

Cel ćwiczenia

Celem ćwiczenia jest poznanie budowy i podstaw programowania w języku asemblera mikrokontrolerów rodziny MCS-51 oraz środowiska programistycznego MCU 8051 IDE.

Zagadnienia do przygotowania

Przed przystąpieniem do zajęć należy przygotować lub powtórzyć informacje dotyczące:

- a) zamiany liczb z zapisu dziesiętnego na zapis dwójkowy,
- b) zamiany liczb z zapisu dwójkowego na szesnastkowy,
- c) zamiany liczb z zapisu szesnastkowego na dwójkowy,
- d) zamiany liczb z zapisu dwójkowego na dziesiętny,
- e) sposobu oznaczania systemu, w jakim zapisana jest wartość liczbowa w programach pisanych w asemblerze mikrokontrolerów rodziny MCS-51,
- f) działań realizowanych przez rozkazy MOV i SJMP znajdujące się na liście rozkazów mikrokontrolerów rodziny MCS-51 oraz argumentów możliwych do zastosowania w tych rozkazach,
- g) zasady tworzenia i stosowania etykiet w programach pisanych w asemblerze mikrokontrolerów rodziny MCS-51,
- h) znaczenia dyrektyw CSEG oraz END stosowanych w programach pisanych w asemblerze mikrokontrolerów rodziny MCS-51.

Program ćwiczenia

Zadanie 1

Dla podanych przez prowadzącego zajęcia wartości liczbowych dokonać, bez użycia kalkulatora, konwersji liczby z zapisu:

- a) dziesiętnego na dwójkowy,
- b) dwójkowego na szesnastkowy,
- c) szesnastkowego na dwójkowy,
- d) dwójkowego na dziesiętny.

Zadanie 2

- a) W środowisku MCU 8051 IDE stwórz nowy projekt. W tym celu z menu *Project* wybierz *New*.
- b) W otwartym oknie, jak na rysunku 1, w polu *Project Name* wpisz nazwę projektu, natomiast w polu *Projekct directory* ścieżkę dostępu do folderu (wskazanego przez prowadzącego zajęcia), w którym zostaną zapisane wszystkie pliki projektu. Ustaw typ procesora na 8752. Zaakceptuj wprowadzone ustawienia wciskając kalwisz *OK*.

Select MCU
FLASH (XCODE)
0 4

Rys. 1. Widok okna konfiguracyjnego przy tworzeniu nowego projektu

c) W oknie edytora tekstowego środowiska MCU 8051 IDE wpisz podany poniżej kod źródłowy programu.

CSEG AT 0000h	;dyrektywa określająca adres początkowy ;sekcji kodu programu
	, sekeji kodu programu
MOV P1,#x	;x – wartość w zapisie dwójkowym
	;podana przez prowadzącego
MOV P2,#y	;y – wartość w zapisie szesnastkowym
	;podana przez prowadzącego
MOV P3,#z	;z – wartość w zapisie dziesiętnym
	;podana przez prowadzącego
PETLA:	
SJMP PETLA	;rozkaz skoku bezwarunkowego (pętla nieskończona)
END	;dyrektywa końca kodu programu

d) Zapisz plik z kodem źródłowym programu. W tym celu z menu *File* wybierz *Save as*. W otwartym oknie podaj taką samą nazwę pliku, jak nazwa projektu. Po zapisie pliku pojawi się okno (jak na rysunku 2) z pytaniem dotyczącym dodania zapisanego pliku do projektu. Odpowiedz na nie twierdząco wciskając klawisz *Yes*.

0	Do you want to ad	d this file to the	project ?
	Cw01_Zad02.asn	n	

Rys. 2. Widok okna z pytaniem dotyczącym dołączenia zapisanego pliku z kodem źródłowym do projektu

e) Dokonaj asemblacji programu. W tym celu z menu *Tools* wybierz *Compile* lub wciśnij na klawiaturze komputera klawisz F11 albo na górnym pasku ikon kliknij ikonę . Wyniki asemblacji zostaną przedstawione w dolnym oknie środowiska na zakładce *Messages*. Jeśli asemblacja przebiegła bez błędów, to wynik będzie miał postać, jak na rysunku 3.

Rys.3. Widok okna po asemblacji kodu źrodłowego

Jeśli program asemblujący wykryje błędy składniowe w kodzie programu, to zostanie to uwidocznione jak na rysunku 4.

