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The problem of fault detection in distributed parameter systems is formulated as that of maximizing the power of a para-
metric hypothesis test which checks whether or not system parameters have nominal values. A computational scheme is
provided for the design of a network of observation locations in a spatial domain that are supposed to be used while detect-
ing changes in the underlying parameters of a distributed parameter system. A considered setting relates to situation where
from among a finite set of potential sensor locations only a subset of them can be selected because of the cost constraints.
As a suitable performance measure the Ds-optimality criterion defined on the Fisher information matrix for the estimated
parameters is applied. Then, the solution of a resulting combinatorial problem is determined based on the branch-and-
bound method. As its essential part, a relaxed problem is discussed in which the sensor locations are given a priori and the
aim is to determine the associated weights, which quantify the contributions of individual gaged sites. The concavity and
differentiability properties of the criterion are established and a gradient projection algorithm is proposed to perform the
search for the optimal solution. The delineated approach is illustrated by numerical example on a sensor network design
for a two-dimensional convective diffusion process.
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1. Introduction
Experimental design for spatio-temporal physical systems
(especially, in environmental protection, nuclear energet-
ics, oil industry, etc.) is often related to an optimal choice
of measurement conditions in order to obtain the best in-
formation for estimating unknown parameters which can
then be used in optimal control. The impossibility to ob-
serve the system states over the entire spatial domain im-
plies the question of where to locate discrete sensors so
as to accurately estimate the unknown system parameters.
An example which is particularly stimulating in the light
of the results reported in this note constitutes optimization
of air quality monitoring networks. The question of how
to optimize sensor locations acquires especially vital im-
portance in the context of recent advances in distributed
sensor networks (Cassandras and Li, 2005).

Over the past years, laborious research on the devel-
opment of strategies for efficient sensor placement has
been conducted (for reviews, see papers (Kubrusly and
Malebranche, 1985; Uciński, 1992; Uciński, 2000; van de

Wal and de Jager, 2001) and comprehensive monographs
(Uciński, 2005; Uciński, 1999)). Nevertheless, although
the need for systematic methods was widely recognized,
most techniques communicated by various authors usually
rely on exhaustive search over a predefined set of candi-
dates and the combinatorial nature of the design problem
is taken into account very occasionally (van de Wal and
de Jager, 2001). Needless to say that this approach, which
is feasible for a relatively small number of possible lo-
cations, soon becomes useless as the number of possible
location candidates increases.

Additionally, in spite of the rapid development of
fault detection and localization methods for dynamic sys-
tems (Korbicz, Kościelny, Kowalczuk and Cholewa, 2004;
Isermann, 1997; Patton and Korbicz, 1999; Patton, Frank
and Clark, 2000; Chiang, Russell and Braatz, 2001), there
are no effective methods tailored to spatiotemporal sys-
tems. Some successful attempts at exploiting the Ds-
optimality criterion were reported by Patan and Patan
(2005). The aim of the research reported here was to
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develop a practical approach to sensor selection for fault
detection which, while being independent of a particular
model of the dynamic DPS in question, would be versa-
tile enough to cope with practical monitoring networks
consisting of many stationary sensors. Specifically, we
consider N possible sites at which to locate a sensor, but
limitations on the number of sensors at our disposal allow
only n of them (typically, n is much smaller than N ) to
be selected. Consequently, the problem is to divide the N
available sites between n gauged sites and the remaining
N−n ungauged sites so as to maximize the determinant of
the Fisher Information Matrix (FIM) associated with the
parameters to be estimated. Since selecting the best sub-
set of sites to locate the sensors constitutes an inherently
discrete large-scale resource allocation problem whose so-
lution may be prohibitively time-consuming, an efficient
guided search algorithm based on the branch-and-bound
method is developed, which implicitly enumerates all the
feasible sensor configurations, using relaxed optimization
problems that involve no integer constraints.

The idea of using branch-and-bound (BB) for sen-
sor selection in DPS was already applied by Uciński and
Patan (2007) in the context of D-optimality. Obviously,
BB constitutes one of the most frequent approaches to
solve discrete optimization problems and it has indeed
been used in the context of network design (Boer, Hendrix
and Rasch, 2001). Nevertheless, the main contribution of
this paper consists in the creative usage of the simple and
powerful computational scheme to obtain upper bounds
to the optimal values of the Ds-optimality criterion which
proves especially attractive in the light of applications in
fault detection and diagnosis. Moreover, various proper-
ties of the Ds-optimality criterion are given and a relaxed
problem is introduced whose solution is obtained through
a gradient projection algorithm.

The paper has structure as follows. Section 2 states
formally the sensor network design problem as a discrete
resource allocation problem. The general BB scheme for
its solution is discussed in Sect. 3. Section 4 describes
the algorithmic solution for computing upper bounds re-
quired by the branching rule. In Sect. 5, we illustrate
the use of our algorithm on the example of a sensor net-
work design problem regarding a two-dimensional con-
vective diffusion process. We conclude in Sect. 6 with
some comments on related open problems. The proofs of
some essential properties of the Ds-optimality criterion
are contained in the Appendix.

