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1 Introduction

This is the draft of something what might become a paper for publication. At the mo-

ment, it needs writing an introduction with motivation, perhaps some simulation studies,

conclusions and further work.

This paper is our response to the paper of Mentré et al. (1997). The authors define a

population design in a way which simply restricts groups to those of fixed size (design for

group one has one support point, for group two - two support points and so on, up to a

predefined maximum number of support points). The example is taken from their paper,

for comparison.

2 Regression model

We consider a nonlinear regression model

y = η(t, θ) + ε,

where t ∈ T = [0, tmax], tmax < ∞, denotes an explanatory variable (time instant in

our examples), θ ∈ Θ is a p-dimensional vector of unknown parameters, Θ is a set of

admissible values of θ, η(t, θ) is the expected response at t and ε denotes the random error

of observations.

In what follows, we suppose that there is a population of N individuals (patients,

units, systems etc.) for each of which ni measurements are gathered, possibly according

to different time schedules, that is, the model for each observation can be written as

yk
i = η(tki ; θk

i ) + εki , i = 1, . . . , nk, k = 1, . . . , N (1)
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where yk
i is an observation at time tki ∈ T , and εki are i.i.d. random errors with a known

density f .

We denote by g(y|θ) the conditional probability density of observation y given the

value of θ, i.e.

yk
i |θk ∼ g(yk

i |θk).

Vectors θk ∈ Θ are assumed to be realizations of the random vector θ = (θ1, . . . , θp)T with

probability density h(θ;ψ), i.e.,

θ ∼ h(θ;ψ).

The function h is entirely determined by the population parameter vector ψ = (ψ1, . . . , ψep)T.

Efficient estimation of this vector of constant parameters ψi is of our primary interest.

Because of the iid assumption made for the errors, the log-likelihood function for ψ

given a set of observations Y takes the form

`(ψ|Y ) = log
N∏

k=1

nk∏
i=1

∫
Θ
g(yk

i |θ)h(θ;ψ) dθ (2)

where Y = [(y1)T , . . . , (yN )T ]T and yk = [yk
1 , . . . , y

k
nk

]T .

3 Experimental design

We assume that a population of N patients consists of G groups of size Nj each and

the individuals in same group follow the same schedule of measurements (design). We

construct the population experimental design in two stages:

Individual level The response variable y (e.g. concentration of a drug) is observed for

each individual at specified time instants tji , i = 1, . . . , nj , j = 1, . . . , G. One experiment

(e.g. visit at a clinic) yields one observation yj
i . The experimental design for an individual

in j-th group is a list of nj time instants, at which measurements are to be made, namely

ξj = {tj1, . . . , t
j
nj
}.

Since some of the time instants may be the same, it is convenient to write the design using

proportions of the numbers of repeated observations, rj
i , to the number of all observations

taken for the individual at tji , that is

ξj =

 tj1 . . . tjsj

wj
1 . . . wj

sj

; wj
i = rj

i /nj ,

sj∑
i=1

rj
i = nj

 (3)
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where sj is the number of distinct time instants. We further relax the constraints in (3)

and allow the weights wj
i be any real numbers from the interval (0,1], and we write the

design as

ξj =

 tj1 . . . tjsj

wj
1 . . . wj

sj

; wj
i ∈ (0, 1],

sj∑
i=1

wj
i = 1

 . (4)

Design ξj ∈ Ξ, where Ξ denotes a set of admissible designs defined by (4), is a continuous

measure on a set of sj distinct (support) points in a design region T . Such definition of a

design allows us to follow the convex design theory, see for example Fedorov (1972). It is

also very useful from the numerical calculations point of view.

This form of a design does not preserve the information about the number of mea-

surements nj and the same design can be realized for different individuals with different

experimental costs (since the number of measurements may vary). Hence, the whole ex-

perimental system per individual is described by the pair (ξj , nj).

Population level We assume that all Nj individuals in group j, j = 1, . . . , G, follow

the same sampling schedule. We define the population design as

ζ =

 (ξ1, n1) . . . (ξG, nG)

α1 . . . αG

;
G∑

j=1

αj = 1

 , (5)

where αj = Nj

N is the proportion of individuals in the whole population who follow plan

(ξj , nj) (also relaxed later to be a set of positive values summing up to one).

This definition is a generalization of the definition proposed by Mentré et al. (1997)

since individual designs ξj are continuous in contrast to those in Mentré et al. (1997) and

the number sj of support points for an individual in a group is not predetermined, and

may, or may not, be the same as in other groups.

4 Fisher Information Matrix

The Fisher Information Matrix (FIM) is an argument of many design optimality criteria.

In the fixed non-linear models (θ not random) it depends on the model parameters θ

and on the individual experimental design. In the mixed effects non-linear models (θ

random) it depends on the population parameters ψ, also called hyperparameters, and on

the population experimental design.
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The assumption of independent observations allows us to sum up the FIMs for all

single observations. Here we have

M(ζ,N) = N
G∑

j=1

αjM(ξj , nj) = N
G∑

j=1

αjnj

sj∑
i=1

wj
iM(tji ), (6)

where

M(tji ) = E

{
−
∂2`(ψ|yj

i )
∂ψ∂ψT

}
is the elementary FIM for the observation made at time instant tji and

`(ψ|yj
i ) = log

∫
Θ
g(yj

i |θ)h(θ;ψ) dθ.

