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Chapter 1

Linear Quadratic Regulation
(LQR)

Summary

1. Problem definition

2. Solution to the LQR problem

3. LQR in Matlab

1.1 Deterministic Linear Quadratic Regulation (LQR)

Figure 1.1 shows the feedback configuration for the Linear Quadratic Regulation (LQR)
problem. Attention! Note the

negative feedback and the
absence of a reference signal.

−

PSfrag replacements

y(t) ∈ R
m

z(t) ∈ R
`

u(t) ∈ R
k

processcontroller

Figure 1.1. Linear quadratic regulation (LQR) feedback configuration

The process is assumed to be a continuous-time LTI system of the form:

ẋ = Ax+Bu, x ∈ R
n, u ∈ R

k,

y = Cx, y ∈ R
m,

z = Gx+Hu, z ∈ R
`

and has two distinct outputs:

1. The measured output y(t) corresponds to the signal(s) that can be measured and are
therefore available for control.

2. The controlled output z(t) corresponds to a signal(s) that one would like to make as
small as possible in the shortest possible amount of time.
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Sometimes z(t) = y(t) which means that our control objective is simply to make the
measured output very small. Other times one may have

z(t) =

[
y(t)
ẏ(t)

]

,

which means that we want to make both the measured output y(t) and its derivative
ẏ(t) very small. Many other options are possible.

1.2 Optimal Regulation

The LQR problem is defined as follows: Find the control input u(t), t ∈ [0,∞) that makes
the following criterion as small as possible

JLQR :=

∫ ∞

0

‖z(t)‖2 + ρ ‖u(t)‖2dt, (1.1)

where ρ is a positive constant. The term
∫ ∞

0

‖z(t)‖2dt

corresponds to the energy of the controlled output and the term
∫ ∞

0

‖u(t)‖2dt

to the energy of the control signal. In LQR one seeks a controller that minimizes both
energies. However, decreasing the energy of the controlled output will require a large control
signal and a small control signal will lead to large controlled outputs. The role of the constant
ρ is to establish a trade-off between these conflicting goals:

1. When we chose ρ very large, the most effective way to decrease JLQR is to use little
control, at the expense of a large controlled output.

2. When we chose ρ very small, the most effective way to decrease JLQR is to obtain a
very small controlled output, even if this is achieved at the expense of a large controlled
output.

Often the optimal LQR problem is defined more generally and consists of finding the
control input that minimizesSidebar 1: A simple choice

for the matrices Q and R is
given by the Bryson’s
rule. . .

JLQR :=

∫ ∞

0

z(t)′Q̄z(t) + ρ u′(t)R̄u(t) dt, (1.2)

where Q ∈ R`×` and R ∈ Rm×m are symmetric positive-definite matrices and ρ a positive
constant.

We shall consider the most general form for a quadratic criterion, which is

J :=

∫ ∞

0

x(t)′Qx(t) + u′(t)Ru(t) + 2x′(t)Nu(t)dt. (J-LQR)

Since z = Gx+Hu, the criterion in (1.1) is a special form of (J-LQR) with

Q = G′G, R = H ′H + ρI, N = G′H

and (1.2) is a special form of (J-LQR) with

Q = G′Q̄G, R = H ′Q̄H + ρR̄, N = G′Q̄H.
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1.3 Solution to the LQR problem

Our present goal is to find a control input u(t), t ∈ [0,∞) to

ẋ = Ax +Bu, x ∈ R
n, u ∈ R

k. (AB-CLTI)

that minimizes the following quadratic criterion

JLQR :=

∫ ∞

0

x(t)′Qx(t) + u(t)′Ru(t) + 2x(t)′Nu(t) dt. (J-LQR)

We will solve this problem using an argument based on “square completion” that avoids
the use of calculus of variations. In essence, we will use purely algebraic manipulations to
re-write the criterion (J-LQR) in the following form

JLQR = J0 +

∫ ∞

0

(
u(t) − u0(t)

)′
R

(
u(t) − u0(t)

)
dt, (1.3)

where the constant J0 is a feedback invariant and u0(t) an appropriately selected signal. Notation 1: A quantity is
called a feedback invariant if
its value does not depend on
the choice of the control
input u(t), t ≥ 0.

Since R is positive definite, we will conclude directly from (1.3) that (i) the minimum value
for the criteria is equal to J0 and (ii) the control u(t) := u0(t), ∀t ≥ 0 achieves this minimum.

1.3.1 Feedback invariants

It turns out that finding feedback invariants for the LTI system (AB-CLTI) is relatively
straightforward:

Lemma 1 (Feedback invariant). Let P be a symmetric matrix. For every control input
u(t), t ∈ [0,∞) for which x(t) → 0 as t→ ∞, he have that Sidebar 2: This shows that

the left-hand side of (1.4) is
a feedback invariant for any
u that drives x to zero.

Attention! To keep the
formulas short, in the
remainder of this section we
drop the time dependence
(t) when the state x and the
input u appear inside time
integrals.

∫ ∞

0

x′(A′P + PA)x+ 2x′PBu dt = −x(0)′Px(0). (1.4)

Proof of Lemma 1. This result follows from the following simple computation:

∫ ∞

0

x′(A′P + PA)x+ 2x′PBu dt =

∫ ∞

0

(x′A′ + u′B′)Px+ x′P (Ax +Bu) dt

=

∫ ∞

0

ẋ′Px+ x′P ẋ dt =

∫ ∞

0

d(x′Px)

dt
dt = lim

t→∞
x′(t)′Px(t) − x(0)′Px(0). �

1.3.2 Square completion

To force the feedback invariant in Lemma 1 to appear in the expression for JLQR, we add
and subtract it from the right-hand side of (J-LQR):

JLQR = x(0)′P x(0) +

∫ ∞

0

x′(A′P + PA+Q)x+ u′Ru+ 2x′(PB +N)u dt. (1.5)

To re-write (1.5) as (1.3) we need to combine the all terms in u into a single quadratic form
by square completion:

u′Ru+ 2x′(PB +N)u = (u− u0)
′R(u− u0) − x′(PB +N)R−1(B′P +N ′)x

where

u0 := −R−1(B′P +N ′)x.
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Replacing this in (1.5), we obtain

JLQR = J0 +

∫ ∞

0

(u− u0)
′R(u− u0) dt, (1.6)

where

J0 := x(0)′P x(0) +

∫ ∞

0

x′
(
A′P + PA+Q− (PB +N)R−1(B′P +N ′)

)
x dt.

To make sure that J0 is a feedback invariant, we ask that P be chosen so thatNotation 2: Equation (1.7)
is called an Algebraic Riccati
Equation (ARE). A′P + PA+Q− (PB +N)R−1(B′P +N ′) = 0. (1.7)

In this case, we conclude from (1.6) that the optimal control is given by

u(t) = u0(t) = −R−1(B′P +N ′)x(t), ∀t ≥ 0,

which results in the following closed-loop system

ẋ =
(
A−BR−1(B′P +N ′)

)
x.

The following was proved:

Theorem 1. Assume that there exists a symmetric solution P to the Algebraic RiccatiNotation 3: Recall that a
matrix is Hurwitz or a
stability matrix if all its
eigenvalues have negative
real part.

Sidebar 3: Asymptotic
stability of the closed-loop is
needed because we assumed
that limt→∞ x(t)Px(t) = 0.

Matlab hint 1: lqr solves
the ARE (1.7) and computes
the optimal state-feedback
(1.8). . .

Equation (1.7) for which A−BR−1(B′P +N ′) is Hurwitz. Then the feedback law

u(t) := −Kx(t), ∀t ≥ 0, K := R−1(B′P +N ′), (1.8)

minimizes the LQR criterion (J-LQR) and leads to

JLQR :=

∫ ∞

0

x′Qx+ u′Ru+ 2x′Nu dt = x′(0)Px(0).

1.4 LQR in Matlab

Matlab Hint 1 (lqr). The command [K,P,E]=lqr(A,B,Q,R,N) solves the Algebraic Ric-
cati Equation

A′P + PA+ Q− (PB + N)R−1(B′P + N′) = 0

and computes the (negative feedback) optimal state-feedback matrix gain

K = R−1(B′P + N′)

that minimizes the LQR criteria

J :=

∫ ∞

0

x′Qx+ u′Ru+ 2x′Nu dt.

for the continuous-time process

ẋ = Ax+ Bu.

This command also returns the poles E of the closed-loop system

ẋ = (A− BK)x. �
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1.5 Additional notes

Sidebar 1 (Bryson’s rule). A reasonable simple choice for the matrices Q and R is given
by the Bryson’s rule [3, p. 537]: Select Q and R diagonal with

Qii =
1

maximum acceptable value of z2
i

, i ∈ {1, 2, . . . , `},

Rjj =
1

maximum acceptable value of u2
j

, j ∈ {1, 2, . . . , k},

which corresponds to the following criterion

JLQR :=

∫ ∞

0

(∑̀

i=1

Qii zi(t)
2 + ρ

m∑

j=1

Rjj u(t)
2
)

dt.