Notation. Throughout the paper, R+ and R++ stand for
the sets of nonnegative and positive real numbers, respec-
tively. We adopt the convention that all vectors have col-
umn form. The set of real m × n matrices is denoted by
Rm×n. We use Sm to denote the set of symmetric m×m
matrices, Sm

+ to denote the set of symmetric nonnegative
definite m × m matrices, and Sm

++ to denote the set of

symmetric positive definite m ×m matrices. The curled
inequality symbol � (resp. �) is used to denote gener-
alized inequalities. More precisely, between vectors, it
represents a componentwise inequality, and between sym-
metric matrices, it represents the Löwner ordering: given
A,B ∈ Sm, A � B means that A − B is nonnegative
definite (resp. positive definite).

2. Sensor selection for fault detection
Consider a bounded spatial domain Ω ⊂ Rd with suf-
ficiently smooth boundary Γ, a bounded time interval
T = (0, tf ], and a distributed parameter system (DPS)
whose scalar state at a spatial point x ∈ Ω̄ ⊂ Rd and time
instant t ∈ T̄ is denoted by y(x, t). Mathematically, the
system state is governed by the partial differential equa-
tion (PDE)

∂y

∂t
= F

(
x, t, y, θ

)
in Ω× T , (1)

where F is a well-posed, possibly nonlinear, differen-
tial operator which involves first- and second-order spatial
derivatives and may include terms accounting for forcing
inputs specified a priori. The PDE (1) is accompanied by
the appropriate boundary and initial conditions

B(x, t, y, θ) = 0 on Γ× T, (2)
y = y0 in Ω× {t = 0}, (3)

respectively, B being an operator acting on the boundary Γ
and y0 = y0(x) a given function. Conditions (2) and (3)
complement (1) such that the existence of a sufficiently
smooth and unique solution is guaranteed. We assume
that the forms of L and B are given explicitly up to an
m-dimensional vector of unknown constant parameters θ
which must be estimated using observations of the system.
The implicit dependence of the state y on the parameter
vector θ will be be reflected by the notation y(x, t; θ).

In what follows, we consider the discrete-continuous
observations provided by n stationary pointwise sensors,
namely

z`
m(t) = y(x`, t; θ) + ε(x`, t), t ∈ T, (4)

where z`
m(t) is the scalar output and x` ∈ X stands for

the location of the `-th sensor (` = 1, . . . , n), X signifies
the part of the spatial domain Ω where the measurements
can be made and ε(x`, t) denotes the measurement noise.
This relatively simple conceptual framework involves no
loss of generality since it can be easily generalized to in-
corporate, e.g., multiresponse systems or inaccessibility
of state measurements, cf. (Uciński, 2005, p. 95).

It is customary to assume that the measurement noise
is zero-mean, Gaussian, spatial uncorrelated and white
(Quereshi, Ng and Goodwin, 1980; Omatu and Sein-
feld, 1989; Amouroux and Babary, 1988), i.e.,

E
{
ε(x`, t)ε(x`′

, t′)
}

= σ2δ``′δ(t− t′), (5)
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where σ2 defines the intensity of the noise, δij and δ( · )
standing for the Kronecker and Dirac delta functions, re-
spectively. Although white noise is a physically impossi-
ble process, it constitutes a reasonable approximation to a
disturbance whose adjacent samples are uncorrelated at all
time instants for which the time increment exceeds some
value which is small compared with the time constants of
the DPS. A rigorous formulation for a time-correlated set-
ting (cf. Appendix C1 of (Uciński, 2005)) is well beyond
the mathematical framework of this paper, but the atten-
dant difficulties are mainly technical and do not substan-
tially affect the basic results to be obtained. What is more,
the white-noise assumption is consistent with most of the
literature on the subject.

The most widely used formulation of the parameter
estimation problem is as follows: Given the model (1)–
(3) and the outcomes of the measurements z`

m( · ), ` =
1, . . . , n, estimate θ by θ̂, a global minimizer of the output
least-squares error criterion

J (ϑ) =
n∑

`=1

∫
T

{
z`
m(t)− y(x`, t;ϑ)

}2
dt (6)

where y( · , · ;ϑ) denotes the solution to (1)–(3) for a
given value of the parameter vector ϑ.

The basic idea of fault detection is to compare the re-
sulting parameter estimates with the corresponding known
nominal values, treating possible differences as residuals
which contain information about potential faults. Based
on some thresholding techniques, the appropriate decision
making system could be constructed to detect abnormal
situations in system functioning (Patan and Patan, 2005).