Since for nonlinear response models, in general, the integral above is analytically in-

tractable, in order to evaluate the FIM some approximation procedures are required. In

the statistics literature there exist a variety of methods such as numerical integration or

stochastic approximation. In the special case where h and f are normal density functions

the linearisation of the model around the expected value of random-effect is most com-

monly used (Jones and Wang, 1999; Retout et al., 2001, 2002; Retout and Mentré, 2003)

as it leads to a relatively simple closed form of the FIM.

5 Problem formulation

The design problem we are interested in is to optimize a functional Ψ operating on M, a

set of FIMs defined in (6),

Ψ : M−→ R.

We seek a FIM for which Ψ attains minimum, hence we can state our design problem as

an optimization one:

Ψ[M(ζ,N)] −→ min . (7)

In other words we look for a design ζ? which gives the optimum FIM for some a priori

chosen values of the population parameters.

Some of the most common forms of Ψ used in the applications are (Walter and Pron-

zato, 1997; Fedorov and Hackl, 1997):

• D-optimality criterion:

Ψ(M) = −det[M(ζ,N)]], (8)
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• A-optimality criterion:

Ψ(M) = trace[M(ζ,N)−1], (9)

• sensitivity criterion:

Ψ(M) = − trace[M(ζ,N)]. (10)

Further, we shall make the following assumptions:

(A1) T is compact,

(A2) M(t) is continuous on T ,

(A3) Ψ is convex,

(A4) If M1 ≤M2, then Ψ(M1) ≥ Ψ(M2).

The optimization problem (7) requires some additional constraints to have a bounded

solution. This is due to the assumption of independent observations. Every new mea-

surement carries some amount of new information and if the number of measurements is

unlimited, the expected solution to the problem is unbounded. Here, we constrain the

total number of observations to be not greater than N0:

N

G∑
j=1

αjnj ≤ N0. (11)

In general, we introduce a nonnegative cost function c(ξj , nj), to bound the total cost, C0,

of gathering data:

N
G∑

j=1

αjc(ξj , nj) ≤ C0. (12)

If the number of all individuals in population is not predetermined a priori and has

to be estimated, it is convenient to relax the restriction of N being a positive integer and

allow it to take any positive real value. Then, we can formulate the following useful result:

Proposition 1. Let the assumption (A4) hold, then the optimal solution (ζ?, N?) satisfies

(12) on the boundary, i.e., the inequality becomes an equality at (ζ?, N?).

Proof. First, note that since M(t) is, by its definition, a nonnegative definite matrix, then

for any ζ and positive N matrix M(ζ,N) being a sum of nonnegative definite matrices is

also nonnegative definite matrix.

Further, let us assume that the optimal solution N? and ζ? = {(ξ?
j , n

?
j , α

?
j )}G

j=1 sat-

isfies (12) strictly, i.e N?
∑G

j=1 α
?
jc(ξ

?
j , n

?
j ) < C0. Then, there exists λ = N

N? > 1 such
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that M(ζ?, N) = λM(ζ?, N?) and N
∑G

j=1 α
?
jc(ξ

?
j , n

?
j ) = C0. But then, according to the

monotonicity of Ψ (A4) we have

Ψ[M(ζ?, N)] = Ψ[λM(ζ?, N?)] = Ψ[M(ζ?, N?)+(λ−1)M(ζ?, N?)] ≤ Ψ[M(ζ?, N?)]. (13)

Hence, the pair (ζ?, N?) cannot be optimal solution. The obtained contradiction finishes

the proof. �

Remark 1. Although the property established in Proposition 1 is rather easy to show, it is

not obvious, since the constraint (12) is not convex with respect to the set of parameters

N,αj and nj . Its significance, however, cannot be underestimated. It allows to restate

the problem as a convex optimization one, what will be shown in the following.

Most of common criteria are homogeneous, so in order to obtain the independence of

the solution on the total cost of experiment (i.e. obtain the solution in terms of optimal

proportions of the cost or numbers of repeated observations) we introduce, without any

loss of generality, the so-called average per total cost (normalized) FIM

M(υ) =
N

C0

G∑
j=1

αjc(ξj , nj)
sj∑

i=1

wj
iM(tji ) =

G∑
j=1

βjM(ξj), (14)

where

βj =
N

C0
αjc(ξj , nj) ; M(ξj) =

sj∑
i=1

wj
iM(tji )

and

υ =

 ξ1 . . . ξG

β1 . . . βG

; βj ∈ (0, 1],
G∑

j=1

βj = 1

 (15)

Due to Proposition 1, instead of solving the problem of minimizing Ψ(M(ζ,N)) sub-

ject to (12) we can equivalently solve the problem of minimization of Ψ(υ) subject to∑G
j=1 βj = 1. This significantly simplifies the very complex procedure of finding an opti-

mum population design, what will be shown in the following.

6 Characterizations of the optimal designs

In this section we study properties of the information matrices and optimal designs for

mixed non-linear models considered in this paper.