In essence, the Bryson’s rule scales the variables that appear in JLQR so that the maximum
acceptable value for each term is one. This is especially important when the units used for
the different components of u and z make the values for these variables numerically very
different from each other.

Although Bryson’s rule usually gives good results, often it is just the starting point to a
trial-and-error iterative design procedure aimed at obtaining desirable properties for the
closed-loop system. We shall pursue this in Section 3.3. �
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Chapter 2

Algebraic Riccati Equation
(ARE)

Summary

1. Hamiltonian matrix

2. Domain of the Riccati operator

3. Stable subspace of the Hamiltonian matrix

2.1 Hamiltonian matrix

The construction of the optimal LQR feedback law in Theorem 1 required the existence of
a symmetric solution P to the ARE

A′P + PA+Q− (PB +N)R−1(B′P +N ′) = 0 (2.1)

for which A − BR−1(B′P + N ′) is Hurwitz. To study the solutions of this equation it is
convenient to expand the last term in the left-hand-side of (2.1), which leads to

(A−BR−1N ′)′P + P (A−BR−1N ′) +Q−NR−1N ′ − PBR−1B′P = 0. (2.2)

This equation can be re-written compactly as

[
P −I

]
H

[
I
P

]

= 0. (2.3)

where

H :=

[
A−BR−1N ′ −BR−1B′

−Q+NR−1N ′ −(A−BR−1N ′)′

]

∈ R
2n×2n.

is called the Hamiltonian matrix associated with (2.1).

2.2 Domain of the Riccati operator

A Hamiltonian matrix H is said to be in the domain of the Riccati operator if there exist
symmetric matrices H−, P ∈ Rn×n such that Notation 4: We write

H ∈ Ric when H is in the
domain of the Riccati
operator.9



H

[
I
P

]

=

[
I
P

]

H−, (2.4)

with H− Hurwitz and I the n× n identity matrix.

Theorem 2. Suppose that H is in the domain of the Riccati operator and let P,H− ∈ Rn×n

be as in (2.4).

(i) P satisfies (2.1),Notation 5: In general the
ARE has multiple solutions,
but only the one in (2.4)
makes the closed-loop
asymptotically stable. This
solution is called the
stabilizing solution.

(ii) A−BR−1(B′P +N ′) = H− is Hurwitz, and

(iii) P is symmetric matrix. �

Proof of Theorem 2. To prove (i), we left-multiply (2.4) by
[
P −I

]
and obtain (2.3).

To prove (ii), we just look at the top n rows of the matrix equation (2.4):

[
A−BR−1N ′ −BR−1B′

· ·

][
I
P

]

=

[
I
·

]

H−,

from which A−BR−1(B′P +N ′) = H− follows.

To prove (iii), we left-multiply (2.4) by
[
−P ′ I

]
and obtain

[
−P ′ I

]
H

[
I
P

]

= (P − P ′)H−.

Moreover, using the definition of H we also conclude that the left-hand side of this equation
is symmetric and thereforeExercise 1: Check!

[−P ′ I ]H
ˆ

I
P

˜

=
−P ′(A − BR−1N ′)P +
P ′BR−1B′P − Q +
NR−1N ′−(A−BR−1N ′)′P .

(P − P ′)H− = H′
−(P ′ − P ) = −H′

−(P − P ′). (2.5)

Using this property repeatedly we further conclude that

(P − P ′)Hk
− = −H′

−(P ′ − P )Hk−1
− = · · · = (−H′

−)k(P ′ − P ), k ∈ {0, 1, 2, . . .}. (2.6)

To proceed, let

∆(s) = (s− λ1)(s− λ2) · · · (s− λn), <[λk] < 0.

denote the characteristic polynomial of H− and the λk its eigenvalues. Using (2.6) and the
Cayley-Hamilton Theorem, we conclude that

(P − P ′) ∆(H−)
︸ ︷︷ ︸

=0

= ∆(−H′
−)(P ′ − P ) = 0.

The result follows because ∆(−H′
−) is nonsingular and therefore P ′−P = 0. To verify that

∆(−H′
−) is indeed nonsingular, note that

∆(−H′
−) = (−H′

− − λ1I)(−H′
− − λ2I) · · · (−H′

− − λnI)

= (−1)n(H′
− + λ1I)(H

′
− + λ2I) · · · (H′

− + λnI)

and, since all the −λk must have positive real, none can be an eigenvalue of H′
− and therefore

all the matrices (−H′
− − λkI) must be nonsingular.
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2.3 Stable subspaces

Given a square matrix M , suppose that we factor its characteristic polynomial as the fol-
lowing product of polynomials

∆(s) = det(sI −M) = ∆−(s)∆+(s),

where all the roots of ∆−(s) have negative real part and all roots of ∆+(s) have positive or
zero real parts. The stable subspace of M is defined by Exercise 2: Show that V−

is an M-invariant subspace.
Since
∆−(M)M = M∆−(M), we
have that x ∈ V− ⇒
∆−(M)x = 0 ⇒
M∆−(M)x = 0 ⇒
∆−(M)Mx = 0 ⇒
Mx ∈ V−.

V− := Ker∆−(M).

Properties (Stable subspaces). Let V− be the stable subspace of M

P1 dim V− = deg ∆−(s).

Sidebar 4: Therefore the
dimension of V− is the
number of eigenvalues of M

with negative real-part (with
repetitions).

P2 For every matrix V whose columns form a basis for V−, there exists a Hurwitz matrix
M− whose characteristic polynomial is ∆−(s) such that

MV = VM−. (2.7)

Exercise 3 (Stable subspaces). Prove Properties P1–P2.

Hint: Transform M into its Jordan normal form �

Solution to Exercise 3. To prove P1, consider the Jordan normal form of M

M = T

[
J− 0
0 J+

]

T−1,

where T is a nonsingular matrix, J− contains all Jordan blocks corresponding to eigenvalues
with negative real part, and J+ the remaining blocks. The eigenvalues of J− are precisely
the roots of ∆−(s) and therefore (i) ∆−(s) is the characteristic polynomial of J− and (ii)
the size of J− is equal to deg ∆−(s). Since

Mk = T

[
Jk− 0
0 Jk+

]

T−1,

we conclude that

∆−(M) = T

[
∆−(J−) 0

0 ∆−(J+)

]

T−1 = T

[
0 0
0 ∆−(J+)

]

T−1,

where the second equality is a consequence of the Cayley-Hamilton theorem. Therefore

x ∈ Ker∆−(M) ⇔ T−1x ∈ Ker

[
0 0
0 ∆−(J+)

]

Since no root of ∆−(s) is an eigenvalue of J+, the matrix ∆−(J+) must be nonsingular and Exercise 4: Why?
Factoring
∆−(s) = (λ1 − s) · · · (λr − s),
we have ∆−(J+) =
(λ1I − J+) · · · (λrI − J+)
and all the matrices in this
product are nonsingular
because none of the λi is an
eigenvalue of J+.

Sidebar 5: Because the top
component of a vector in the
kernel can take any value
but the lower component
must be zero.

Ker

[
0 0
0 ∆−(J+)

]

= Im

[
I
0

]

,

where I denotes an identity matrix with the size of J−, i.e., the degree of ∆s(s). We thus
conclude that

x ∈ Ker∆−(M) ⇔ T−1x ∈ Im

[
I
0

]

⇔ x ∈ ImT

[
I
0

]

.
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Since T is nonsingular, the columns of T
[
I 0

]′
are linearly dependent and therefore form

a basis for T . Since the number of columns of this matrix is equal to the degree of ∆−(s),
we conclude that dim V− = deg ∆−(s).

To prove P2, note that we just concluded that T
[
I 0

]′
is a basis for V− and that

MT

[
I
0

]

= T

[
J− 0
0 J+

]

T−1T

[
I
0

]

= T

[
I
0

]

J−. (2.8)

Since the columns of V form another basis for V−, these two basis must be related by a
nonsingular coordinate transformation matrix P and therefore

V P = T

[
I
0

]

, .

From this and (2.8) we obtain

MV P = V PJ− ⇔ MV = V PJ−1
P ,

and therefore (2.7) holds for M− := PJ−1
P . Since M− and J− are related by a similarity

transformation, they have the same characteristic polynomial and the same eigenvalues.

2.4 Stable subspace of the Hamiltonian matrix

Our goal is now to find conditions under which the Hamiltonian matrix H ∈ R2n×2n belongs
to the domain of the Riccati operator, i.e., for which there exist symmetric matrices H−, P ∈
Rn×n such that

H

[
I
P

]

=

[
I
P

]

H−,

with H− Hurwitz and I the n×n identity matrix. From the properties of stable subspaces,
we conclude that such a matrix H− exists if (i) the dimension of the stable subspace V− of

H is equal to n and (ii) we can find a basis for this space of the form
[
I P ′

]′
.