Basically, only some parameters can be useful for the
diagnosis. This accounts for partitioning the parameter
vector into two two subsets. With no loss of generality,
we may write

θ =
[
θ1 . . . θs θs+1 . . . θm

]T
=

[
αT βT

]
, (7)

where α is a vector of s parameters which are essential
for a proper fault detection and β is the vector of some
unknown parameters which are a part of the model but are
useless for fault detection. Based on the observations, it is
possible to test the simple null hypothesis

H0 : α = α0, (8)

where α0 is the nominal value for the vector α correspond-
ing to the normal system performance.

For a fixed significance level (i.e. fixed proba-
bility of rejecting H0 when it is true), the power
of the likelihood ratio test for the alternative hy-
pothesis of the form HA : α 6= α∗ (i.e. 1 −
the probability of accepting H0 when HA is true) can be

made large by maximizing the Ds-optimality criterion
(see (Patan and Patan, 2005) for details)

Ψs[M ] = log det[Mαα −MαβM−1
ββ MT

αβ ], (9)

where M ∈ Rm×m stands for the so-called Fisher Infor-
mation Matrix (FIM) which is decomposed as

M =

 Mαα Mαβ

MT
αβ Mββ

 , (10)

such that Mαα ∈ Rs×s, Mαβ ∈ Rs×(m−s), Mββ ∈
R(m−s)×(m−s). The FIM is widely used in optimum ex-
perimental design theory for lumped systems (Fedorov
and Hackl, 1997; Pázman, 1986; Pukelsheim, 1993; Wal-
ter and Pronzato, 1997; Atkinson and Donev, 1992). In
our setting, the FIM is given by (Quereshi et al., 1980)

M(x1, . . . , xn) =
n∑

`=1

∫
T

g(x`, t)gT(x`, t) dt, (11)

where

g(x, t) =
[
∂y(x, t;ϑ)

∂ϑ1
, . . . ,

∂y(x, t;ϑ)
∂ϑm

]T

ϑ=θ0

(12)

stands for the so-called sensitivity vector, θ0 being the
nominal value of the parameter vector θ (Uciński, 2005;
Sun, 1994; Rafajłowicz, 1981; Rafajłowicz, 1983). Up
to a constant scalar multiplier, the inverse of the FIM
constitutes a good approximation of cov(θ̂) provided that
the time horizon is large, the nonlinearity of the model
with respect to its parameters is mild, and the measure-
ment errors are independently distributed and have small
magnitudes (Walter and Pronzato, 1997; Fedorov and
Hackl, 1997).

Observe that for the partition

M−1 =

 Dαα Dαβ

DT
αβ Dββ

 , (13)

where Dαα ∈ Rs×s, Dαβ ∈ Rs×(m−s), Dββ ∈
R(m−s)×(m−s), we have (Bernstein, 2005, Fact 2.8.7,
p.44)

Dαα =
(
Mαα −MαβM−1

ββ MT
αβ

)−1
(14)

and further (Bernstein, 2005, Fact 2.15.8, p.73)

det(Dαα) =
det(Mββ)
det(M)

. (15)

Consequently, maximization of the Ds-optimality
criterion amounts to minimization of det(Dαα), which is
proportional to the determinant of the covariance matrix
for α.
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The optimal sensor location problem considered in
what follows is as follows: Given a set of N possible can-
didate sensor locations, where N > n, we wish to seek
the best subset of n locations from among the N possi-
ble, so that the problem is then reduced to a combinatorial
one. In other words, the problem is to divide the N avail-
able sites between n gauged sites and the remaining N−n
ungauged sites so as to maximize the determinant of the
FIM associated with the parameters to be estimated. This
formulation will be also adopted here.

Specifically, let xi, i = 1, . . . , N denote the positions
of sites where sensors can potentially be placed. Now that
our design criterion has been established, the problem is
to find an optimal allocation of n available sensors to xi,
i = 1, . . . , N so as to maximize the value of the design
criterion incurred by the allocation. In order to formulate
this mathematically, introduce for each possible location
xi a variable vi which takes the value 1 or 0 depending
on whether a sensor is or is not located at xi, respectively.
The FIM in (11) can then be rewritten as

M(v1, . . . , vN ) =
N∑

i=1

viMi, (16)

where
Mi =

∫
T

g(xi, t)gT(xi, t) dt. (17)

It is straightforward to verify that the m × m matri-
ces Mi are nonnegative definite and, therefore, so is
M(v1, . . . , vN ).

Then our design problem takes the form:

Problem P:. Find the sequence v = (v1, . . . , vN ) to
maximize

P(v) = Ψ
(
M(v)

)
(18)

subject to the constraints

N∑
i=1

vi = n, (19)

vi = 0 or 1, i = 1, . . . , N. (20)

This constitutes a 0–1 integer programming problem
which necessitates an ingenious solution. In (Uciński
and Patan, 2007) a general computational scheme is pro-
posed to solve this problem based on the branch-and-
bound method which is a standard technique for such class
of tasks. Its presentation constitutes the next section of the
paper.