At this point it is convenient to further generalize the considered designs to the ab-

solutely continuous Lebesgue measures satisfying∫
Ξ
υ(dξ) = 1. (16)
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Then we have

M(υ) =
∫

Ξ
M(ξ)υ(dξ) (17)

Let Υ be a set of admissible designs defined by (15) with the normalization condition (16).

Further, we shall make the additional assumptions:

(A5) There exists a finite real value a such that
{
υ : Ψ[M(υ)] ≤ a <∞

}
= Υa 6= ∅,

(A6) For any υ ∈ Υa and ῡ ∈ Υ, functional Ψ is Fréchet differentiable at M(υ) in direction

of M(ῡ).

First, we prove some properties of the FIM given by (17):

Lemma 2. For any υ ∈ Υ, the matrix M(υ) is symmetric and non-negative definite.

Proof. Since matrix M(t) by definition is symmetric and nonnegative definite, then the

M(υ) being an integral of a sum of nonnegative definite matrices with nonnegative weights

is also a nonnegative matrix. �

Lemma 3. Let M(Ξ) denote a set of all admissible information matrices for the designs

in Υ, i.e.,

M(Ξ) =
{
M(υ) : υ ∈ Υ

}
. (18)

The set M(Ξ) is compact and convex.

Proof. See Appendix A.1. �

Now we are able to further characterize the optimal designs.

Theorem 4. Suppose that Assumptions (A1)–(A6) hold. Then an optimal design υ? exists

and it consists of no more than p̃(p̃ + 1)/2 support points. Moreover, the set of optimal

designs is convex.

Proof. See the Appendix A.2. �

Analytical determination of optimal designs is only possible in very simple cases and

in practical problems some iterative design procedure are usually required. Then the

Equivalence Theorem we present next, first proved by Kiefer and Wolfowitz (1960) for

linear models, can be used to check optimality of numerically obtained designs.
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In order to establish a form of the general equivalence theorem for the population

design we introduce the so called population sensitivity function ψP , which exists due to

the assumption (A6)

ψP (ξ, υ) = ςP (υ)− φP (ξ, υ), (19)

ςP (υ) = − trace
[ ◦
Ψ[M(υ)]M(υ)

]
, (20)

φP (ξ, υ) = − trace
[ ◦
Ψ[M(υ)]M(v)

]
, (21)

where
◦
Ψ[M(υ)] =

∂Ψ(M)
∂M

∣∣∣∣
M=M(v)

. (22)

Theorem 5 (Generalized Equivalence Theorem for population design). Suppose that As-

sumptions (A1)–(A6) hold. The following conditions are equivalent:

(i) the design υ? minimizes Ψ[M(υ)],

(ii) the design υ? minimizes max
ξ∈Ξ

φP (ξ, υ)− ςP (υ),

(iii) max
ξ∈Ξ

φP (ξ, υ?) = ςP (υ?)

All the designs which satisfy (i)–(iii) and their convex combinations have the same infor-

mation matrices equal to M(υ?), provided that the criterion Ψ[ · ] is strictly convex.

Proof. See Appendix A.3. �

The properties of optimum designs v? were derived assuming only the independence

of observations among different groups. Therefore, direct application of Theorem (5) to

build an efficient algorithm calculating such optimal designs is not straightforward and,

in fact, there is lack of such procedures in the related literature.

However, taking advantage of the independence of the observations on the individual

level, it is possible to strengthen this result. First, observe that the average FIM (14) may

be rewritten in the form

M(υ) =
G∑

j=1

sj∑
i=1

N

C0
αjc(ξj , nj)w

j
iM(tji ) =

G∑
j=1

sj∑
i=1

qj
iM(tji ) (23)

where

qj
i =

N

C0
αjc(ξj , nj)w

j
i = βjw

j
i ;

G∑
j=1

sj∑
i=1

qj
i = 1.
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Different groups do not have to have all support points different, that is, some points tji

may be the same for different j’s. Consequently, it is sensible to reformulate the problem

so as to operate on the locations t1, . . . , ts (relabelled different time instants) in lieu of

tji ’s. Here, we introduce weights q1, . . . , qs which are the sums of qj
i ’s for the repeated time

instants. This allows us to rewrite (23) as

M(υ) =
s∑

k=1

qkM(tk) = M(ω), (24)

where

ω =

 t1 . . . ts

q1 . . . qs
;

s∑
k=1

qk = 1

 . (25)

Such reformulation makes it possible to solve the problem of finding the two level hierar-

chical optimal population design in terms of finding the equivalent one level design. Note,

that ω ∈ Ξ. We call it a global design.

The information about groups is included in qj
i and so in qk. This information is

later recovered after an optimum design ω has been found. Also, such formulation of the

population design significantly reduced the problem of dimensionality.

For every υ ∈ Υ there exists such ω ∈ Ξ that M(υ) = M(ω) and we have the analogous

properties of those designs, in particular we have the following corollary, which can be

proven in the same way as Theorem 4.

Corollary 6. Suppose that Assumptions (A1)–(A6) hold. Then an optimal individual

design ω? exists and it consists of no more than p̃(p̃+ 1)/2 support points. Moreover, the

set of individual optimal designs is convex.

