{1,p}^{YW} \approx \phi_1, \hat{\phi}_{2,p}^{YW} \approx \phi_2, \dots \quad \text{, and} \quad \hat{\phi}_{p,p}^{YW} \approx \phi_p.
$$

Partial Autocorrelation Function (PACF) - algorithm

1 If $p = 1$, the Yule-Walker formula for AR(1) provides

$$
\hat{\phi}_{1,1}^{YW} = \hat{\rho}_1 \approx \phi_1;
$$

2 If $p = 2$, the Yule-Walker formula for AR(2) provides

$$
\hat{\phi}_{1,2}^{YW}\approx \phi_1\quad\text{and}\quad \hat{\phi}_{2,2}^{YW}\approx \phi_2;
$$

3 continue this procedure for any p satisfying $1 \leq p \leq n-1$:

$$
\hat{\phi}_{1,p}^{YW} \approx \phi_1, \hat{\phi}_{2,p}^{YW} \approx \phi_2, \quad \ldots, \text{and} \quad \hat{\phi}_{p,p}^{YW} \approx \phi_p.
$$

 \bullet The function $\rho\mapsto \hat{\phi}_{\rho,\rho}^{YW}$ is called the <code>Partial Autocorrelation</code> Function.

PACF - application

Assuming that the time series X_t is type AR(p) we compute $\hat{\phi}_{\bm{\rho},\bm{\rho}}^{YW}$:

- in next units of lectures we put significance thresholds for $\hat{\phi}_{\boldsymbol{p},\boldsymbol{p}}^{YW}$;
- if the moduli of $\hat{\phi}_{\rho,\rho}^{YW}$ extends this threshold, we say $X_{t-\rho}$ is insignificant in the computing X_t ;
- \bullet to accept that the truth model is p one must have
	- the value $\hat{\phi}_{\boldsymbol{\rho},\boldsymbol{\rho}}^{YW}$ is significant;
	- for of $k>p$ most of the values of $\hat{\phi}_{k,k}^{YW}$ are insignificant, and we allow sparse elements of $\hat{\phi}_{k,k}^{\mathcal{YW}}$ to be significant provided that they are close to significance threshold.

COVID in Poland 1.10.2020-9.11.2020

Unfortunately there is no country free of corona-virus COVID-19. The daily number of reported infections in Poland from (1.10.2020) until yesterday (9.11.2020) is reported in the table in the next page. Let X_t be the time series which means the number of infected people in day t , where t the natural index of days in considered period.

ഹൈ

The number of reported infections in Poland during 1.10-9.11.2020.

The plot of the trajectory of X_t in the following picture:

[Econometrics](#page-0-0)

4日)

同 \sim ∍

 \rightarrow \sim

 \mathcal{A}

 299

∍

∍

-b

Analysis in Octave yields us the following bar plot of PACF for the time series \mathcal{X}_t . The height of the bar at ρ means the value $\hat{\phi}^{YW}_{\rho,\rho}$.

The dominating value $\hat{\phi}_{1,1}^{\mathcal{YW}}$ over all leads us to suppose that the model is AR(1).

Preliminary corollaries

- Based on analysis of PACF only we may presume X_t has AR(1) form;
- Yule-Walker formula yields $\phi_{1,1}^{\mathsf{YW}}=0.9309$ hence the model is

$$
X_t = 0.9309 * X_{t-1} + \epsilon_t;
$$

- But Yule-Walker formula always assume stationarity of X_t which is not always acceptable;
- This model is not final and will be corrected using the maximal likelihood method, where we relax the assumption of stationarity and include a constant value:

$$
X_t = \mu + \phi X_{t-1} + \epsilon_t;
$$

With the calculus we have

$$
X_t = 11866.6 + 0.972640 * X_{t-1} + \epsilon_t;
$$

Remark

Both models should be diagnostically verified and at this stage this model is far to be believable. For example

- we have not compared PACF with the thresholds of significance;
- we have not verified the normality of residua, equality of variance, missing of correlation;
- we have not taken into consideration other phenomena like seasonality (e.g. on Monday we have always less infected people than on Wednesday);
- in fact we do not know whether dependence of infected today and tomorrow have linear form.

Because of that, please do not believe this model. It is very preliminary.

 QQ

э

Preliminary corollaries

But if the following model

 $X_t = 11866.6 + 0.972640 * X_{t-1} + \epsilon_t;$

is correct, then the expectation is

 $EX_t = 11866.6 + 0.972640 * EX_{t-1}$.

Then,

- yesterday we had 21 713 infected people;
- **o** tomorrow we expect

 $EX_{41} = 11866.6 + 0.972640 * 21713 = 32985.53$;

• and the expectation will increase until it reaches per day

$$
\lim_{t \to \infty} E_t = \frac{11866.6}{1 - 0.972640} \approx 433720
$$

According to this model, there is no evidence that the epidemic is going to slow down, quite t[he](#page-18-0) [co](#page-19-0)[n](#page-18-0)[trar](#page-19-0)[y.](#page-0-0)