3. Branch-and-bound solution
3.1. Outline. The branch-and-bound (BB) constitutes
a general algorithmic technique for finding optimal solu-
tions of various optimization problems, especially discrete

or combinatorial (Floudas, 2001; Bertsekas, 1999). If ap-
plied carefully, it can lead to algorithms that run reason-
ably fast on average.

Principally, the BB method is a tree-search algorithm
combined with a rule for pruning subtrees. Suppose we
wish to maximize an objective function P(v) over a finite
set V of admissible values of the argument v called the
feasible region. The BB then progresses by iteratively ap-
plying two procedures: branching and bounding. Branch-
ing starts with smartly covering the feasible region by two
or more smaller feasible subregions (ideally, partitioning
into disjoint subregions). It is then repeated recursively
to each of the subregions until no more division is pos-
sible, which leads to a progressively finer partition of V .
The consecutively produced subregions naturally generate
a tree structure called the BB tree. Its nodes correspond
to the constructed subregions, with the feasible set V as
the root node and the singleton solutions

{
v
}

, v ∈ V as
terminal nodes. In turn, the core of bounding is a fast
method of finding upper and lower bounds to the maxi-
mum value of the objective function over a feasible sub-
domain. The idea is to use these bounds to economize
computation by eliminating nodes of the BB tree that have
no chance of containing an optimal solution. If the upper
bound for a subregion VA from the search tree is lower
than the lower bound for any other (previously examined)
subregion VB , then VA and all its descendant nodes may
be safely discarded from the search. This step, termed
pruning, is usually implemented by maintaining a global
variable that records the maximum lower bound encoun-
tered among all subregions examined so far. Any node
whose upper bound is lower than this value need not be
considered further and thereby can be eliminated. It may
happen that the lower bound for a node matches its upper
bound. That value is then the maximum of the function
within the corresponding subregion and the node is said to
be solved. The search proceeds until all nodes have been
solved or pruned, or until some specified threshold is met
between the best solution found and the upper bounds on
all unsolved problems.

3.2. Relaxed sensor selection problem. Let I denote
the index set

{
1, . . . , N

}
of possible sensor locations.

Consider a slight modification of Problem P, which starts
by replacing the feasible set

V =

{
(v1, . . . , vN )

∣∣∣ N∑
i=1

vi = n, vi = 0 or 1, ∀i ∈ I

}
,

(21)
by

V (I0, I1) =
{
v ∈ V | vi = 0, ∀i ∈ I0, vi = 1, ∀i ∈ I1

}
,

(22)
where I0 and I1 are disjoint subsets of I . Consequently,
V (I0, I1) is the subset of V such that a sensor is placed at
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the locations with indices in I1, no sensor is placed at the
locations with indices in I0, and a sensor may or may not
be placed at the remaining locations.

Then we introduce the following relaxed problem:

Problem R(I0, I1):. Find a sequence v̄ to maximize
(18) subject to the constraints

N∑
i=1

vi = n, (23)

vi = 0, i ∈ I0, (24)
vi = 1, i ∈ I1, (25)

0 ≤ vi ≤ 1, i ∈ I \ (I0 ∪ I1). (26)

In Problem R(I0, I1) all 0–1 constraints on the vari-
ables vi are relaxed by allowing them to take any value in
the interval [0, 1], except that the variables vi, i ∈ I0 ∪ I1

are fixed at either 0 or 1.
Each subset V (I0, I1) can be identified with a node

in the BB tree. The key assumption in the BB method is
that for every nonterminal node V (I0, I1), i.e., the node
for which I0 ∪ I1 6= I , there is an algorithm that deter-
mines an upper bound P̄(I0, I1) to the maximum design
criterion over V (I0, I1), i.e.,

P̄(I0, I1) ≥ max
v∈V (I0,I1)

P(v), (27)

and a feasible solution v ∈ V for which P(v) can serve as
a lower bound to the maximum design criterion over V .
Furthermore, we may compute P̄(I0, I1) by solving the
relaxed Problem R(I0, I1). A simple and efficient method
for its solution based on the gradient projection technique
constitutes the Section 4 of the paper. As a result of its
application, we set P̄(I0, I1) = P(v̄).

As for v, we can specify it as the best feasible solu-
tion (i.e., an element of V ) found so far. If no solution has
been found yet, we can either set the lower bound to −∞,
or use an initial guess about the optimal solution (experi-
ence provides evidence that the latter choice leads to much
more rapid convergence).

3.3. Branching rule. The result of solving Prob-
lem R(I0, I1) can serve as a basis to construct a branch-
ing rule for the binary BB tree. We adopt here the ap-
proach in which the node/subset V (I0, I1) is expanded
(i.e., partitioned) by first picking out all fractional values
from among the values of the relaxed variables, and then
rounding to 0 and 1 a value which is the most distant from
both 0 and 1. Specifically, we apply the following steps:

(i) Determine

i? = arg min
i∈I\(I0∪I1)

|vi − 0.5|. (28)

(In case there are several minimizers, randomly pick
one of them.)