2.4.1 Dimension of the stable subspace of H.

To investigate the dimension of V− we need to compute its characteristic polynomial ∆(s).
To this effect, note that

H

[
0 I
−I 0

]

=

[
BR−1B′ A−BR−1N ′

(A−BR−1N ′)′ −Q+NR−1N ′

]

=

[
0 −I
I 0

]

H′.

Therefore, defining J :=
[

0 I
−I 0

]
,

H = −JH′J−1.

Since the characteristic polynomial in invariant with respect to similarity transformations
and matrix transposition, we conclude that

∆(s) := det(sI −H) = det(sI + JH′J−1) = det(sI + H′)

= det(sI + H) = (−1)2n det((−s)I −H) = ∆(−s),
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which shows that if λ is an eigenvalue of H then −λ is also an eigenvalue of H with the same
multiplicity. We thus conclude that the 2n eigenvalues of H are distributed symmetrically
with respect to the imaginary axis. To check that we actually have n eigenvalues with
negative real part and another n with positive real part, we need to make sure that H has
no eigenvalues over the imaginary axis:

Lemma 2. Assume that Q − NR−1N ′ ≥ 0. When the pair (A,B) is stabilizable and the
pair (A−BR−1N ′, Q−NR−1N ′) is detectable we have

(i) the Hamiltonian matrix H has no eigenvalues on the imaginary axis

(ii) its stable subspace V− has dimension n. �

Attention! The best LQR controllers are obtained for choices of the controlled output Exercise 5: Show that
detectability of (A, G) is
equivalent to detectability of
(A, Q) with Q := G′G. Hint:
use the eigenvector test and
note that the kernels of G

and G′G are exactly the
same.

z for which N = G′H = 0 (cf. Chapter 3). In this case, the sole conditions simplify to
stabilizability of (A,B) and detectability of (A,G). �

Proof of Lemma 2. By contradiction, let x :=
[
x′1 x′2

]′
, x1, x2 ∈ Cn be an eigenvector of

H associated with an eigenvalue λ := jω, ω ∈ R. This means that
[
jωI −A+BR−1N ′ BR−1B′

Q−NR−1N ′ jω + (A−BR−1N ′)′

] [
x1

x2

]

= 0. (2.9)

Using the fact that (λ, x) is an eigenvalue/eigenvector pair of H, one concludes that Notation 6: (·)∗ denotes
transpose complex
conjugate.

Attention! The notation
used here differs from that of
MATLAB. Here (·)′ denotes
transpose and (·)∗ transpose
complex conjugate, whereas
in MATLAB, (·).′ denotes
transpose and (·)′ transpose
complex conjugate.

[
x∗2 x∗1

]
H

[
x1

x2

]

+
[
x∗1 x∗2

]
H′

[
x2

x1

]

=
[
x∗2 x∗1

]
(Hx) + (Hx)∗

[
x2

x1

]

=
[
x∗2 x∗1

]
jω

[
x1

x2

]

+

(

jω

[
x1

x2

])∗ [
x2

x1

]

= jω(x∗2x1 + x∗1x2) − jω(x∗1x2 + x∗2x1) = 0. (2.10)

On the other hand, using the definition of H one concludes that the left-hand side of (2.10)
is given by

[
x∗2 x∗1

]
[
A−BR−1N ′ −BR−1B′

−Q+NR−1N ′ −(A−BR−1N ′)′

] [
x1

x2

]

+
[
x∗1 x∗2

]
[
(A−BR−1N ′)′ −Q+NR−1N ′

−BR−1B′ −(A−BR−1N ′)

] [
x2

x1

]

= −2x∗1(Q−NR−1N ′)x1 − 2x∗2(BR
−1B′)x2.

Since this expression must equal zero and R−1 > 0, we conclude that

(Q−NR−1N ′)x1 = 0, B′x2 = 0.

From this and (2.9) we also conclude that

(jωI −A+BR−1N ′)x1 = 0, (jω +A′)x2 = 0.

But then we found an eigenvector x2 of A′ in the kernel of B′ and an eigenvector x1 of
A − BR−1N ′ in the kernel of Q − NR−1N ′. Since the corresponding eigenvalues do not
have negative real part, this contradicts the stabilizability and detectability assumptions.

The fact that V− has dimension n follows from the discussion preceding the statement of
the lemma.
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2.4.2 Basis for the stable subspace of H.

Suppose that the assumptions of Lemma 2 hold and let

V :=

[
V1

V2

]

∈ R
2n×n

be a matrix whose n columns form a basis for the stable subspace V− of H. Assuming that
V1 ∈ Rn×n is nonsingular, thenSidebar 6: Under the

assumptions of Lemma 2,
this is always true as shown
in [2, Theorem 6.5, p. 202]. V V −1

1 =

[
I
P

]

, P := V2V
−1
1

is also a basis for V−. Therefore, we conclude from property P2 that there exists a Hurwitz
matrix H− such that

H

[
I
P

]

=

[
I
P

]

H−, (2.11)

and therefore H belongs to the domain of the Riccati operator. Combining Lemma 2 with
Theorem 2 we obtain the following main result regarding the solution to the ARE:

Theorem 3. Assume that Q−NR−1N ′ ≥ 0. When the pair (A,B) is stabilizable and the
pair (A−BR−1N ′, Q−NR−1N ′) is detectable we have

(i) H is in the domain of the Riccati operator,

(ii) P is symmetricSidebar 7: When the pair
(A−BR−1N ′,Q−NR−1N ′)
is observable, one can show
that P is also positive
definite. . .

(iii) P satisfies (2.1),

(iv) A−BR−1(B′P +N ′) = H− is Hurwitz,

where P,H− ∈ Rn×n are as in (2.11). Moreover, the eigenvalues of H− are the eigenvalues
of H with negative real part. �

Attention! Going back to the minimization of

JLQR :=

∫ ∞

0

z′Q̄z + ρ u′R̄u dt, z := Gx+Hu ρ,Q,R > 0,

which corresponds to

Q = G′Q̄G, R = H ′Q̄H + ρR̄, N = G′Q̄H.

When N = 0, we conclude that Theorem 3 requires the detectability of the pair (A,Q) =
(A,G′Q̄G). Since Q̄ > 0 it is straightforward to verify (e.g., using the eigenvector test) that
this is equivalent to the detectability of the pair (A,G), which means that the system must
be detectable through the controlled output z.

The need for (A,B) to be stabilizable is quite reasonable because otherwise it is not possible
to make x → 0 for every initial condition. The need for (A,G) to be detectable can be
intuitively understood by the fact that if the system had unstable modes that did not
appear in z, it could be possible to make JLQR very small, even though the state x would
be exploding. �
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Sidebar 7. To prove that P is positive definite, we re-write the ARE (2.2)

(A−BR−1N ′)′P + P (A−BR−1N ′) +Q−NR−1N ′ − PBR−1B′P = 0

as

H′
−P + PH− = −S, S := (Q−NR−1N ′) + PBR−1B′P.

The positive definiteness of P then follows from the observability Lyapunov test as long as
we are able to establish the observability of the pair (H−, S).

To show that the pair (H−, S) is indeed observable we use the eigenvector test. By contra-
diction assume that x is an eigenvector of H− that lies in the kernel of S, i.e.,

(
A−BR−1(B′P +N ′)

)
x = λx,

(
(Q−NR−1N ′) + PBR−1B′P

)
x = 0.

These equations imply that (Q−NR−1N ′)x = 0 and B′Px = 0 and therefore

(A−BR−1N ′)x = λx,
(
(Q−NR−1N ′)x = 0,

which contradicts the fact that the pair (A−BR−1N ′, Q−NR−1N ′) is observable. �
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Chapter 3

Frequency-domain and
asymptotic properties of LQR

Summary

1. Kalman’s inequality: complementary sensitivity function, Nyquist plot (SISO), gain
and phase margins (SISO)

2. Loop-shaping using LQR

3. Cheap control asymptotic case: closed-loop poles and cost

4. LQR design example

3.1 Kalman’s equality

Consider the following continuous-time LTI process

ẋ = Ax+ Bu, z = Gx +Hu, x ∈ R
n, u ∈ R

k, z ∈ R
`, (AB-CLTI)

for which one wants to minimize the following LQR criterion

JLQR :=

∫ ∞

0

‖z(t)‖2 + ρ‖u(t)‖2 dt, (3.1)

where ρ is positive constant. Throughout this whole chapter we shall assume that Sidebar 8: This condition
is not being added for
simplicity, without it the
results in this section may
not be valid.

