PRZYKŁADOWY PROJEKT PT.:

IMPLEMENTACJA MODELU PLANOWANIA PRODUKCJI I SPRZEDAŻY W MS EXCEL

1. CEL PROJEKTU.

Celem projektu jest implementacja modelu planowania produkcji i sprzedaży w MS Excel oraz analiza możliwościami wykorzystania opracowanego narzędzia we wspomaganiu decyzyjnym w przedsiębiorstwie produkcyjnym.

2. WPROWADZENIE.

Proces podejmowania decyzji odgrywa kluczową rolę w kierowaniu i zarządzaniu przedsiębiorstwem. Podstawą prawidłowo podjętych decyzji są z jednej strony informacje opisujące przedsiębiorstwo i jego otoczenie, a z drugiej wiedza ekonomiczna dotycząca narzędzi i metod efektywnego zarządzania.

Program produkcji jest asortymentowym zestawieniem, w sensie strategicznym, wytwarzanych w przedsiębiorstwie dóbr i usług (oferta przedsiębiorstwa)[1]. W sensie operacyjnym jest to zestawienie ilości oferowanych świadczeń w określonym okresie. **Operacyjny plan produkcji** jest zestawieniem asortymentu wytwarzanych produktów oraz świadczonych usług w danym okresie. Operacyjny plan produkcji różni się od operacyjnego planu sprzedaży jedynie aspektem uwzględnienia magazynu na początek okresu planowania: dyspozycyjne stany magazynowe mogą należeć do planu sprzedaży, nie mogą jednak stanowić elementu planu produkcji. Z kolei wzrost zapasów magazynowych w planowanym okresie obciąża produkcję; nie należy jednak do planu sprzedaży.

Narzędzia do wspomagania procesów planowania produkcji mają charakter modelowy. Struktura modelu (szczególnie zmienne decyzyjne) w dużym stopniu zależy od **typu procesu produkcyjnego**. W projekcie przyjęto typ produkcji seryjnej. Zadaniem takiego modelu jest określenie najważniejszych zależności pomiędzy planem produkcji i sprzedaży a głównymi wskaźnikami rozszerzonego systemu RoI (ang. *Return on Investment*).

Opracowanie planu produkcji służy ustaleniu programu produkcji i sprzedaży (ilości produkowanego i sprzedawanego asortymentu podstawowego) w zakładanym okresie przy założeniu osiągnięcia planowanego wyniku ekonomicznego. Należy przy tym uwzględnić występujące ograniczenia w obszarze produkcji (zdolności produkcyjne) i zbytu (popyt) oraz uwarunkowania na rynku zaopatrzenia. Ograniczenia produkcyjne, zbytu i zaopatrzenia są w pewnym sensie elastyczne, jednakże wykorzystanie tej elastyczności najczęściej powiązane jest ze zmianą kosztów wytwarzania. Model planu produkcji zależny jest zatem od typu procesu produkcyjnego. W przypadku produkcji seryjnej, która występuje w wielu branżach, zastosowanie może mieć poniżej przedstawiony model.

3. MODEL PLANU PRODUKCJI I SPRZEDAŻY

Model planu produkcji i sprzedaży służy do opracowania średnioterminowego planu oraz oceny wyników działalności przedsiębiorstwa.

3.1 FUNKCJA CELU

Funkcja celu w modelu określa wynik finansowy (ekonomiczny) przedsiębiorstwa w zadanym horyzoncie czasowym. Przyjmuję ona postać następującą:

$$\sum (c_i - k_{vi}) * x_i \ge KS + KK - P + WE_{\min}$$
 (1)

gdzie:

 c_j - jednostkowa cena sprzedaży j-tego wyrobu;

 k_{vj} - jednostkowe koszty zmienne j-tego wyrobu;

 x_j - planowana ilość produkcji i sprzedaży j-tego wyrobu (podstawowa zmienna decyzyjna);

KS - koszty stałe w okresie;

 korekta kosztów na skutek rozbudowy stanów magazynowych, rozszerzenia mocy produkcyjnych, specjalnych wydatków na reklamę, produkcji na magazyn oraz zmian w warunkach zaopatrzenia (wahania cen);

przychody w okresie niezależne od poziomu zatrudnienia (sprzedaż wyrobów z magazynu, których koszty wytworzenia uwzględnione były w okresach poprzednich);

 WE_{min} - minimalny wynik przedsiębiorstwa w okresie (zysk brutto).