(ii) Partition V (I0, I1) into V (I0 ∪
{
i?

}
, I1) and

V (I0, I1 ∪
{
i?

}
) whereby two descendants of the

node in question are defined.

A recursive application of the branching rule starts
from the root of the BB tree, which corresponds to the
trivial subset V (∅, ∅) = V and the fully relaxed problem.
Each node of the BB tree corresponds to a continuous re-
laxed problem, R(I0, I1), while each edge corresponds to
fixing one relaxed variable at 0 or 1.

The above scheme has to be complemented with a
search strategy to incrementally explore all the nodes of
the BB tree. Here we use a common depth-first tech-
nique (Reinefeld, 2001; Russell and Norvig, 2003) which
always expands the deepest node in the current fringe
of the search tree. The reason behind this decision is
that the search proceeds immediately to the deepest level
of the search tree, where the nodes have no successors
(Gerdts, 2005). In this way, lower bounds on the optimal
solution can be found or improved as fast as possible.

It is simple matter to show that the matrix Mββ is
singular only if the whole FIM is singular. A very simple
method to test whether or not the current relaxed prob-
lem will lead to a nonsingular FIM has been proposed by
Uciński and Patan (2007, Prop. 2). Consequently, such a
test of the singularity of the FIM can be built into the BB
procedure in order to drop the corresponding node from
further considerations and forego the examination of its
descendants.

A recursive version of the resulting depth-first
branch-and-bound is implemented in Algorithm 1. The
operators involved in this implementation are as follows:

• SINGULARITY-TEST(I0, I1) returns true only if ex-
pansion of the current node will result in a singular
FIM.

• RELAXED-SOLUTION(I0, I1) returns a solution to
Problem R(I0, I1).

• DS-FIM(v) returns the Ds criterion value for the
FIM corresponding to v.

• INTEGRAL-TEST(v) returns true only if the current
solution v is integral.

• INDEX-BRANCH(v) returns the index defined by
(28).

4. Algorithmic solution for the relaxed prob-
lem

4.1. Problem reformulation. For notational conve-
nience, we replace the variables vi, i ∈ I \ (I0 ∪ I1) by
wj , j = 1, . . . , q, where q = |I \ (I0 ∪ I1)|, since there
exists a bijection π from

{
1, . . . , q

}
to I \ (I0 ∪ I1) such

that wj = vπ(j), j = 1, . . . , q. Consequently, we obtain
the ultimate formulation:
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Algorithm 1 A recursive version of the depth-first branch-and-bound method. It uses two global variables, LOWER and
v_best, which are respectively the maximal value of the P(v) over feasible solutions found so far and the solution at which
it is attained.

1: procedure RECURSIVE-DFBB(I0, I1)
2: if |I0| > N − n or |I1| > n then
3: return . Constraint on the number of sensors would be violated
4: end if
5: if SINGULARITY-TEST(I0, I1) then
6: return . Only zero determinants can be expected
7: end if
8: v_relaxed← RELAXED-SOLUTION(I0, I1)
9: Ds_relaxed← DS-FIM(v_relaxed ) . Bounding

10: if Ds_relaxed ≤ LOWER then
11: return . Pruning
12: else if INTEGRAL-TEST(v_relaxed ) then
13: v_best← v_relaxed
14: LOWER← Ds_relaxed
15: return . Relaxed solution is integral
16: else
17: i? ← INDEX-BRANCH(v_relaxed ) . Partition into two descendants (Branching)
18: RECURSIVE-DFBB(I0 ∪

{
i?

}
, I1)

19: RECURSIVE-DFBB(I0, I1 ∪
{
i?

}
)

20: end if
21: end procedure

Problem R′(I0, I1):. Find w ∈ Rq to maximize

Q(w) = Ψ
(
G(w)

)
(29)

subject to the constraints

q∑
j=1

wj = r, (30)

0 ≤ wj ≤ 1, j = 1, . . . , q, (31)

where

r = n− |I1|, G(w) = A +
q∑

j=1

wjSj , (32)

A =
∑
i∈I1

Mi, Sj = Mπ(j) (33)

for j = 1, . . . , q. (Note that |I1| sensors have already been
assigned to locations xi, i ∈ I1, and thus a decision about
the placement of r remaining sensors has to be made.)