Rys.4. Widok okna po asemblacji kodu źródłowego, gdy nastąpiło wykrycie błędów

Kliknięcie na czerwoną linię z informacją o błędzie powoduje przeniesienie kursora do tej linii kodu źródłowego, w której wystąpił dany błąd (linia, w której aktualnie znajduje się kursor jest cała podświetlana na żółto).

- f) Przetestuj program uruchamiając go w symulatorze wbudowanym w środowisko MCU 8051 IDE w trybie pracy krokowej. Bliższe informacje o obsłudze symulatora znajdują się w punkcie 0 niniejszej instrukcji.
- g) Dokonaj szczegółowej interpretacji wykonania każdej instrukcji programu, tj. podaj rodzaj wykonywanej operacji, wynik jej działania oraz określ obszar adresowania, do którego informacja jest wpisywana (DATA, IDATA, SFR, XDATA, CODE).

Zadanie 3

- a) W środowisku MCU 8051 IDE stwórz nowy projekt. W oknie *New project* wprowadź takie same ustawienia, jak w przypadku zadania 2, zmieniając tylko nazwę projektu.
- b) W oknie edytora tekstowego środowiska MCU 8051 IDE wpisz podany poniżej kod źródłowy programu.

```
CSEG AT 0000h
MOV P1,#x
MOV P1,#y
MOV P1,#z
PETLA:
MOV P1,P0
SJMP PETLA
```

END

- c) Zapisz plik z kodem źródłowym.
- d) Do linii portu P1 dołącz diody LED. W tym celu z menu *Virtual HW* wybierz *LED Panel*. Następnie dokonaj przyporządkowania linii portów jak na rysunku 5.

0	N I	1	±	Ť	Ť	1	±.	1
		\$ • \downarrow	5 a 4	∻ @ ↓	3 @ ↓	3 a $\frac{1}{7}$	\$ @ \	; @ ↓
				1		T	T	
ORT	1 -	1 🔻	1 🔻	1 🔻	1 🔻	1 🔻	1 🔻	1 🔻
		e -	5 -	4 -	2 -	2 -	1 -	0 -

Rys.5. Widok okna LED Panel z właściwym dla zadania 3 dołączeniem diod LED do linii portu P1

Upewnij się, że klawisz w lewym górnym rogu okna jest w pozycji ON. Jeśli nie, przełącz go w tę pozycję.

e) Do linii portu P0 dołącz przyciski. W tym celu z menu *Virtual HW* wybierz *Simple Keypad*. Następnie dokonaj przyporządkowania linii portów jak na rysunku 6.

Rys.6. Widok okna *Simple Keypad* z właściwym dla zadania 3 dołączeniem przycisków do linii portu P1

- f) Dokonaj asemblacji programu.
- g) Przetestuj program uruchamiając go w symulatorze wbudowanym w środowisko MCU 8051 IDE w trybie pracy krokowej. Dla pierwszych trzech instrukcji zaobserwuj, jaki stan na liniach portu PO powoduje świecenie, a jaki zgaszenie diod LED. W momencie przejścia programu do wykonywania nieskończonej pętli dokonaj takiego ustawienia przełączników, aby świeciła się co druga dioda.

Symulacja pracy mikrokontrolerów rodziny MCS-51

Wbudowany w środowisko MCU 8051 IDE symulator mikrokontrolerów rodziny MCS-51 umożliwia przetestowanie działania napisanego programu. W celu uruchomienia symulatora należy na górnym pasku ikon kliknąć ikonę \mathscr{H} lub w dolnej części okna środowiska na zakładce *Simulator* wcisnąć taką samą ikonę \mathscr{H} (patrz rysunek 7) albo na klawiaturze komputera wcisnąć klawisz F2. Po wykonaniu jednego z tych działań pierwsza linia z kodem programu zostaje podświetlona na zielono.