Lewa strona nierówności przedstawia sumy marży pokrycia kosztów stałych w okresie, a strona prawa minimalną marżę zgodnie z ustalonym minimalnym wynikiem ekonomicznym (WE_{min}).

3.2 OGRANICZENIA

Ograniczenia produkcyjne:

$$\sum_{i} a_{ij} * x_{j} \le b_{i} + \sum_{k} \Delta_{ik} \qquad ; \qquad i = 1, 2, \dots$$
 (2)

gdzie:

 a_{ij} - czas jednostkowy j-tego wyrobu na i-tym stanowisku;

b_i - normalne zdolności produkcyjne na i-tym stanowisku;

 $\Sigma \Delta_{ik}$ - korekta b_i o sumę rozszerzeń zdolności produkcyjnych, mających wpływ na koszty KK;

Lewa strona nierówności oznacza zapotrzebowanie na zdolności produkcyjne (wynikające z planu produkcji), a strona prawa dostępne zdolności na i-tym stanowisku.

Ograniczenia zaopatrzenia:

$$\sum \alpha_{mj} * x_j \le \beta_m + \sum \delta_{ml}$$
 ; $m = 1, 2, ...$ (3)

gdzie:

 α_{mi} - zapotrzebowanie jednostkowe j-tego wyrobu na m-ty materiał;

 β_m - ilość m-tego materiału zamawiana w okresie w normalnych warunkach;

 δ_{ml} - korekta $β_m$ - suma dodatkowych kosztów zamówień wpływająca na wielkość KK w funkcji celu.

W powyższej zależności, lewa strona oznacza wynikające z planu produkcji zapotrzebowanie na surowce, a strona prawa dostępność surowców dla wszystkich pozycji m.

Ograniczenia zbytu:

$$\max\{0; (x_{jd} - SM_j)\} \le x_j \le \max\{0; (x_{jg} - SM_j)\} \quad ; \quad j=1,2,... \quad (4)$$

gdzie:

 x_{jd} - minimalna ilość wyrobów do sprzedaży, wynikająca z dostępnych zleceń klientów;

 x_{jg} - maksymalna ilość wyrobów do sprzedaży, wynikająca z analiz rynkowych;

 ZM_i - zapas magazynowy w momencie planowania, który ma wpływ na przychody P.

Jak wynika z powyższego, różnica x_{jd} – x_j obarczona jest ryzykiem sprzedaży. W ramach planu produkcji ryzyko to musi być wyrażone ilościowo np. jako funkcja cena / zbyt lub prawdopodobieństwo sprzedaży. Niesprzedana produkcja wpływa na rozbudowę stanów magazynowych, a spowodowane tym koszty na ostateczny wynik przedsiębiorstwa.

· Ograniczenia wtórnych zmiennych decyzyjnych

Do wtórnych zmiennych decyzyjnych zaliczamy:

c - cena sprzedaży netto;

 Δ_{ik} - dopasowanie zdolności produkcyjnych poprzez podjęcie działania k;

 δ_{ml} - wielkość korygująca w procesie zaopatrzenia.

W celu obliczenia maksimum wyniku ekonomicznego przedsiębiorstwa WE, należy dla wtórnych zmiennych decyzyjnych określić dolną i górną granicę.

3.3 DANE WEJŚCIOWE MODELU

Długość okresu planowania

W analizowanym modelu nie uwzględniono planowania procesu wytwarzania wyrobów. Dlatego też, okres planowania musi być wystarczająco długi, tak aby zredukować ewentualne różnice produkcji w toku na początku i końcu okresu. Z drugiej strony wraz z wydłużaniem się okresu planowania, zwiększa się niedokładność planowania. Za wystarczające uznano przyjęcie terminu planowania jako cztero- lub sześciokrotność średniego okresu realizacji zlecenia klienta.

• Ograniczenia w zbycie

Wielkości x_{jd} i SM_j z równania (4) określane są na podstawie danych zgromadzonych w systemie zarządzania przedsiębiorstwa. Minimalna wielkość sprzedaży x_{ju} wynika z aktualnej, posiadanej ilości zleceń od klientów, a SM_j z dostępnego stanu magazynowego.