Furthermore, we introduce, by analogy to (19)–(22), the sensitivity function ψI for the

global design,

ψI(t, ω) = ςI(ω)− φI(t, ω), (26)

ςI(ω) = − trace
[ ◦
Ψ[M(ω)]M(ω)

]
, (27)

φI(t, ω) = − trace
[ ◦
Ψ[M(ω)]M(t)

]
, (28)

where
◦
Ψ[M(ω)] =

∂Ψ(M)
∂M

∣∣∣∣
M=M(ω)

. (29)

and we restate the Generalized Equivalence Theorem as follows.
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Corollary 7 (Generalized Equivalence Theorem for global design). The following condi-

tions are equivalent:

(i) the design ω? minimizes Ψ[M(ω)],

(ii) the design ω? minimizes max
ω∈Υ

φI(t, ω)− ςI(ω),

(iii) max
ω∈Υ

φI(t, ω?) = ςI(ω?)

All the designs which satisfy (i)–(iii) and their convex combinations have the same infor-

mation matrices equal to M(ω?), provided that the criterion Ψ[ · ] is strictly convex.

This theorem makes it possible to solve the problem of determination of optimal pop-

ulation design through solving the conventional problem of approximate non hierarchical

design. It allows to apply existing numerical procedures and also leads to other interesting

features of optimal solutions what constitutes the subject of the next section.

7 Numerical algorithm

In addition to the minimax properties of optimal designs, the theorems of previous section

give a powerful tool for checking the optimality of intuitively sensible designs or of those

obtained numerically. We need efficient numerical procedures to construct Ψ-optimum

design measures. Substantial difficulty in determining the population designs arises from

the fact that they are not unique. Indeed, the criterion Ψ is most often strictly convex on

M(Ξ), and this guarantees that the optimal FIM is unique, but this does not necessarily

mean that (ζ,N) 7→ Ψ[M(ζ,N)] is strictly convex in (ζ,N).

Hence, there is no guarantee that the optimum population design is unique. Multiple

global solutions (ζ?, N?) may yield the same minimizing value of M(ζ,N).

Furthermore, there may be multiple local minima to Ψ( · ) which highly interferes with

the optimization process. In fact there is lack of efficient numerical tools for determining

population designs.

Here we propose a new method of finding optimum population design based on the

reformulation of the optimization problem presented in the previous section.

Instead of solving the original problem of minimizing Ψ(M(ζ,N)) subject to (12) we

first solve the equivalent problem of minimization of Ψ(M(ω)) subject to
∑s

k=1 qk = 1,

which is far more simple. But, the solution to the latter requires a method to transform

the optimal ω? into the original population design pair (ζ?, N?).
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The determination of final solution can be achieved in three steps:

Step 1. Solve the optimization problem:

ω? = arg min
ω∈Ξ

Ψ(M(ω)). (30)

Step 2. Transform ω? into an equivalent design υ? ∈ Υ, which satisfies

υ? = arg min
υ∈Υ

Ψ(M(υ)). (31)

Step 3. Transform υ? into an equivalent design pair (ζ?, N?).

After solving the minimization problem in Step 1 we have

ω? =

 t?1 . . . t?s

q?
1 . . . q?

s

;
s∑

k=1

q?
k = 1

 , (32)

where q?
k > 0, k = 1, . . . , s. Then, we have to retrieve the components of υ?, i.e

{(ξ?
j , β

?
j )}j=1,...,G or {(tj?i , w

j?
i , β

?
j )}j=1,...,G; i=1,...,sj . Here we allow the weights wj

i ’s take

the zero values. Then each individual design has the same form

ξ?
j =

 t?1 . . . t?s

wj?
1 . . . wj?

s

;
s∑

k=1

wj?
k = 1

 ,

and, technically, the problem of determining the design υ? simplifies to the determination

of the weights wj?
i and β?

j . This can be achieved solving the following system of equations:
βjw

j
i − qj

i = 0, i = 1, . . . , s, j = 1, . . . , G (sG nonlinear equations, see (23)∑s
i=1w

j
i = 1, j = 1, . . . , G (G linear equations)∑G

j=1 q
j
i = q?

i , j = 1, . . . , s (s linear equations)

(33)

It is clear, that this system of sG+s+G equations with G+2sG variables is unspecified if

the number of groups G > 1. There are s(G−1) more variables than equations. Although

the first sG equations are nonlinear, it is easy to show that the solution with nonnega-

tive values of all variables always exists. Treating s(G − 1) variables qj
i as nonnegative

parameters (satisfying the condition that for any j, j = 1, . . . , G, there exists at least one

positive value qj
i ) the solution becomes simple: β?

j =
∑s

i=1 q
j
i , j = 1, . . . , G,

wj?
i = qj

i /β
?
j , i = 1, . . . , s, j = 1, . . . , G,

(34)

These values are further used in Step 3.
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The optimal values of the population parameters α?
j , n

?
j , j = 1, . . . , G and N? can be

retrieved solving the system of equations:
N

C0
αjc(ξ?

j , nj) = β?
j , j = 1, . . . , G (G nonlinear equations)∑G

i=1 αj = 1, (1 linear equation)
(35)

Here again, we have unspecified system (since we have G+1 equations and 2G+1 variables)

of nonlinear equations which can be easily solved numerically, with accuracy to the G

parameters. It is clear that such formulation of the optimal population design problem

leads to not unique solutions. This, however, does not worry us. It gives room for tailoring

optimum designs to practical requirements and makes it sensible to use some additional

information an experimenter may have. It is a great advantage of the method as it gives the

experimenter some freedom to impose some additional constraints on the design variables.