4.2. Gradient projection scheme. It can be demon-
strated (the proof is technical and thus it can be found in
the Appendix) that the Ds-optimality criterion is concave
over the cone Sm

++. What is more, its matrix derivative is

◦
Ψ(M) =

∂Ψ(M)
∂M

=

 Dαα Dαβ

DT
αβ Dββ −M−1

ββ

 , (34)

which results from the representation

Ψ[M ] = log det(M)− log det(Mββ)

= log det(M)− log det(ATMA),
(35)

where

A =

 0

I

 ∈ Rm×(m−s), (36)

and Proposition 10.6.2 of (Bernstein, 2005, p.410).
In the sequel, W will stand for the set of all vectors

w = (w1, . . . , wq) satisfying (30) and (31). Note that
it forms a polygon in Rq. The objective function (29) is
concave as the composition of the log-determinant with
an affine mapping, see (Boyd and Vandenberghe, 2004,
p. 79). We wish to maximize it over the polyhedral set W .

For that purpose, a number of possibilities exist,
cf. (Bertsekas, 1999, Chapter 2), but gradient projection
methods prove very efficient. A simplest version is a fea-
sible direction method of the form

wk+1 = wk + λk(w̄k − wk), (37)

where
w̄k =

[
wk + %k∇Q(wk)

]+
. (38)

Here, [ · ]+ denotes projection on the set W , λk ∈ (0, 1]
is a stepsize, and %k is a positive scalar. Thus, to ob-
tain the vector w̄k, we take a step %k∇Q(wk) along the
gradient, as in steepest ascent. We then project the result
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wk +%k∇Q(wk) on W , thereby defining the feasible vec-
tor w̄k. Finally, we take a step along the feasible direction
w̄k − wk using the stepsize λk.

An O(r) algorithm of projecting on W , which con-
stitutes an intersection of a hyperplane and a box, was
set forth by Maculan, Santiago, Macambira and Jardim
(2003). Let also note that

∇Q(w)=
[
trace

( ◦
Ψ(G(w))S1

)
. . . trace

( ◦
Ψ(G(w))Sq

)]T

(39)

5. Computational results
As an illustration of the presented approach to the sen-
sor network design, we consider the problem of sensor
placement for fault detection in the transport process of
an air pollutant over a given urban area. Within this do-
main, which has been normalized to the unit square Ω =
(0, 1)2, an active source of pollution is present, which in-
fluence the pollutant spatial concentration y = y(x, t).
The evolution of y over the normalized observation inter-
val T = (0, 1] is described by the following advection-
diffusion equation:

∂y(x, t)
∂t

+∇ ·
(
v(x)y(x, t)

)
=

∇ ·
(
a(x)∇y(x, t)

)
+ f(x), x ∈ Ω

(40)

subject to the boundary and initial conditions:

∂y(x, t)
∂n

= 0, on Γ× T, (41)

y(x, 0) = y0, in Ω, (42)

where term f(x) = 50 exp
(
− 50‖x − c‖2

)
represents

a source of pollutant located at point c = (0.3, 0.3), and
∂y/∂n stands for the partial derivative of y with respect to
the outward normal to the boundary Γ. The mean spatio-
temporal changes of the wind velocity field over the area
were approximated by v = (v1, v2), where

v1 = 2(x1 + x2 − t), v2 = x2 − x1 + t. (43)

what is also illustrated in Fig. 1. The assumed functional
form of the spatial-varying diffusion coefficient a(x) is

a(x) = θ1 + θ2x1x2 + θ3x
2
1 + θ4x

2
2. (44)

The subject of interest here is a detection of significant
increase in the intensity of the pollutant emission from the
source. As the symptom of this abrupt fault an excessive
deviation of the parameters θ1 and θ2 from their nominal
values was assumed. Therefore, these parameters need
estimation based on measurement data from monitoring
stations.

In our simulation studies, the described bound-and-
branch technique was applied to determine the locations

of stationary sensors. Given N prospective sites in Ω∪ Γ,
we aim at selecting their subset consisting of the locations
at which the measurements made by n available sensors
would lead to Ds-optimum least-squares estimates of the
parameters θ.

In order to determine the elements of sensitivity vec-
tor required to calculate FIM the direct-differentiation
method (Uciński, 2005) was applied assuming the nom-
inal values of the parameters θ0

1 = 0.02, θ0
2 = 0.01 and

θ0
3 = θ0

4 = 0.005. We solved the resulting system of
PDEs using routines of the MATLAB PDE toolbox for a
spatial mesh composed of 682 triangles and 378 nodes.
As for the numerical integration required to evaluate infor-
mation matrices for admissible observation sites the trape-
zoidal rule was applied with the time step equal to 0.04,
based on the sensitivity vector interpolated at the nodes
representing admissible locations xi, cf. Appendix I in
(Uciński, 2005) for details.

A complex dynamics of the pollution process is
shown in Fig. 1. The pollutant spreads out over the entire
domain reflecting the sophisticated combination of diffu-
sion and advection and follows the temporary direction of
the wind being the dominant transport factor. In consid-
ered scenario, the observation grid was assumed to be cre-
ated at locations selected from among those elements of
mentioned above 378-point triangulation mesh which do
not lie on the outer boundary (there were 312 such nodes,
which are indicated with dots in Fig. 2).