Prognoza maksymalnej wielkości sprzedaży x_{jg} , czyli ograniczenie z góry, określone może być na podstawie danych statystycznych z dotychczasowej działalności, lub też wynikać z analizy rynku i badań marketingowych przedsiębiorstwa. Narzędziem wspomagającym może być tu zastosowanie funkcji cena - zbyt (por. [3, s. 56-61]).

• Ograniczenia produkcyjne

Normalne zdolności produkcyjne b_i (2) dla poszczególnych stanowisk produkcyjnych obliczane są w standardowy sposób, na podstawie danych dotyczących tych stanowisk (gniazd) oraz kalendarza zakładowego. Należy przy tym rozpatrywać oddzielnie zdolności produkcyjne maszyn i pracowników oraz określić, które z nich mogą być **wąskim gardłem**. W przypadku konieczności rozszerzenia zdolności produkcyjnych, wąskie gardła mogą się zmieniać, co jest uwzględnione w modelu jako wtórna zmienna decyzyjna Δ_{ik} .

Współczynniki produkcyjne a_{ij} wyliczane są na podstawie ilościowych struktur i-tych produktów (list podzespołów wchodzących w skład wyrobu głównego) oraz marszrut dla podzespołów (obciążeń jednostkowych na i-tych stanowiskach). Współczynnik produkcyjny oznacza czas niezbędny na wyprodukowanie jednej sztuki wyrobu na danym stanowisku.

Dane dla funkcji celu

Występujące w funkcji celu (1) koszty zmienne k_{vj} wyrobu j generowane są jako wynik kalkulacji wstępnej wyrobu. Wielkości P i KS mogą być obliczone z wykorzystaniem zainstalowanego w systemie odpowiedniego modułu rachunku kosztów. Korekta kosztów KK musi być obliczana oddzielnie i obliczenia te realizowane są w ramach opisywanego modelu.

Podsumowując, należy stwierdzić, że dane wykorzystywane w operacyjnym modelu planowania pochodzą praktycznie ze wszystkich obszarów systemu zarządzania przedsiębiorstwem. W małych i średnich firmach kompleksowe rozwiązania informatyczne nie są jednak jeszcze powszechnie stosowane. Dlatego też, w przedsiębiorstwach nie wykorzystuje się w pełni tego typu instrumentów planowania. Zamiar zastosowania planu produkcji jako narzędzia controllingu może być istotnym czynnikiem ekonomicznym decydującym o instalacji kompleksowego zintegrowanego systemu informatycznego.

4. Opis badanego obiektu

4.1 DANE WEJŚCIOWE

Dodatkowe dane zakładowe wykorzystywane w modelu zostały przedstawione poniżej:

- okres planowania: 1 kwartał (13 tygodni);
- dane dotyczące sprzedawanych produktów:

Dane Produkty	Planowane ceny [zł/szt.]	Koszty bezpośrednie k _{vj} [zł/szt.]	Prognoza sprzedaży [szt.]
Produkt 1	1499,00	913,59	400
Produkt 2	895,00	544,85	1 000
Produkt 3	499,00	415,56	200

Dane	Normalne zdolności	Koszty dodatkowe z tytułu
Gniazda prod.	produkcyjne [h]	zwiększenia zatrudnienia [zł/h]
G 1	2 500	6,75
G 2	250	5,00
G 3	4 000	16,50
G 4	7 000	13,00

dane dotyczące zdolności produkcyjnych w okresie planowania:

- planowane koszty stałe i ogólne KS: 1100 000 zł;
- WE_{min}: 200 000 zł.

Współczynniki a_{ij} we wzorze (2) wyznaczono w oparciu o struktury produktów oraz marszruty technologiczne (por. przykład rozszerzony Excela).