Furthermore, the solution depends on the cost function c( · , · ). For example, if the

numbers of observations per individual in each group, nj , j = 1, . . . , G, are known or can

be chosen arbitrarily, then the optimal solution exists and takes the following form

N? = C0

G∑
j=1

β?
j

c(ξ?
j , nj)

, α?
j =

C0

N?

β?
j

c(ξ?
j , nj)

, j = 1, . . . , G. (36)

Two special forms of population designs are given in the following result:

Theorem 8. Assume, that the cost function c(ξj , nj) takes positive values for any positive

nj and nonempty design ξj. If ω? is a solution to (30) given by (32), then:

(i) the design ζ? =
{

ω?

1

}
and N? = C0

c(ω?,n1) for any n1 > 0 minimizes Ψ[M(ζ?, N?)],

(ii) the design ζ? =
{

ω?
1 ... ω?

s

q?
1 ... q?

s

}
and N? = C0

∑s
j=1

q?
j

c(ω?
j ,nj)

, where ω?
j =

{
t?j
1

}
for any

nj > 0, j = 1, . . . , s minimizes Ψ[M(ζ?, N?)].

Proof. To prove the assertions above it is sufficient to show that the information matrices

M(ζ?, N?) and M(ω?) are the same, and this is a matter of simple calculations. Indeed:

(i) In this case from (14) we have

M(ζ?, N?) =
C0

c(ω?,n1)

C0

s∑
i=1

c(ω?, n1)q?
iM(t?i ) =

s∑
i=1

q?
iM(t?i ) = M(ω?)

what proves the first part of the claim.
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(ii) Here, taking from (34) that β?
j = q?

j , j = 1, . . . , s and applying (36) we obtain

α?
j =

C0

N?

β?
j

c(ξ?
j , nj)

, j = 1, . . . , s

and

M(ζ?, N?) =
C0

∑s
j=1

q?
j

c(ω?
j ,nj)

C0

s∑
j=1

C0

C0
∑s

j=1

q?
j

c(ω?
j ,nj)

q?
j

c(ω?
j , nj)

c(ω?
j , nj)M(t?j )

=
s∑

j=1

q?
jM(t?j ) = M(ω?)

what finishes the proof. �

The result above indicates that when the observations are independent there exist

population designs of very simple forms: the identical population design (in the sense of

the same observation schedule for every individual) and the one-point population designs

(with only one observation time instant for every individual).

Despite the complex formulation of the problem, the approximations of the optimal

population designs are simple. This fact, seemed to be unrevealed in the related literature.

With such a general definition of the population design as in this paper, it is clear

that the very difficult optimization problem related to direct determination of the popu-

lation design can be solved efficiently through the proper reformulation. Then, the most

cumbersome subtask of the whole procedure becomes the optimization problem in Step 1.

But, this can be considered as a classical experimental design problem for dynamic sys-

tems, which has been thoroughly studied for many years and there are many efficient

algorithms for this purpose. For reviews, reader can be referred to (Fedorov and Hackl,

1997; Walter and Pronzato, 1997; Patan, 2004; Uciński, 2005; Atkinson and Donev, 1992;

Pázman, 1986; Rafaj lowicz, 1996). In this work we analyze various optimality criteria and

it is convenient to use the Semi-Definite Programming algorithms based on the convex

optimization theory, (Boyd and Vandenberghe, 2004).

8 Examples

8.1 Toxicokinetic study

As the first example we consider the toxicokinetic studies performed on the rodents

(Mentré et al., 1997). After a single dose of a drug, the model is:

y =
D

V
e−

CL
V

teε, (37)
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where CL is the oral clearence and V is the apparent volume for the distribution, D is

a dose and ε is a zero-mean uncorrelated Gaussian measurement noise with a constant

variance. Under the log-transformation the model becomes:

z = log y = logD − θ2 − eθ1−θ2t+ ε

where θ = (θ1, θ2)T = (logCL, log V )T are the parameters which are assumed to be

independent and normally distributed. The prior values of the population parameters are:

ψ0 =
(
E(logCL), E(log V ), var(logCL), var(log V ), cov(logCL, log V )

)T

= (−0.476, 1.937, 0.073, 0.187, 0.000)T and var(ε) = 0.108.

We seek a population design to estimate the population parameters as precisely as possible.

In our example the D-optimality criterion was applied.

We consider the design space T = [0.5, 24] scaled in hours after administration of the

drug. Three cost functions were studied, imposing the total cost C0 = 60, namely:

• c1(ξ, n) = n, restriction of the number of measurements n in the design ξ,

• c2(ξ, n) = n+ 2, penalization of the additional individual in the group,

• c3(ξ, n) = n(1 + max supp ξ − min supp ξ), additional term for the duration of the

experiment.

In Step 1 of the procedure described in the previous section we obtain the optimal

D-optimal design

ω? =

0.5000 9.0300 24.0000

0.3340 0.3319 0.3341


with det(M(ω?)) = 1.6093 · 105. The variance of the model prediction function is shown

in Fig. ??. It entirely determines the locations of observations.