A Matlab program was written to implement the re-
cursive version of the DFBB procedure embodied by Al-
gorithm 1. In order to solve the relaxed problem, which
constitutes the principal part of DFBB, the gradient pro-
jection scheme was implemented (Sec. 4) with tolerance
and maximum number of iterations set to ε = 10−8 and
κmax = 1000, respectively. Finally, to take full advantage
of the efficient gradient projection scheme performed at
each node of the BB tree, Algorithm 1 was extended to in-
corporate a rounding procedure after solving the relaxed
problem. Thus, this solution provides not only an upper
bound to the currently processed branch, but may also lead
to a great improvement in the lower bound LOWER. In-
tuitively, a proper way of rounding a relaxed solution is
to choose target sites for locating spare sensors so that
they correspond to the largest weights. In the case that
this choice is complicated by the presence of sites with
identical weights, the target sites are chosen randomly. In
effect, it is not necessary to descend to the bottom level
of the BB tree in order to update LOWER. This fact is of
crucial importance for large-scale problems, where such
an action costs many recursive calls of Algorithm 1, thus
the rounding of relaxed solutions significantly speedup the
algorithm, as evidenced by numerous simulation experi-
ments.

Ds-optimal sensor configurations for different num-
bers of allocated sensors are shown in Fig. 2. It is clear
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Table 1. Comparison of algorithm performance for different set-
tings.

No. of No. of recur- Time Criterion
sensors sive calls [s] value

10 17 4.697 1.19422e+006
20 41 9.043 4.28668e+006
40 5 3.856 1.59385e+007
60 1 1.092 3.33651e+007
80 1 0.511 5.8198 e+007

100 3 1.698 8.24685e+007
120 1 0.261 1.14538e+008
150 7 3.395 1.59447e+008

that the complexity of the system dynamics makes the
proper prediction of the observation locations rather dif-
ficult and nonintuitive. The sensors tend to form the pat-
tern reflecting the areas of greatest changes in the pollu-
tant concentration but the observations are averaged over
time and it is not trivial to follow the dynamics of the ob-
servation strategy. Surprisingly, the measurements in the
closest vicinity of the pollution source turned out to be
not very attractive for the considered fault detection. The
results concerning the algorithm performance are summa-
rized in Tab. 1. The number of RDFBB calls equals to one
means that the optimal solution is obtained just by round-
ing the fully relaxed problem. Examination of the data
from Tab. 1 leads to interesting conclusions. Unexpect-
edly, with an increased number of sensors (and the size
of the corresponding search space), the pruning process
becomes more efficient. This effect can be explained by
observing that a higher density of sensors leads to a bet-
ter estimate of the lower bound to the optimal value of the
design criterion, which results in an increased efficiency
of pruning and whereupon the search is speeded up.

6. Conclusions
We consider the problem of monitoring network design
which provides the proper diagnostic information about
the state of considered distributed parameter system. One
of the most important issues related to this task is the
choice of a suitable criterion which quantify the qual-
ity of the detection of abnormal system state indicating
the potential faults. We state the problem in the form
of maximization of the power for a parametric hypothe-
sis test which verify the nominal values for the system
parameters. Then, as an appropriate performance index
Ds-optimality criterion defined on the Fisher informa-
tion matrix is proposed. Although this criterion is well
known in the optimum design theory, there exist only
few attempts to exploit it in the context of fault detec-
tion for DPSs, cf. (Uciński, 2003; Patan, 2004; Patan and
Patan, 2005; Patan, Uciński and Baranowski, 2005). This
work contributes to this issue providing the proper math-

ematical justification of some valuable properties of Ds-
optimality such as its concavity and differentiability.

Another crucial difficulty here is the large scale of the
resulting global optimization problem, since the monitor-
ing networks encountered in process industry or environ-
mental engineering may often consist of several hundreds
of stations. Obviously, this makes the exhaustive search
on a candidate-by-candidate basis practically intractable
and creates a need for techniques which would imple-
ment a guided search and have acceptable performance.
With our sensor network design problem we started from
the most common formulation, in which the measurement
system has a finite number of sensor candidate positions
and the aim is to select the best subset of points (of desired
cardinality) in the sense of maximizing the Ds-optimality
criterion. This fits into the framework of nonlinear 0–1
integer programming. The solution of this combinatorial
design problem using the branch-and-bound method con-
stitutes a quite natural option, but the main problem when
trying to implement it has been the lack of a low-cost pro-
cedure to obtain upper bounds to the optimal values of the
Ds-optimality criterion. Our main contribution consists in
adapting a specialized gradient projection procedure for
criterion maximization to produce such bounds. Conse-
quently, the proposed method can be implemented with
great ease and our experience provides evidence that, with
this tool, even large-scale design problems can be solved
using an off-the-shelf PC.