4.2 ZAŁOŻENTA

Przy implementacji modelu planu produkcji i sprzedaży przyjęto następujące założenia:

- korekta kosztów KK we wzorze (1) dotyczy tylko kosztów dodatkowych powstających wskutek zaangażowania dodatkowych zdolności produkcyjnych,
- podczas maksymalizacji wyniku przedsiębiorstwa należy pominąć parametr WE_{min} we wzorze (1),
- nie są uwzględniane ograniczenia zaopatrzenia wzór (3),
- występujące we wzorze (4) dyspozycyjne stany magazynowe zdefiniowane są jako różnica początkowych stanów magazynowych oraz stanów bezpieczeństwa;
- nie występuje górna granica zdolności produkcyjnych wzór (2).

W projekcie opracowano narzędzie controllingowe na bazie arkusza kalkulacyjnego MS Excel do optymalizacji programu produkcji (ProgProd1.xls) oraz narzędzie łączące plan produkcji i sprzedaży w jeden **zintegrowany plan produkcji i sprzedaży** (ProgProd2.xls). Narzędzie ProgProd2.xls jest rozwiązaniem będącym rozwinięciem narzędzia ProgProd1.xls.

5. Przykład wykorzystania opracowanego narzędzia

Opracowane narzędzie umożliwia generowanie krótko- i średniookresowych informacji controllingowych wczesnego ostrzegania. W szczególności służy ono do wykrywania **wąskich gardeł** w przedsiębiorstwie. Umożliwia to dostępna w MS Excel funkcja Solver.

Funkcją celu w analizowanym modelu jest relacja $\sum (c_j - k_{vj}) * x_j - KS - KK + P \to \max$ (wynikająca z relacji (1)), a warunkami ograniczającymi relacjami (2) i (3) z wtórną zmienną decyzyjną $\Delta_{ik} = 0$.

Wynikiem optymalizacji jest maksymalny z matematycznego punktu widzenia okresowy wynik przedsiębiorstwa przy wykorzystaniu normalnych zdolności produkcyjnych. Obliczone w ten sposób optymalne wielkości produkcji i zbytu x_{jopt} i ich kombinacja ilościowa najczęściej jest nie do przyjęcia biorąc pod uwagę rynek odbiorców. W związku z tym, oczekiwany wynik przedsiębiorstwa - uwzględniający warunki zewnętrzne – jest gorszy od matematycznego optimum. Pozwala to na określenie wąskich gardeł, które należy uwzględnić na dalszym etapie planowania.

5.1 Analiza wyników optymalizacji

Na podstawie przeprowadzonej analizy wyników optymalizacji ustalono następujące zależności:

- A. Optymalny wynik ekonomiczny w okresie jest większy od wyniku minimalnego;
- B. Optymalny wynik ekonomiczny jest mniejszy od wyniku minimalnego;
- C. Zdolności produkcyjne są rozszerzane poprzez dostępne rezerwy w zależności od typu procesu produkcyjnego;
- D. Maksymalnie dwa ograniczenia produkcyjne wymagają korzystania z rezerw zdolności produkcyjnych;
- E. Więcej niż dwa ograniczenia produkcyjne korzystają z rezerw zdolności produkcyjnych;
- F. Planowana ilość produkowanych i sprzedawanych wyrobów w większości zbliżona jest do górnej granicy;
- G. Planowana ilość produkowanych i sprzedawanych wyrobów tylko dla kilku pozycji zbliżona jest do górnej granicy;
- H. Planowana ilość produkowanych i sprzedawanych wyrobów dla wszystkich pozycji jest znacząco mniejsza od górnych granic.

5.2 REGUŁY WNIOSKOWANIA

Z powyższych stwierdzeń wynikają przykładowe reguły wnioskowania:

Jeżeli występuje stan A, C i F, to

operatywne cele finansowe są osiągane bez problemów ze zdolnościami produkcyjnymi i terminami realizacji, zakładając właściwą prognozę sprzedaży; poprawa wyniku przedsiębiorstwa możliwa jest poprzez podjęcie aktywności w obszarze sprzedaży.

Jeżeli występuje stan A, D i F, to

realizacja operatywnych celów finansowych, poza sprawdzeniem wąskich gardeł w zbycie (łącznie z korektą prognozy sprzedaży), wymaga odpowiedniego sterowania procesem wytwarzania (por. [3, s. 40-45]).

Jeżeli występuje stan A, E i F, to

osiągnięcie celów finansowych wymaga rozwiązania problemów wąskich gardeł w obszarze sprzedaży (sprawdzenie prognozy) oraz wyrównania zdolności produkcyjnych przy odpowiednim sterowaniu procesem produkcyjnym.