N := G′H = 0, (3.2)

for which the optimal control is given by

u = −Kx, K := R−1B′P, R := H ′H + ρI,

where P is the stabilizing solution to the following ARE

A′P + PA+G′G− PBR−1B′P = 0.

We saw in the Chapter 1 that under appropriate stabilizability and detectability assump-
tions, the LQR control results in a closed-loop system that is asymptotically stable.
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ẋ = Ax + BuK

Figure 3.1. State-feedback open-loop gain

LQR controllers also have desirable properties in the frequency domain. To understand
why, consider the open-loop transfer-matrix from the process’ input u to the controller’s
output ū (Figure 3.1). The state-space model from u to ū is given by

ẋ = Ax+Bu, ū = −Kx,
which corresponds to the following open-loop negative feedback k × k transfer-matrix

L̂(s) = K(sI −A)−1B.

Another important open-loop transfer function is that from the control signal u to the
controlled output z:

Ĝ(s) = G(sI −A)−1B +H.

These transfer functions are related by the so-called Kalman’s equality :

Kalman’s equality. For the LQR criterion in (3.1) with (3.2), we have thatSidebar 9: Kalman’s
equality follows directly from
simple algebraic
manipulations of the ARE
(cf. Exercise 6).

(
I + L̂(−s)′

)
R

(
I + L̂(s)

)
= R+H ′H + Ĝ(−s)′Ĝ(s). (3.3)

Kalman’s equality has many important consequences. One of them is Kalman’s inequal-
ity , which is obtained by setting s = jω in (3.3) and using the fact that for real-rational
transfer functions

L̂(−jω)′ = L̂(jω)∗, Ĝ(−jω)′ = Ĝ(jω)∗, H ′H + Ĝ(jω)∗Ĝ(jω) ≥ 0.

Kalman’s inequality. For the LQR criterion in (3.1) with (3.2), we have that
(
I + L̂(jω)

)∗
R

(
I + L̂(jω)

)
≥ R, ∀ω ∈ R. (3.4)

Exercise 6 (Kalman equality). Prove Kalman’s equality (3.3).

Hint: Add and subtract sP to the ARE and then left and right-multiply it by −B ′(sI+A′)−1

and (sI −A)−1B, respectively. �

Solution to Exercise 6. Following the hint, we first conclude that

(sI +A′)P − P (sI −A) +G′G− PBR−1B′P = 0.

and then

−B′P (sI −A)−1B +B′(sI +A′)−1PB −B′(sI +A′)−1G′G(sI −A)−1B

+B′(sI +A′)−1PBR−1B′P (sI −A)−1B = 0,

which can be re-written as

−RL̂(s) − L̂(−s)′R+ (Ĝ(−s)′ −H ′)(Ĝ(s) −H) − L̂(−s)′RL̂(s) = 0.

Using the facts that H ′G = 0 and G′H = 0, we conclude that H ′(Ĝ(s) − H) = 0 and
(Ĝ(−s)′ −H ′)H = 0. Therefore, we can further simply the equation above to

RL̂(s) + L̂(−s)′R + L̂(−s)′RL̂(s) = H ′H + Ĝ(−s)′Ĝ(s),

which is equivalent to (3.4).
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3.2 Frequency-domain properties: Single-input case

We focus our attention in single-input processes (k = 1), for which L̂(s) is a scalar transfer
function. Dividing both sides of Kalman’s inequality (3.4) by the scalar R, we obtain:

|1 + L̂(jω)| ≥ 1, ∀ω ∈ R,

which expresses the fact that the Nyquist plot of L̂(jω) does not enter a circle of radius
one around −1. This is represented graphically in Figure 3.2 and has several significant Sidebar 10: For multiple

input systems similar
conclusions could be drawn
based on the Multi-variable
Nyquist Criterion. . .

implications, which are discussed next.

PSfrag replacements −1−2

60o

G0(jω)

Im

Re

Figure 3.2. Nyquist plot for a LQR state-feedback controller

Positive gain margin If the process’ gain is multiplied by a constant k > 1, its Nyquist
plot simply expands radially and therefore the number of encirclements does not change.
This corresponds to a positive gain margin of +∞.

Negative gain margin If the process’ gain is multiplied by a constant .5 < k < 1, its
Nyquist plot contracts radially but the number of encirclements still does not change. This
corresponds to a negative gain margin of 20 log10(.5) = −6dB.

Phase margin If the process’ phase increases by θ ∈ [−60, 60] degrees, its Nyquist plots
rotates by θ but the number of encirclements still does not change. This corresponds to a
phase margin of ±60 degrees.

Sensitivity and complementary sensitivity functions The sensitivity and the com-
plementary sensitivity functions are given by

Ŝ(s) =
1

1 + L̂(s)
, T̂ (s) =

L̂(s)

1 + L̂(s)
,

respectively. Kalman’s inequality guarantees that Sidebar 11: The first
inequality results directly
from the fact that
|1 + L̂(jω)| ≥ 1, the second
from the fact that
T̂ (s) = 1 − Ŝ(s), and the last
two from the fact that the
second inequality shows that
T̂ (jω) must belong to a
circle of radius one around
+1.

|Ŝ(jω)| ≤ 1, |T̂ (jω) − 1| ≤ 1, |T̂ (jω)| ≤ 2, <[T̂ (jω)] ≥ 0, ∀ω ∈ R. (3.5)

We recall that

1. A small sensitivity function is desirable for good disturbance rejection. Generally, this
is especially important at low frequencies.

2. A complementary sensitivity function close to one is desirable for good reference track-
ing. Generally, this is especially important at low frequencies.
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3. A small complementary sensitivity function is desirable for good noise rejection. Gen-
erally, this is especially important at high frequencies.

Attention! Kalman’s inequality is only valid when N = 0. When this is not the case, LQR
controllers can exhibit significantly worst properties in terms of gain and phase margins. To
same extent this limits the controlled outputs that should be placed in z. �

3.3 Loop-shaping using LQR: Single-input case

Using Kalman’s inequality, we saw that any LQR controller automatically provides some
upper bounds on the magnitude of the sensitivity function and its complementary. However,
these bounds are frequency independent and may not result in appropriate loop-shaping.

We will see next a few rules that allow us to actually do loop-shaping using LQR. We
continue to restrict our attention to the single-input case (k = 1).

Low-frequency open-loop gain Dividing both sides of Kalman’s equality (3.3) by the
scalar R := H ′H + ρ, we obtainMatlab hint 2:

sigma(sys) draws the
norm-Bode plot of the
system sys. . . |1 + L̂(jω)|2 = 1 +

H ′H

H ′H + ρ
+

‖Ĝ(jω)‖2

H ′H + ρ
.

Therefore, for the range of frequencies for which |L̂(jω)| � 1 (typically low frequencies),

|L̂(jω)| ≈ |1 + L̂(jω)| ≈ ‖Ĝ(jω)‖√
H ′H + ρ

,

which means that the open-loop gain for the optimal feedback L̂(s) follows the “shape” of
the Bode plot from u to the controlled output z.

This shows that one can shape the open-loop gain at low frequencies by selecting an
appropriate controlled output z. For example, selecting z :=

[
y γẏ

]′
with y := Cx scalar,

i.e.,

z =

[
y
γẏ

]

=

[
Cx

γCAx+ γCBu

]

⇒ G =

[
C

γCA

]

, H =

[
0

γCB

]

we conclude that

Ĝ(s) =

[
P̂ (s)

γsP̂ (s)

]

=

[
1
γs

]

P̂ (s), P̂ (s) := C(sI −A)−1B,

and therefore

|L̂(jω)| ≈
√

1 + γ2ω2 |P̂ (jω)|√
H ′H + ρ

=
|1 + jγω| |P̂ (jω)|√

H ′H + ρ
.

In this case, the low-frequency open-loop gain mimics the process transfer function from u
to y, with an extra zero at 1/γ and scaled by 1√

H′H+ρ
. Thus

1. ρ moves the magnitude Bode plot up and down (more precisely H ′H + ρ),

2. large values for γ lead to a low-frequency zero and generally result in a larger phase
margin (above the minimum of 60 degrees) and smaller overshoot in the step response.
However, this is often achieved at the expense of a slower response.
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High-frequency open-loop gain Figure 3.2 shows that the open-loop gain L̂(jω) can
have at most −90o phase for high-frequencies and therefore the “roll-off” rate is at most
-20dB/decade. In practice, this means that for ω � 1, we have

|L̂(jω)| ≈ c

ω
√
H ′H + ρ

,

for some constant c and therefore the cross-over frequency is approximately given by

c

ωcross

√
H ′H + ρ

≈ 1 ⇔ ωcross ≈
c√

H ′H + ρ
.

Thus

1. LQR controllers always exhibit a high-frequency magnitude decay of −20dB/decade,

2. the cross-over frequency is proportional to 1/
√
H ′H + ρ and generally small values for

H ′H + ρ result in faster step responses.