Then, according to the required structure of the experiment it is possible to find

suitable population design. For example, if we assume that the number of measurements

for each individual design is fixed a priori, e.g. n = 6 then the identical population design

is ζ? = {(ω?, 1)} with the population numbers N?
1 = 10, N?

2 = 7.5, N?
3 = 0.4082 for the

cost functions c1, c2 and c3, respectively, is D-optimal:

ζ =


0.5000 9.0300 24.0000

0.3340 0.3319 0.3341

 , 6


1

 ; N?.
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Figure 1: Variance of the model response prediction for the example 8.1.

On the other hand one can be interested in possibly simplest in application one-point

individual designs (sparse sampling). Then, the population sizes are N?
1 = 10,N?

2 = 7.5,

N?
3 = 10, respectively:

ζ =


(
{ 0.5000

1 , } , 6
) (

{ 9.0300
1 , } , 6

) (
{ 24.0000

1 , } , 6
)

0.3340 0.3319 0.3341

 ; N?.

It becomes clear that for some cost functions we may obtain unreasonable values of pop-

ulation parameters, as the case of N?
3 for identical design. But then, due to the freedom

in choosing the parameters when solving Steps 2 and 3 in our procedure it is possible to

appropriately adjust their values.

These are two “extreme” population designs, but there is a class of equivalent solutions.

For instance, arbitrarily assigning values to the weights qj
i in three groups in step 2 of the

procedure we obtain the following population design

ζ? =


(
{ 0.5 9.03

0.5226 0.4774 } , 3
) (

{ 0.5 9.03 24.0
0.1700 0.4440 0.3861 } , 3

) (
{ 0.5 24.0

0.2842 0.7158 } , 3
)

0.3743 0.3451 0.2806


with population size N? = 20 which yield to be optimal.
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Figure 2: Absorption model for the example 8.2.

8.2 Pharmacokinetic study

The second example is based on (Jonsson et al., 1996) where using population analysis,

sparsely sampled Phase 3 clinical data are utilized to determine the pharmacokinetic

characteristics of the target population. The typical open one-compartment model with

first-order drug absorption is used:

y =
Dka

V (ke − ke)
(
e−ket − e−kat

)
+ ε, (38)

where ka and ke are the first-order absorption and elimination rates, respectively, V is the

apparent volume of distribution, D is a dose and ε is an additive zero-mean uncorrelated

Gaussian measurement noise with a constant variance. In this example we assume that

the regression parameters θ = (θ1, θ2, θ3)T = (V, ka, ke)T are independent and normally

distributed. The prior values of the population parameters are:

ψ0 =
(
E(θ), var(θ)

)T

= (100, 2.08, 0.1155, 0.3, 0.3, 0.03)T and var(ε) = 0.15.

The response shown in Fig. 2 represents the fast absorption of the drug and slower decay of

its concentration. As in the previous example we are looking for an D-optimum population

design to estimate the population parameters as precisely as possible.

16



0 2 4 6 8 10 12
3.5

4

4.5

5

5.5

6

6.5

time

va
ria

nc
e

Figure 3: Variance of the model response prediction for the example 8.2.

We consider that the concentration of the drug can be measured within the design space

T = [0.25, 12] scaled in hours after administration. In this example only cost function

c1(ξ, n) = n is taken into account and the total number of measurements is assumed to be

C0 = 900.

In this case the global design from the Step 1 of algorithm is:

ω? =

 0.45 1.86 9.90

0.3334 0.3334 0.3333


and the corresponding variance of the model prediction function is shown in Fig. 3, where

the support points are indicated by its maxima.

Within this example let us explore further the properties of the set of population

designs and freedom of constructing the suitable structures of the experiment:

(1) Identical design (one group design), G = 1, n1 = 9,

(a) forcing in Step 2 the matrix Q = [qj
i ] to be the column vector we have:

Q? = [qj
i

?
] =

[
0.3333 0.3334 0.3333

]T
=⇒ β? =

[
1
]
, W ? = [wj

i

?
] = Q?

(b) then, from Step 3: α? = 1, N? = 100
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with final population design:

ζ =


 0.45 1.86 9.90

0.3333 0.3334 0.3333

 , 9


1

 ; N? = 100.

In this case final population design is also exact design, so for each patient we

have to conduct exactly three measurements at each time instant.

(2) one-point population design, G = 3, n1 = n2 = n3 = 10

(a) this time in Step 2 matrix Q should be diagonal:

Q? = [qj
i

?
] =


0.3333 0.0 0.0

0.0 0.3334 0.0

0.0 0.0 0.3333

 =⇒ β? =
[
0.3333 0.3334 0.3333

]
,W ? = I

(b) from Step 3:

α? = β? =
[
0.3333 0.3334 0.3333

]
, N? = 90

and final population design is:

ζ? =


(
{ 0.45

1 } , 10
) (

{ 1.86
1 } , 10

) (
{ 9.90

1 } , 10
)

0.3333 0.3334 0.3333

 ; N? = 90

which again appears to be exact one (since each group consist of 30 patients)

and rounding is unnecessary.