🍻 Sim	nulator	=	C varia	ables	1	O Ports 🛛 👒 Messag	ges 📔 📝 Notes	Calculator	🔒 Find in files	🐺 Hide			
× 00 0 08 0 10 0 18 0	0 x1 x 0 00 0 0 00 0 0 00 0 0 00 0	2 x 0 0 0 0 0 0	3 x4 x 0 00 0 0 00 0 0 00 0 0 00 0	5 x6 0 00 0 00 0 00 0 1F	x7 -	#EX DEC BIN A: 00 00000000 B: 00000 00000000	OCT CHAR	TIMERS 0 & 1 TH1 TL1 TH0 TL0 00 00 00 00 00 TCON: TF1 TR1 TR TMOD: G1 CT1 M	T1 T0 TCC D 0 0 F0 TR0 IE1 IT1 IEC 11 M10 G0 CT0 M0	ON TMOD 0 00 0 IT0	BIN HEX P0: 11111111 FF P1: 11111111 FF P2: 11111111 FF	DPH DPL DPTR: 00 00 Clock: 12000	HEX SP: 07 SBUF R: AE SBUF T: F1
20 0 28 0	0 00 0 0 00 0	0 0	0 00 0 0 00 0	0 00 0 00	00	PSW: C AC F0 RS1	RS0 OV - P	INTERRUPTS			P3: [1111111] [FF]	PC: 2> HEX 0000	DEC 0
30 0 38 0		0 0		0 00	00	R7 R6 R5 R4 R3	R2 R1 R0	IE: EA - ET2 ES ET IP: PT2 PS PT	T1 EX1 ET0 EX0	HEX 00	PCON: SMOD	12 REN TB8 RB8 TI	- H: 00
40 0 48 0 				0 00 0 00 0 00	00	terrand terrand terrand terrand terran							

Rys.7. Widok zakładki Simulator

W celu wykonania pojedynczego rozkazu w stworzonym programie należy na głównym pasku ikon kliknąć na ikonę 💋 znajdującą się na prawo od ikony 🖋 lub w dolnej części okna środowiska na zakładce *Simulator* wcisnąć taką samą ikonę 💋 albo na klawiaturze komputera wcisnąć klawisz

F7. Spowoduje to wykonanie rozkazu zaznaczonego się w linii podświetlonej na zielono i podświetlenie na ten sam kolor następnego rozkazu do wykonania. Po wykonaniu rozkazu istnieje możliwość przejrzenia stanu rejestrów mikrokontrolera, które są uwidocznione w dolnej część okna środowiska MCU 8051 IDE na zakładce *Simulator* (patrz rysunek 7).

Wciśniecie ikony znajdującej się w dolnej części okna środowiska na zakładce *Simulator*. Powoduje reset mikrokontrolera i rozpoczęcie wykonywania programu od jego pierwszego rozkazu.

Wyjście z symulatora realizowane jest przez wciśnięcie ikony *s* znajdującej się na górnym pasku ikon lub wciśnięcie ikony ozajdującej się w dolnej części okna środowiska na zakładce *Simulator* albo wciśniecie na klawiaturze komputera klawisza F2.

Wbudowany w środowisko MCU 8051 IDE symulator umożliwia podglądanie zawartości wewnętrznej i zewnętrznej pamięci danych oraz pamięci kodu. Podgląd zawartości wewnętrznej pamięci danych jest uwidoczniony stale po lewej stronie zakładki *Simulator* (patrz rysunek 7). Podgląd zewnętrznej pamięci danych i pamięci kodu realizowany jest w osobnych oknach, których wywołanie odbywa się przez polecenia *Show XDATA memory* i *Show Code memory* znajdujące się w menu *Virtual MCU*. Widok okna z prezentacją pamięci kodu przedstawiono na rysunku 8.

Rys.8. Widok okna prezentującego zawartość pamięci kodu

Symulator umożliwia też graficzny podgląd stanów na liniach portów P0, P1, P2 i P3. Jest to prezentowane na zakładce *IO Ports* znajdującej się w dolnej części środowiska MCU80511DE, co pokazano na rysunku 9. Stan wysoki na liniach portu prezentowany jest kolorem czerwonym, a stan niski kolorem zielonym.

ò :	🔈 Simulator 🛛 🗮 C variables 🛛 🚝 10 Ports 🛛 💊 Messages 📝 Notes 📑 Calculator 🔒 Find in files 🛛 🐺 Hide									
9	True state Port latches True output Legend									
ON		PO			P1		P2	P3		
	0 1 2 3 4 5 6 7					H L H L H L L				

Rys.9. Graficzna prezentacja stanów na liniach portów równoległych na zakładce IO Ports

Literatura

- [1] Wykłady do przedmiotu.
- [2] Tomasz Starecki: "Mikrokontrolery 8051 w praktyce", Wydawnictwo BTC, Warszawa, 2002
- [3] Tomasz Starecki: *"Mikrokontrolery jednoukładowe rodziny 51"*, Wydawnictwo NOZOMI, Warszawa, 1996.
- [4] Andrzej Rydzewski: "*Mikrokontrolery jednoukładowe rodziny MCS-51*", WNT, Warszawa, 1992.
- [5] Ryszard Krzyżanowski: "Układy mikroprocesorowe", Wydawnictwo MIKOM, Warszawa, 2004.