Jeżeli występuje stan B, C i F, to

osiągnięcie operatywnych celów finansowych, poza sprawdzeniem wąskich gardeł w zbycie (łącznie z korektą prognozy sprzedaży), wymaga sprawdzenia i poprawy struktury kosztów (szczególnie na obszarze zaopatrzenia i kosztów ogólnych, łącznie z kosztami przestojów).

Jeżeli występuje stan B, D i F to,

osiągnięcie operatywnych celów finansowych, poza sprawdzeniem wąskich gardeł w zbycie (łącznie z korektą prognozy sprzedaż), wymaga sprawdzenia i poprawy struktury kosztów, szczególnie na obszarze kosztów ogólnych zaopatrzenia; wymagane jest także, zorientowane na wąskie gardła, sterowanie procesem produkcyjnym.

Jeżeli występuje stan B, E i F to

przy właściwie określonej prognozie zbytu, osiągnięcie celów finansowych jest praktycznie niemożliwe; wynika to z konieczności podjęcia operacyjnych

aktywności na obszarze zbytu oraz dopasowania zdolności produkcyjnych, które to aktywności znacząco wpływają na zwiększenie kosztów.

Reguły zawierające stwierdzenia G i H można zdefiniować w analogiczny sposób. Reguły i stwierdzenia opisane powyżej określają stan ekonomiczny przedsiębiorstwa. Stan ten opisuje sytuację firmy w okresie planowania, przy założeniu niezmiennych parametrów modelu. Użytkownik ma możliwość wprowadzania zmian tych parametrów – np. na podstawie automatycznie generowanych wskazówek. Po każdej zmianie model należy powtórnie przeliczyć doprowadzając do akceptowalnego planu działalności przedsiębiorstwa.

Rachunek wariantowy powinien rozpocząć się od określenia głównych zmiennych decyzyjnych xj = xjo - LBj (por. zależność (4), co odpowiada stwierdzeniu F. Następnie, podobnie jak w przypadku optymalizacji, rozpocząć należy od ustalenia wartości $\Delta ik=0$. Wynikiem tego typu rachunku wariantowego jest zdefiniowanie stwierdzeń A do E. Stwierdzenia D i E mogą zostać dodatkowo opisane w zależności od występujących brakujących zdolności produkcyjnych na poszczególnych stanowiskach.

6. Podsumowanie

Możliwości praktycznego zastosowania opisanego modelu w przedsiębiorstwach małej i średniej wielkości zależą przede wszystkim od zrozumienia jego podstaw teoretycznych, łatwości obsługi i koniecznych nakładów ponoszonych na przygotowanie danych wejściowych. Szybkie zapoznanie z modelem i zasadami obsługi można osiągnąć dzięki wykorzystaniu do budowy programu arkusza kalkulacyjnego EXCEL, który jest coraz częściej stosowany w przedsiębiorstwach. O praktycznym zastosowaniu modelu decyduje zatem możliwość prostego generowania danych wejściowych na bazie informacji zawartych w systemie zarządzania.

7. LITERATURA

- [1] Hoitsch H. J., *Produktionswirtschaft*, Verlag Franz Vahlen, München 1993.
- [2] Kluge P. D., Controlling in keinen und mittleren Unternehmen mittels operativer Programmplanung, Management nr 1, Politechnika Zielonogórska, Zielona Góra 1997
- [3] Kluge P.D., Kaluga S., Kużdowicz D., Kużdowicz P., Lingnau V., Orzeszko P., Komputerowo wspomagany controlling w małych i średnich przedsiębiorstwach, Oficyna Wydaw. PZ, Zielona Góra 2001.
- [4] Kluge P.D., Kaluga S., Kużdowicz D., Kużdowicz P., Orzeszko P., Controlling w zintegrowanych systemach zarządzania / W: Systemy informatyczne inżynierii zarządzania / (Red.) Zbigniew Banaszak, Technical University Press, Zielona Góra 2001.

8. ZAŁĄCZNIKI

Arkusze MS Excel do planowania programu produkcji ProgProd1.xls oraz ProgProd2.xls