Attention! The (slow) −20dB/decade magnitude decrease is the main shortcoming of
state-feedback LQR controllers because it may not be sufficient to clear high-frequency
upper bounds on the open-loop gain needed to reject disturbances and/or for robustness
with respect to process uncertainty. We will see in Section 4.5 that this can actually be
improved with output-feedback controllers. �

3.4 Cheap control asymptotic case

In view of the LQR criterion

JLQR :=

∫ ∞

0

‖z(t)‖2 + ρ‖u(t)‖2 dt,

by making ρ very small one does not penalize the energy used by the control signal. Based
on this, one could expect that as ρ→ 0

(i) the system’s response becomes arbitrarily fast, and

(ii) the optimal value of the criterion converges to zero.

This limiting case is called cheap control and it turns out that whether or not the above
conjectures are true depends on the transmission zeros of the system.

3.4.1 Closed-loop poles

We saw in Chapter 2 that the poles of the closed-loop correspond to the stable eigenvalues
of the Hamiltonian matrix

H :=

[
A −BR−1B′

−G′G −A′

]

∈ R
2n×2n, R := H ′H + ρI ∈ R

k×k

(cf. Theorem 3). To determine the eigenvalues of H, we use the fact that Sidebar 12: Cf. Exercise 7.

det(sI −H) = c∆(s)∆(−s) det
(

R−H ′H + Ĝ(−s)′Ĝ(s)
)

. (3.6)

where c := (−1)n detR−1 and

∆(s) := det(sI −A), Ĝ(s) := G(sI − A)−1B +H.

21



As ρ→ 0, H ′H → R and therefore

det(sI −H) → c∆(s)∆(−s) det Ĝ(−s)′Ĝ(s). (3.7)

We saw that there exist unimodular real polynomial matrices L(s) ∈ R[s]`×`, R(s) ∈ R[s]k×k

such that

Ĝ(s) = L(s) SMG(s)R(s), (3.8)

where

SMG(s) :=









η1(s)
ψ1(s) · · · 0 0

...
. . .

...
...

0 · · · ηr(s)
ψr(s) 0

0 · · · 0 0









∈ R(s)`×k

is the Smith-McMillan form of Ĝ(s). To proceed we should consider separately the square
and nonsquare cases.

Square transfer matrix When Ĝ(s) is square and full rank (i.e., ` = k = r),

det Ĝ(−s)′Ĝ(s) = c̄
η1(−s) · ηk(−s) η1(s) · ηk(s)
ψ1(−s) · ψk(−s)ψ1(s) · ψk(s)

= c̄
zG(−s)zG(s)

pG(−s)pG(s)
,

where zG(s) and pG(s) are the zero and pole polynomials of Ĝ(s), respectively, and c̄ is the
(constant) product of the determinants of all the unimodular matrices. When the realization
is minimal, pG(s) = ∆(s) and (3.8) simplifies to

det(sI −H) → c c̄ zG(s)zG(−s).

Two conclusions can be drawn from here:

1. When Ĝ(s) has q transmission zeros

ai + jbi, i ∈ {1, 2, . . . , q},

then 2q of the eigenvalues of H converge to

±ai ± jbi, i ∈ {1, 2, . . . , q},

and therefore q closed-loop poles converge toSidebar 13: Recall that the
poles of the closed-loop are
only the stable eigenvalues of
H, which converge to both
ai + jbi and −ai − jbi.

−|ai| + jbi, i ∈ {1, 2, . . . , q}.

2. When the transfer function Ĝ(s) from the control input u to the controlled output
z does not have any transmission zero, H has no finite eigenvalues as ρ → 0 and
therefore all closed-loop poles must converge to infinity.

Nonsquare transfer matrix When Ĝ(s) is not square and/or not full-rank, replacing
(3.8) in (3.7), we obtain

det(sI−H) → c̄∆(s)∆(−s) det







η1(−s)
ψ1(−s) · · · 0

...
. . .

...

0 · · · ηr(−s)
ψr(−s)






Lr(−s)′Lr(s)







η1(s)
ψ1(s)

· · · 0
...

. . .
...

0 · · · ηr(s)
ψr(s)






,
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where Lr(s) ∈ R[s]`×r contains the left-most r columns of L(s). In this case, when the
realization is minimal we obtain

det(sI −H) → c̄ zG(s)zG(−s) detLr(−s)′Lr(s),

which shows that for nonsquare matrices det(sI − H) generally has more roots than the
transmission zeros of Ĝ(s). In this case one needs to compute the stable roots of

∆(s)∆(−s) det Ĝ(−s)′Ĝ(s)

to determine the asymptotic locations of the closed-loop poles.

Attention! This means that in general one wants to avoid transmission zeros from the Sidebar 14: This property
of LQR, resembles a similar
property of the root locus,
except that now we have the
freedom to choose the
controlled output to avoid
problematic zeros.

control input u to the controlled output z, especially slow transmission zeros that will
attract the poles of the closed-loop. For nonsquare systems one must pay attention to all
the zeros of det Ĝ(−s)′Ĝ(s). �

Exercise 7. Show that (3.6) holds.

Hint: Use the following properties of the determinant:

det

[
M1 M2

M3 M4

]

= detM1 detM4 det
(
I −M3M

−1
1 M2M

−1
4 ) (3.9)

det(I +XY ) = det(I + Y X) (3.10)

(cf. , e.g., [4, Equation 1-235] and [4, Equation 1-201]). �

Solution to Exercise 7. To compute the characteristic polynomial of H we write

det(sI −H) = det

[
sI −A BR−1B′

G′G sI +A′

]

= det(sI −A) det(sI +A′) det
(

I −G′G(sI −A)−1BR−1B′(sI +A′)−1
)

= det(sI −A) det(sI +A′) det
(

I −R−1B′(sI +A′)−1G′G(sI −A)−1B
)

, (3.11)

where we first used (3.9) and then (3.10). Since

det(sI +A′) = det(sI +A) = (−1)n det(−sI −A) = (−1)n∆(−s)

and Sidebar 15: Recall that we
are assuming that G′H = 0.

Ĝ(−s)′Ĝ(s) = −B′(sI +A′)−1G′G(sI −A)−1B +H ′H,

we can re-write (3.11) compactly as (3.6)

3.4.2 Cost

We saw in Chapter #1 that the minimum value of the LQR criterion is given by

JLQR :=

∫ ∞

0

‖z(t)‖2 + ρ‖u(t)‖2 dt = x′(0)Pρx(0).

where ρ is positive constant and Pρ the corresponding solutions to the ARE Sidebar 16: Here, we use
the subscript ρ to emphasize
that the solution to the
ARE, depends on this
parameter.

A′Pρ + PρA+G′G− PρBR
−1
ρ B′Pρ = 0, Rρ := H ′H + ρI, (3.12)

The following result make explicit the dependence of Pρ on ρ as this parameter converges
to zero:
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Theorem 4. When H = 0 the solution to (3.12) satisfies:Sidebar 17: This result
was taken from [4, Section
3.8.3, pp. 306–312,
cf. Theorem 3.14]. A simple
proof for the SISO case can
be found in [5, Section 3.5.2,
pp. 145–146].

lim
ρ→0

Pρ







= 0 ` = k and all transmission zeros of Ĝ(s) have negative or zero real parts

6= 0 ` = k and Ĝ(s) has transmission zeros with positive real part

6= 0 ` > k

Attention! This result shows a fundamental limitation due to “unstable” transmission
zeros. It shows that when there are transmission zeros from the input u to the controlled
output z, it is not possible to reduce the energy of z arbitrarily, even if one is willing to
spend much control energy. �

Attention! Suppose that ` = k and and all transmission zeros of Ĝ(s) have negative or
zero real parts. Taking limits on both sides of (3.12) and using the fact that limρ→0 Pρ = 0,
we conclude that

lim
ρ→0

1

ρ
PρBB

′Pρ = lim
ρ→0

ρK ′
ρKρ = G′G,

where Kρ := R−1
ρ B′Pρ is the state-feedback gain. Assuming that G is full row rank, this

implies thatNotation 7: A square
matrix S is orthogonal if
S′S = SS′ = I.