Naturally, there still remain some open problems
which need a close attention. The following points can
be raised as the main directions of further research:

• Extension of the considered class of DPSs. The great
advantage of the delineated approach is that it is in-
dependent of a specific form of PDEs used as a math-
ematical model of considered DPS. In such a manner
the presented approach can be rather easily adopted
for the class of multi-output DPSs or/and systems
with delays, since only the formula for calculating
the elements of FIM will be properly changed.

• The structure of the proposed BB algorithm is well
suited for parallel implementation dedicated to the
clusters of PCs. Such parallel version of the approach
would be very attractive for solving large-scale prob-
lems.

• The proposed simple branching rule for the binary
BB tree can be refined by incorporating a mechanism
driving the search proces towards the most promising
branches in terms of the objective function or heuris-
tics exploiting specific properties of the considered
DPS.
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A. Appendix
Proof of the concavity of the Ds-optimality criterion
Reall that the Euclidean matrix scalar product

〈G, H〉 = trace(GTH) (A1)

turns Rm×m into a Euclidean space of dimension m2.
We denote by Sm its subspace of symmetric matrices.
It is well known that this subspace contains the convex,
pointed and closed cone of nonnegative definite matrices,
Sm

+ , which has the set of positive definite matrices, Sm
++,

as its interior relative to the space Sm, cf. (Pukelsheim,
1993, p. 10).

The Loewner partial ordering � of Sm is defined as
follows:

G � H ⇔ G−H � 0⇔ G−H ∈ Sm
+ . (A2)

Recall that

G ∈ Sm
+ ⇔ trace(GH) � 0, ∀H ∈ Sm

+ . (A3)

Lemma 1. If G � H � 0, then for all V ∈ Sm we have

trace(GV GV ) ≥ trace(HV HV ). (A4)

Proof. From (A3) it follows that

trace(GV GV ) ≥ trace(GV HV ) ≥ trace(HV HV ).
(A5)

The two inequalities result from V GV � V HV and G �
H , respectively. �

Lemma 2. For the partition (10), if M ∈ Sm
++, then

M−1 � A(ATMA)−1AT, (A6)

where A is defined in (36).

Proof. First observe that, given M ∈ Sm
++, we have

Mββ = ATMA ∈ Sm
++ whenever s < m.

From Proposition 2.8.7 of (Bernstein, 2005, p.44) we
deduce that

M−1 −A(ATMA)−1AT

=

 Dαα −DααMαβM−1
ββ

−M−1
ββ MT

αβDαα M−1
ββ MT

αβDααMαβM−1
ββ

 .

(A7)

Then for any y ∈ Rm partitioned as

y =

[
yα

yβ

]
(A8)

we obtain

yT
(
M−1 −A(ATMA)−1AT

)
y

=
(
yα −MαβM−1

ββ yβ

)T
Dαα

(
yα −MαβM−1

ββ yβ

)
≥ 0,

(A9)

which yields the desired result. �

We claim that the criterion (9) is concave over Sm
++.

Indeed, denoting by Ψ′
s(M) the first Fréchet derivative of

Ψs at M ∈ Sm
++, from (35) and Proposition 10.6.2(vi) in

(Bernstein, 2005, p.410) we obtain

Ψ′
s(M)V

= trace
{

∂

∂M

[
Ψs(M)

]
V

}
= trace

{[
M−1 −A(ATMA)−1AT

]
V

} (A10)

for any V ∈ Sm.
As for the second Fréchet derivative of Ψs at M ∈

Sm
++, denoted by Ψ′′

s (M), its value Ψ′′
s (M)(U, V ) at given

U, V ∈ Sm equals the derivative of the mapping M 7→
Ψ′

s(M)V applied to U , i.e.,

Ψ′′
s (M)(U, V )

= trace
{

∂

∂M

[
Ψ′

s(M)V
]
U

}
= − trace

{[
M−1V M−1

−A(ATMA)−1ATV A(ATMA)−1AT
]
U

}
,

(A11)

the last equality resulting from Proposition 10.6.4(iii) in
(Bernstein, 2005, p.411).

From Lemmas 1 and 2 we then get

Ψ′′
s (M)(V, V )

= − trace
{
M−1V M−1V

}
+ trace

{
A(ATMA)−1ATV A(ATMA)−1ATV

}
≤ 0, ∀V ∈ Sm,

(A12)

which establishes the concavity of Ψs.
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Polish).
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Fig. 1. Temporal changes in the wind velocity field and pollutant concentration.
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Fig. 2. The Ds-optimal allocation of different numbers of sensors.


	Introduction
	Sensor selection for fault detection
	Branch-and-bound solution
	Outline
	Relaxed sensor selection problem
	Branching rule

	Algorithmic solution for the relaxed problem
	Problem reformulation
	Gradient projection scheme

	Computational results
	Conclusions
	Appendix