(3) unstructured design, G = 3, n1 = n2 = n3 = 10

(a) in Step 2 inside matrix Q the weights of global design are randomly split into

required numer of groups, e.g.

Q? = [qj
i

?
] =


0.2298 0 0.1710

0.1036 0.2089 0.0855

0 0.1245 0.0768

 ,
then

β? =
[
0.4008 0.3979 0.2013

]
, W ? =


0.5733 0.2603 0

0 0.5248 0.6184

0.4267 0.2149 0.3816


18



(b) from Step 3:

α? = β? =
[
0.4008 0.3979 0.2013

]
, N? = 90.

and final population design:

ζ? =

{�
{ 0.45 9.90

0.5733 0.4267 } , 10
� �

{ 0.45 1.86 9.90
0.2603 0.5248 0.2149 } , 10

� �
{ 1.86 9.90

0.6184 0.3816 } , 10
�

0.4008 0.3979 0.2013

}
.

For this setting, the population design cannot be realized in practice, therefore

it has to be rounded in order to have integer numbers of patients in each group

and integer numbers of observations allocated to each time instant. As an effect

of such procedure we obtain the following exact design:

ζ? =

{�
{ 0.45 9.90

0.6 0.4 } , 10
� �

{ 0.45 1.86 9.90
0.3 0.5 0.2 } , 10

� �
{ 1.86 9.90

0.6 0.4 } , 10
�

0.4 0.4 0.2

}
which efficiency is: (

detM(ζ,N)
detM(ζ?, N?)

)1/6

= 0.9984

As we can see the relatively large number of total measurements ensures small

decrease in the efficiency caused by the rounding of design. However, the free-

dom of constructing the structure of required optimal design allows us to reduce

the influence of rounding on efficiency of final design.

(4) unstructured design, G = 3, n1 = n2 = n3 = 10

(a) this time in Step 2 we can force the elements of matrix W to be appropriate

rationals, e.g.

W ? = [wj
i

?
] =


0 0 3

10

0 2
5

7
10

1 3
5 0

 ,
then

Q? =


0 0 0.3333

0 0.1333 0.2000

0.1000 0.2333 0

 ,
β? =

[
0.3333 0.3334 0.3333

]
(b) from Step 3:

α? = β? =
[
0.3333 0.3334 0.3333

]
, N? = 90.

19



and final population design

ζ? =

{�
{ 9.90

1 } , 10
� �n 1.86 9.90

2
5

3
5

o
, 10

� �n 0.45 1.86
3
10

7
10

o
, 10

�

0.3333 0.3334 0.3333

}
is almost exact design with efficiency after rounding all its global weights to 1

3(
detM(ζ,N)

detM(ζ?, N?)

)1/6

≈ 1.0000

In such a way, the dependence of the efficiency of final population design on

the rounding can be minimized.

A Proofs of some properties of optimal population designs

A.1 Proof of Lemma 3

First, note that the set Ξ is compact, what is a direct consequence of assumption (A1),

since all the elements of any design ξ ∈ Ξ are bounded and the set Ξ is closed. Moreover,

from the (A2) comes that the M(ξ) as a sum of continuous mappings is also continuous

in Ξ.

Then, the set S(Ξ) = {M(ξ) : ξ ∈ Ξ) is compact, being the image of the compact

set Ξ under the continuous mapping M(ξ), from Ξ into the space of all q × q matrices.

M(Ξ) form the convex hull of S(Ξ). Because in the Euclidean space the convex hull of a

compact set is compact (Rockafellar, 1970) and the spaces Rq×q and Rq2
are isomorphic,

then the M(Ξ) is compact.

To prove the convexity, let us introduce the design

υ = (1− λ)υ1 + λυ2, (39)

where υ1, υ2 ∈ Υ and λ ∈ [0, 1]. Now, constructing the convex combination of the matrices

corresponding to υ1, υ2 we have

(1− λ)M(υ1) + λM(υ2) = (1− λ)
∫

Ξ
M(ξ)υ1(dξ) + (1− λ)

∫
Ξ
M(ξ)υ2(dξ)

=
∫

Ξ
M(ξ)[(1− λ)υ1(dξ) + λυ2(dξ)] = M(υ)

(40)

According to (18), M(υ) ∈ M(Ξ) which proves the second part of the lemma.

A.2 Proof of Theorem 4

The existence of an optimal design υ? follows from the compactness of M(Ξ) (see Lem. 3)

and the existence of designs with finite measure Ψ, cf. (A5).
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The set M(Ξ) is the convex hull of the set S(Ξ) = {M(ξ) : ξ ∈ Ξ}. The dimension

of this set is d = q(q + 1)/2 due to the symmetry of the matrix M(ξ) (it is sufficient to

use only elements lying over and on the main diagonal). Applying the Carathedéodory

theorem (Fedorov, 1972; Pukelsheim, 1993), we may represent any M0 ∈ M(Ξ) as a convex

combination of no more than d0 points from S(Ξ):

M0 =
d0∑
i=1

wiM(ξi),
d0∑
i=1

wi = 1 (41)

where d0 ≤ d+ 1 in a general case and d0 ≤ d for boundary points. Choosing

ξ =

 ξ1 · · · ξd0

w1 · · · wd0

 ,

we have M0 = M(ξ). From the monotonicity of the criterion Ψ in (A4) it follows that

M(υ?) has to be a boundary point of M(Ξ). Indeed, if we assume that M(υ?) is an interior

point of M(Ξ) then there exists λ > 1 such that λM(υ?) ∈ M(Ξ). Consequently, there

exist some design υ, whose information matrix is given by λM(υ?), but then we have

Ψ[M(υ?)] > Ψ[M(λυ?)] = Ψ[M(υ)]

and this contradicts the optimality of the design υ?. Thus, if M(υ?) is a boundary point

of M(Ξ), then it have no more than d support points.