Exercise 8: Show that
given two matrices
X, M ∈ R

n×` with M full
row rank and X′X = M ′M ,
there exists an orthogonal
matrix S ∈ R

`×` such that
M = SX.

lim
ρ→0

√
ρKρ = SG,

for some orthogonal matrix S. This shows that asymptotically we have

Kρ =
1√
ρ
SG,

and therefore the optimal control is of the form

u = Kρx =
1√
ρ
SGx =

1√
ρ
Sz,

i.e., for these systems the cheap control problem corresponds to high-gain static feedback of
the controlled output. �

Solution to Exercise 8. Left-multiplying X ′X = M ′M by (MM ′)−1M , we conclude that
SX = M with S := (MM ′)−1MX ′. Note that the inverse exists because M is full row
rank. Moreover, SS ′ = (MM ′)−1MX ′XM ′(MM ′)−1 = I . �

3.5 LQR design example

Example 1 (Aircraft roll-dynamics). Figure 3.3 shows the roll-angle dynamics of an
aircraft [6, p. 381]. Defining

x :=
[
θ ω τ

]′

we conclude that

ẋ = Ax+Bu
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roll-angle

roll-rate= ˙

applied torque
PSfrag replacements

roll-angle

θ̇ = ω

ω̇ = −.875ω − 20τ

τ̇ = −50τ + 50u

Figure 3.3. Aircraft roll-angle dynamics
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Figure 3.4. Bode plots for the open-loop gain

with

A :=





0 1 0
0 −.875 −20
0 0 −50



 , B :=





0
0
50



 .

If we have both θ and ω available for control, we can define

y :=
[
θ ω

]′
= Cx +Du

with

C :=

[
1 0 0
0 1 0

]

, D :=

[
0
0

]

.

Open-loop gains Figure 3.4 shows Bode plots of the open-loop gain L̂(s) = K(sI−A)−1B
for several LQR controllers obtained for this system. The controlled output was chosen to

be z :=
[

θ γθ̇
]′

, which corresponds to

G :=

[
1 0 0
0 γ 0

]

, H :=

[
0
0

]

.

The controllers were obtained with R = 1, Q = I2×2, and several values for ρ and γ.
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Figure 3.5. Nyquist plots for the open-loop gain

Figure 3.4(a) shows the open-loop gain for several values of ρ, where we can see that ρ
allow us to move the whole magnitude Bode plot up and down. Figure 3.4(b) shows the
open-loop gain for several values of γ, where we can see that a larger γ results in a larger
phase margin. As expected, for low frequencies the open-loop gain magnitude matches that
of the process transfer function from u to θ (but with significantly lower/better phase) and
at high-frequencies the gain’s magnitude falls at −20dB/decade.

Figure 3.5 shows Nyquist plots of the open-loop gain L̂(s) = K(sI −A)−1B for different

choices of the controlled output z. In Figure 3.5(a) z :=
[

θ θ̇
]′

, which corresponds to

G :=

[
1 0 0
0 1 0

]

, H :=

[
0
0

]

.

In this case, H ′G = [ 0 0 0 ] and Kalman’s inequality holds as can be seen in the Nyquist plot.

In Figure 3.5(b), the controlled output was chosen to be z :=
[
θ τ̇

]′
, which corresponds to

G :=

[
1 0 0
0 0 −50

]

, H :=

[
0
50

]

.

In this case we have H ′G = [ 0 0 −2500 ] and Kalman’s inequality does not hold. We can see
from the Nyquist plot that the phase and gain margins are very small and there is little
robustness with respect to unmodeled dynamics since a small perturbation in the process
can lead to an encirclement of the point −1.

Step responses Figure 3.6 shows step responses for the state-feedback LQR controllers
whose Bode plots for the open-loop gain are shown in Figure 3.4. Figure 3.6(a) shows that
smaller values of ρ lead to faster responses and Figure 3.6(b) shows that larger values for γ
lead to smaller overshoots (but slower responses).

3.6 Matlab commands

Matlab Hint 2 (sigma). The command sigma(sys) draws the norm-Bode plot of the
system sys. For scalar transfer functions this command plots the usual magnitude Bode
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Figure 3.6. Closed-loop step responses

plot but for vector transfer function it plots the norm of the transfer function versus the
frequency. �

Matlab Hint 3 (nyquist). The command nyquist(sys) draws the Nyquist plot of the
system sys.

Especially when there are poles very close to the imaginary axis (e.g., because they were
actually on the axis and you moved them slightly to the left), the automatic scale may not
be very good because it may be hard to distinguish the point −1 from the origin. In this
case, you can use then zoom features of MATLAB to see what is going on near −1: Try
clicking on the magnifying glass and selecting a region of interest; or try left-clicking on the
mouse and selecting “zoom on (-1,0)” (without the magnifying glass selected.) �

3.7 Additional notes

Sidebar 10 (Multi-variable Nyquist Criterion). The Nyquist criterion is used to in-
vestigate the stability of the negative feedback connection in Figure 3.7. It allows one
to compute the number of unstable (i.e., in the closed right-hand-side plane) poles of the

closed-loop transfer matrix
(
I + Ĝ(s)

)−1
as a function of the number of unstable poles of

the open-loop transfer function Ĝ(s).

+

−

PSfrag replacements
y

u

r
G(s)

Figure 3.7. Negative feedback

To apply the criterion we start by drawing the Nyquist plot of Ĝ(s), which is done by Matlab hint 3:

nyquist(sys) draws the
Nyquist plot of the system
sys. . .

evaluating det
(
I + Ĝ(jω)

)
from ω = −∞ to ω = +∞ and plotting it in the complex plane.

Sidebar 18: The Nyquist
plot should be viewed as the
image of a clockwise contour
that goes along the axis and
closes with a right-hand-side
loop at ∞.

This leads to a closed-curve that is always symmetric with respect to the real axis. This
curve should be annotated with arrows indicating the direction corresponding to increasing
ω.
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Any poles of Ĝ(s) on the imaginary axis should be moved slightly to the left of the axis
because the criterion is only valid when Ĝ(s) is analytic on the imaginary axis. E.g.,

Ĝ(s) =
s+ 1

s(s− 3)
−→ Ĝε(s) ≈

s+ 1

(s+ ε)(s− 3)

Ĝ(s) =
s

s2 + 4
=

s

(s+ 2j)(s− 2j)
−→ Ĝε(s) ≈

s

(s+ ε+ 2j)(s+ ε− 2j)
=

s

(s+ ε)2 + 4
,

for a small ε > 0. The criterion should then be applied to the “perturbed” transfer function
Ĝε(s). If we conclude that the closed-loop is asymptotically stable for Ĝε(s) with very small
ε > 0, then the closed-loop with Ĝ(s) will also be asymptotically stable and vice-versa.

Nyquist Stability Criterion. The total number of unstable (closed-loop) poles of
(
I +Sidebar 19: To compute

#ENC, we draw a ray from
the origin to ∞ in any
direction and add one each
time the Nyquist plot crosses
the ray in the clockwise
direction (with respect to
the origin of the ray) and
subtract one each time it
crosses the ray in the
counter-clockwise direction.
The final count gives #ENC.

Ĝ(s)
)−1

(#CUP) is given by

#CUP = #ENC + #OUP,

where #OUP denotes the number of unstable (open-loop) poles of Ĝ(s) and #ENC the
number of clockwise encirclements by the multi-variable Nyquist plot around the origin. To

Attention! For the
multi-variable Nyquist
criteria we count
encirclements around the
origin and not around -1,
because the multi-variable
Nyquist plot is “shifted” to
the right by adding the I to
in det

`

I + Ĝ(jω)
´

.

have a stable closed-loop one thus needs

#ENC = −#OUP. �
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Chapter 4

Output-feedback

Summary

1. Deterministic minimum-energy estimation (MEE)

2. Stochastic Linear Quadratic Gaussian (LQG) estimation

3. LQG/LQR output feedback

4. Loop transfer recovery (LTR) with design example

5. Optimal set-point control

4.1 Certainty equivalence

The state-feedback LQR formulation considered in Chapter 1 suffered from the drawback
that the optimal control law

u(t) = −Kx(t) (4.1)

required the whole state x of the process to be measurable. A possible approach to overcome
this difficulty is to construct an estimate x̂ of the state of the process based solely on the
past values of the measured output y and control signal u, and then use

u(t) = −Kx̂(t)

instead of (4.1). This approach is usually known as certainty equivalence and leads to the
architecture in Figure 4.1. In this chapter we consider the problem of constructing state

−

PSfrag replacements

processK

state
estimator

u

y

z

x̂

Figure 4.1. Certainty equivalence controller

estimates for use in certainty equivalence controllers.
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4.2 Deterministic Minimum-Energy Estimation (MEE)

Consider a continuous-time LTI system of the form:

ẋ = Ax+Bu, y = Cx, x ∈ R
n, u ∈ R

k, y ∈ R
m, (CLTI)

where u is the control signals and y the measured output. Estimating the state x at some
time t can be viewed as solving (CLTI) for the unknown x, for given u(τ), y(τ), τ ≤ t.