For the last part of the assertion, assume that υ?
1 and υ?

2 are optimal and υ? = λυ?
1 +

(1− λ)υ?
2. From the convexity of Ψ( · ) (A3) and the set M(Ξ), we have

Ψ[M(υ?)] = Ψ[λM(υ?
1) + (1− λ)M(υ?

2)] ≤ λΨ[M(υ?
1)] + (1− λ)Ψ[M(υ?

2)]

= λmin
υ∈Υ

Ψ[M(υ)] + (1− λ) min
υ∈Υ

Ψ[M(υ)] = min
υ∈Υ

Ψ[M(υ)],

hence υ? is an optimal design.

A.3 Proof of Theorem 5

In order to prove equivalence theorem, we have to derive some auxiliary results.

Lemma 9. For any design υ ∈ Υ, we have

(i)
∫
Ξ

φP (ξ, υ)υ(dξ) = ςP (υ), and

(ii) max
ξ∈Ξ

φP (ξ, υ) ≥ ςP (υ).
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Proof. Taking into account (21), we obtain∫
Ξ
φP (x, υ)υ(dξ) = −

∫
Ξ

trace
[ ◦
Ψ[M(υ)]M(ξ)

]
υ(dξ)

= − trace
[
◦
Ψ[M(υ)]

∫
Ξ
M(ξ)υ(dξ)

]
= − trace

[ ◦
Ψ[M(υ)]M(υ)

]
= ςP (υ)

(42)

This establishes (i). Then (ii) is a direct consequence of (42). �

Lemma 10. If υ ∈ Υq, ῡ ∈ Υ and υα = (1− α)υ + αῡ, then

∂Ψ[M(υα)]
∂α

∣∣∣∣
α=0+

= ςP (υ)−
∫

Ξ
φP (ξ, υ) ῡ(dξ). (43)

Proof. We have

∂Ψ[M(υα)]
∂α

∣∣∣∣
α=0+

= trace
[ ◦
Ψ[M(υ)]

∫
Ξ
M(ξ) ῡ(dξ)

]
−trace

[ ◦
Ψ[M(υ)]M(υ))

]
=

∫
Ξ

{
trace

[ ◦
Ψ[M(υ)]M(ξ)

]}
ῡ(dx) + ςP (υ)

= ςP (υ)−
∫

Ξ
φP (ξ, υ) ῡ(dx).

(44)

�

Now, we are capable of deriving our main result:

First, define υα = (1− α)υ? + αυ1, where υ? ∈ υq, and υ1 ∈ Υ.

(i) ⇒ (ii) If the optimal design υ? minimizes Ψ(M(υ)), then Ψ(M(υ?)) ≤ Ψ[M(υα)] for

any υ1 ∈ Υ, therefore

∂Ψ[M(υα)]
∂α

∣∣∣∣
α=0+

≥ 0, ∀υ1 ∈ Υ. (45)

In particular substituting, υ = υ? and ῡ = υξ =
{

ξ
1

}
into (43), we get

∂Ψ[M(υα)]
∂α

∣∣∣∣
α=0+

= ςP (υ?)− φP (ξ, υ?) ≥ 0, ∀ξ ∈ Ξ. (46)

In connection with the second part of Lemma 9 this establishes (ii).

(ii) ⇒ (iii) Lemma 9 implies that maxξ∈Ξ φP (ξ, υ) − ςP (υ) is bounded from below by

zero. From (46) it follows that this zero bound is achieved at any design minimizing

Ψ[M(υ)] (the existence of such a design is guaranteed by Theorem 4). This means

that if υ? is a design characterized in (ii), then necessarily maxx∈X φP (ξ, υ?) −

ςP (υ?) = 0, which is exactly (iii).
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(iii) ⇒ (i) Let υ? ∈ Υ satisfy maxξ∈Ξ φP (ξ, υ?) = ςP (υ?). Setting υα = (1 − α)υ? + αῡ

for ῡ ∈ Υ, from Lemma 10 we obtain

∂Ψ[M(υα)]
∂α

∣∣∣∣
α=0+

= ςP (υ?)−
∫

Ξ
φP (ξ, υ?) ῡ(dξ)≥ ςP (υ?)−max

ξ∈Ξ
φP (ξ, υ?)=0, (47)

which implies the optimality of υ?.

The unicity of the information matrix for each optimal design follows from the convexity

of the set M(Ξ) and the strict convexity of the function Ψ : M 7→ Ψ[M ] (from classical

optimization theory it is known that there exists at most one global minimum of a strictly

convex function over a convex set).
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