Assuming that the model (CLTI) is exact and observable, x(t) could be reconstructed
exactly using the constructibility Gramian

x(t) = WCn(t0, t)
−1

(∫ t

t0

eA
′(τ−t)C ′y(τ)dτ +

∫ t

t0

∫ t

τ

eA
′(τ−t)C ′CeA(τ−s)Bu(s)dsdτ

)

,

where

WCn(t0, t) :=

∫ t

t0

eA
′(τ−t)C ′CeA(τ−t)dτ

In practice, the model (CLTI) is never exact and the measured output y is generated by
a system of the following form

ẋ = Ax+ Bu+ B̄d, y = Cx+ n, x ∈ R
n, u ∈ R

k, d ∈ R
q , y ∈ R

m, (4.2)

where d represents a disturbance and n measurement noise. Since neither d nor n are know,
solving (4.2) for x no longer yields a unique solution since essentially any state value could
explain the measured output for sufficiently large noise/disturbances.

Minimum-Energy Estimation (MEE) consists of finding the state trajectory

˙̄x = Ax̄+Bu+ B̄d, y = Cx̄+ n, x̄ ∈ R
n, u ∈ R

k, d ∈ R
q, y ∈ R

m (4.3)

that is consistent with the past measured output y and control signal u for the least amount
of noise n and disturbance d, measured by

JMEE :=

∫ t

−∞
n(τ)′Qn(τ) + d(τ)′Rd(τ)dτ (4.4)

where Q ∈ Rm×m and R ∈ Rq×q are symmetric positive definite matrices. Once this
trajectory has been found based on the data collected on the interval (∞, t], the minimum-
energy state estimate is simply the most recent value of x̄:

x̂(t) = x̄(t).

The role of the matrices Q and R can be understood as follows:

1. When we choose Q large, we are forcing the noise term to be small, which means that
we “believe” in the measured output. This leads to state estimators that respond fast
to changes in the output y.

2. When we choose R large, we are forcing the disturbance term to be small, which means
that we “believe” in the past values of the state-estimate and will respond cautiously
(slowly) to unexpected changes in the measured output.
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4.2.1 Solution to the MEE problem

The MEE problem is solved by minimizing the quadratic cost

JMEE =

∫ t

−∞

(
Cx̄(τ) − y(τ)

)′
Q

(
Cx̄(τ) − y(τ)

)
+ d(τ)′Rd(τ)dτ

for the system (4.3). Like in the LQR problem, this can be done by square completion:

Theorem 5 (Minimum-Energy Estimation). Assume that there exists a symmetric
positive definite solution P to the following ARE

(−A′)P + P (−A) + C ′QC − PB̄R−1B̄′P = 0. (4.5)

for which −A− B̄R−1B̄′P is Hurwitz. Then the MME estimator for (4.2) for the criteria
(4.4) is given by

˙̂x = (A− LC)x̂+Bu+ Ly, L := P−1C ′Q. (4.6)

4.2.2 Dual Algebraic Riccati Equation

To determine conditions for the existence of an appropriate solution to the ARE (4.5), it is
convenient to left- and right-multiplying this equation by S := P−1 and then multiplying it
−1. This procedure yields an equivalent equation called the dual Algebraic Riccati Equation:

AS + SA′ + B̄R−1B̄′ − SC ′QCS = 0. (4.7)

The gain L can be written in terms of the solution S to the dual ARE as L := SC ′Q.

To solve the MEE problem one needs to find a symmetric positive definite solution to
the dual ARE for which −A − B̄R−1B̄′S−1 is Hurwitz. The results in Chapter 2 provide
conditions for the existence of an appropriate solution to the dual ARE (4.5):

Theorem 6. Assume that the pair (A, B̄) is controllable and that the pair (A,C) is de-
tectable.

(i) There exists a symmetric positive definite solution S to the dual ARE (4.7), for which
A− LC is Hurwitz.

(ii) There exists a symmetric positive definite solution P := S−1 to the ARE (4.5), for
which −A− B̄R−1B̄′P is Hurwitz. �

Proof of Theorem 6. Part (i) is a straightforward application of Theorem 3 for N = 0, and
the following facts

1. stabilizability of (A′, C ′) is equivalent to the detectability of (A,C);

2. observability of (A′, B̄′) is equivalent to the controllability of (A, B̄);

3. A′ − C ′L′ is Hurwitz if and only if A+ LC is Hurwitz.

The fact that P := S−1 satisfies (4.5) has already been established from the construction of
the dual ARE (4.7). To prove (ii) it remains to show that −A− B̄R−1B̄′P is Hurwitz. To
this effect we re-write (4.5) as

(−A′ − PB̄R−1B̄′)P + P (−A− B̄R−1B̄′P ) = −S, S := C ′QC + PB̄R−1B̄′P.

The stability of −A−B̄R−1B̄′P then follows from the controllability Lyapunov test because
the pair (−A− B̄R−1B̄′P, S) is controllable . Exercise 9: Verify that this

is so using the eigenvector
test.
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4.2.3 Convergence of the estimates

The MEE estimator is often written as

˙̂x = Ax̂+Bu+ L(y − ŷ), ŷ = Cx̂ L := SC ′Q. (4.8)

Defining the state estimation error e = x− x̂, we conclude from (4.8) and (4.2) that

ė = (A− LC)e+ B̄d− Ln.

Since A − LC is Hurwitz, we conclude that, in the absence of measurement noise and
disturbances, e(t) → 0 as t→ ∞ and therefore ‖x(t) − x̂(t)‖ → 0 as t→ ∞.

In the presence of noise we have BIBO stability from the inputs d and n to the “output”Sidebar 20: Why? Because
the poles of the transfer
functions from d and n to e

are the eigenvalues of
A − LC.

e so x̂(t) may not converge to x(t) but at least does not diverge from it.

4.2.4 Proof of the MEE Theorem

Due to the exogenous term y(τ) in the MEE criteria, we need more sophisticated invariants
so solve this problem. Let P be a symmetric matrix and β : (−∞, t] → R

n a differentiable
signal to be selected shortly. Assuming that x̄(t) − β(t) → 0 as t→ −∞, we obtain

∫ t

−∞

d

dτ

(
(x̄− β)′P (x̄− β)

)
dτ =

(
x̄(t) − β(t)

)′
P

(
x̄(t) − β(t)

)
.

Expanding the left-hand side, we conclude that

∫ t

−∞

d

dτ

(
(x̄− β)′P (x̄− β)

)
dτ =

∫ t

−∞
x̄(A′P + PA)x̄+ 2x̄(PBu+ P B̄d− P β̇ −A′Pβ)

+2β′P (β̇ −Bu− B̄d) dτ =
(
x̄(t) − β(t)

)′
P

(
x̄(t) − β(t)

)
.

Using this, we can write

JMEE = (x̄− β)′P (x̄− β) +

∫ t

−∞
x̄(−A′P − PA+ C ′QC)x̄

− 2x̄′(PBu+ PB̄d− P β̇ −A′Pβ + C ′Qy) − 2β′P (β̇ −Bu− B̄d) + y′Qy + d′Rddτ

To carry out the square-completion argument we combine all the terms in d into a single
quadratic form:

− 2(x̄′ − β′)PB̄d+ d′Rd = (d′ − (x̄′ − β)PB̄R−1)R(d−R−1B̄′P (x̄− β))

− x̄P B̄R−1B̄′P x̄− βP B̄R−1B̄′Pβ + 2x̄′PB̄R−1B̄′Pβ.

Replacing this in JMEE, we conclude that

JMEE = (x̄− β)′P (x̄− β) +

∫ t

−∞
x̄
(
−A′P − PA+ C ′QC − PB̄R−1B̄′P

)
x̄

− 2x̄′
(
PBu− P β̇ − (A′P + PB̄R−1B̄′P )β + C ′Qy

)

− 2β′P (β̇ −Bu) − βP B̄R−1B̄′Pβ + y′Qy

+ (d′ − (x̄′ − β)PB̄R−1)R(d−R−1B̄′P (x̄− β)) dτ.

Picking P to be the solution to the ARE (4.5) and the signal β to satisfy

P β̇ = −(A′P + PB̄R−1B̄′P )β + PBu+ C ′Qy = 0
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⇔ β̇ = (A− P−1C ′QC)β +Bu+ P−1C ′Qy, (4.9)

we obtain

JMEE = J0 + (x̄− β)′P (x̄− β) +

∫ t

−∞
(d′ − (x̄′ − β)PB̄R−1)R(d−R−1B̄′P (x̄− β)) dτ,

where

J0 :=

∫ t

−∞
−2β′P (β̇ −Bu) − βP B̄R−1B̄′Pβ + y′Qy.

This criteria is minimized by setting

x̄(t) = β(t), d(τ) = R−1B̄′P
(
x̄(τ) + β(τ)

)
, ∀τ < t,

which, together with the differential equation (4.3), completely define the optimal trajectory
x̄(τ), τ ≤ t that minimizes JMEE. Moreover, (4.9) computes exactly the MEE x̂(t) = x̄(t) =
β(t). Note that under this choice of d, we have

( ˙̄x− β̇) = (A+ B̄R−1B̄′P )(x̄ − β) + P−1C ′Q(Cβ − y).

Therefore x̄ − β → 0 as t → −∞ (assuming that u, y, β → 0 as t → −∞) because −A −
B̄R−1B̄′P is asymptotically stable.

4.3 Linear Quadratic Gaussian (LQG) estimation

The MEE introduced before also has a stochastic interpretation. To state it, we consider
again the continuous-time LTI system

ẋ = Ax+Bu+ B̄d, y = Cx+ n, x ∈ R
n, u ∈ R

k, d ∈ R
q , y ∈ R

m,

but now assume that the disturbance d and the measurement noise n are uncorrelated
zero-mean Gaussian white noise stochastic processes with co-variance matrices

E[d(t)d′(τ)] = δ(t− τ)R−1, E[n(t)n′(τ)] = δ(t− τ)Q−1, R,Q > 0.

The MEE state estimate x̂(t) given by equation (4.6) in Section 4.2 also minimizes the Sidebar 21: In this
context, the estimator (4.6)
is usually called a Kalman
filter .

asymptotic norm of the estimation error

Matlab hint 4: kalman

computes the optimal
MEE/LQG estimator gain L.

JLQG := lim
t→∞

E[‖x(t) − x̂(t)‖2]

This is consistent with what we saw before regarding the roles of the matrices Q and R in
MEE:

1. A large Q corresponds to little measurement noise and leads to state estimators that
respond fast to changes in the measured output.

2. A large R corresponds to small disturbances and leads to state-estimates that respond
cautiously (slowly) to unexpected changes in the measured output.
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4.4 LQR/LQG output feedback

We now go back to the problem of designing an output-feedback controller for the following
continuous-time LTI process:

ẋ = Ax +Bu+ B̄d, x ∈ R
n, u ∈ R

k, d ∈ R
q ,

y = Cx + n, y, n ∈ R
m,

z = Gx +Hu, z ∈ R
`

Suppose that we designed a state-feedback controller

u = −Kx (4.11)

that solves an LQR problem and constructed an LQG/MEE state-estimator

˙̂x = (A− LC)x̂+Bu+ Ly.

We can obtain an output-feedback controller by using the estimated state x̂ in (4.11), insteadMatlab hint 5:

reg(sys,K,L) computes the
LQG/LQR positive
output-feedback controller
for the process sys with
regulator gain K and
estimator gain L

of the true state x. This leads to the following output-feedback controller

˙̂x = (A− LC)x̂+Bu+ Ly = (A− LC −BK)x̂+ Ly, u = −Kx̂,

with negative-feedback transfer matrix given by

Ĉ(s) = K(sI −A+ LC +BK)−1L.

This is usually known as an LQG/LQR output-feedback controller . Since both A−BK and
A− LC are asymptotically stable, the separation principle guarantees that this controller
makes the closed-loop system asymptotically stable.

Exercise 10. Verify that the LQG/LQR controller makes the closed-loop asymptotically
stable. �

Solution to Exercise 10. To verify that an LQG/LQR controller makes the closed-loop asymp-
totically stable, we collect all the equations that define the closed-loop system:

ẋ = Ax+Bu+ B̄d, y = Cx+ n, z = Gx+Hu

˙̂x = (A− LC)x̂+Bu+ Ly, u = −Kx̂.

To check the stability of this system it is more convenient to consider the dynamics of the
estimation error e := x− x̂ instead of the the state estimate x̂. To this effect we replace in
the above equations x̂ by x− e, which yields:

ẋ = Ax+Bu+ B̄d = (A −BK)x+BKe+ B̄d, z = (G−HK)x+HKe,

ė = (A− LC)e+ B̄d− Ln, u = −K(x− e).

This can be written in matrix notation as
[
ẋ
ė

]

=

[
A−BK BK

0 A− LC

][
x
e

]

+

[
B̄ 0
B̄ −L

][
d
n

]

, z =
[
G−HK HK

]
[
x
e

]

.

Stability of the closed loop follows from the triangular structure of this system and the fact
that the matrices A−BK and A− LC are both Hurwitz.
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4.5 Loop transfer recovery (LTR)

We saw in Chapter #3 that a state-feedback controller

u = −Kx

for the process (4.10) has desirable robustness properties and that we can even shape its
open-loop gain

L̂(s) = K(sI −A)−1B

by appropriate choice of the LQR weighting parameter ρ and the controlled output z.

Suppose now that the state is not accessible and that we constructed an LQG/LQR
output-feedback controller with negative-feedback transfer matrix given by

Ĉ(s) = K(sI −A+ LC +BK)−1L,

where L := SC ′Q and S is a solution to the dual ARE

AS + SA′ + B̄R−1B̄′ − SC ′QCS = 0.

for which A− LC is Hurwitz.

In general there is not guarantee that LQG/LQG controllers will inherit the open-loop
gain of the original state-feedback design. However, for processes that do not have transmis-
sion zeros in the closed right-hand-side complex plane, one can recover the LQR open-loop
gain by appropriate design of the state-estimator:

Theorem 7 (Loop transfer recovery). Suppose that the transfer function

P̂ (s) := C(sI −A)−1B

from u to y is square (k = m) and has no transmission zeros in the closed right half-place.
Selecting Sidebar 22: B̄ = B

corresponds to an input
disturbance since the process
becomes ẋ = Ax + B(u + d).

B̄ := B, R := I, Q := σI, σ > 0,

the open-loop gain for the output-feedback LQG/LQR controller converges to the open-loop
gain for the LQR state-feedback controller over a range of frequencies [0, ωmax] as we make Sidebar 23: In general, the

larger ωmax is, the larger σ

needs to be for the gains to
match.

σ → +∞, i.e.,

C(jω)P (jω)
σ → +∞−−−−−−−−−−−→ L̂(jω), ∀ω ∈ [0, ωmax]. �

Attention! 1. To achieve loop-gain recovery we need to chose Q = σI , regardless of the
noise statistics.

2. One should not make σ larger than necessary because we do not want to recover the
(slow) −20dB/decade magnitude decrease at high frequencies. In practice we should
make σ just large enough to get loop-recovery until just above or at cross-over. For
larger values of ω, the output-feedback controller may actually behave much better
than the state-feedback one.

3. When the process has zeros in the right half-plane, loop-gain recovery will generally
only work up to the frequencies of the nonminimum-phase zeros.

When the zeros are in the left half-plane but close to the axis, the closed-loop will not
be very robust with respect to uncertainty in the position of the zeros. This is because
the controller will attempt to cancel these zeros. �
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4.6 Optimal set-point

Often one wants the controlled output z to converge as fast as possible to a given nonzero
constant set-point value r, corresponding to an equilibrium point (xeq, ueq) of

ẋ = Ax +Bu, z = Gx +Hu, x ∈ R
n, u ∈ R

k, z ∈ R
`, (4.12)

i.e., a pair (xeq, ueq) for whichExercise 11: Show that for
` = 1 we can take ueq = 0,
when the matrix A has an
eigenvalue at the origin and
this mode is observable
through z. Note that in this
case the process already has
an integrator.

Solution: just take xeq to be
the corresponding
eigenvector, scaled so that
Gxeq = 1.

{

Axeq +Bueq = 0

r = Gxeq +Hueq

⇔
[
−A B
−G H

]

(n+`)×(n+k)

[
−xeq

ueq

]

=

[
0
r

]

. (4.13)

This corresponds to an LQR criterion of the form

JLQR :=

∫ ∞

0

z̃(t)′Q̄z̃(t) + ρ ũ′(t)R̄ũ(t) dt, (4.14)

where z̃ := z − r, ũ := u− ueq.

To understand when this is possible, three distinct cases should be considered:

1. When the number of inputs k is strictly smaller than the number of controlled outputs
`, we have an under-actuated system. In this case, the system of equations (4.13)
generally does not have a solution because it presents more equations than unknowns.

2. When the number of inputs k is equal to the number of controlled outputs `, (4.13)Attention! This
Rosenbrock’s matrix is
obtained by regarding the
controller output as the only
output of the system.

always has a solution as long as the Rosenbrock’s system matrix

P (s) :=

[
sI −A B
−G H

]

is nonsingular for s = 0. This means that s = 0 should not be an invariant zero ofSidebar 24: Recall that a
transmission zero of a
transfer matrix is always an
invariant zero of its
state-space realizations.

the system and therefore it cannot also be a transmission zero of the transfer function
G(sI − A)−1B +H .

Intuitively, one should expect problems when s = 0 is an invariant zero of the system
because when the state converges to an equilibrium point, the control input u(t) must
converge to a constant. By the zero-blocking property one should then expect the
controlled output z(t) to converge to zero and not to r.

3. When the number of inputs k is strictly larger than the number of controlled outputs
` we have an over-actuated system and (4.13) generally has multiple solutions.

When P (0) is full row-rank, i.e., when it has n + ` linearly independent rows, the
(n+ `) × (n + `) matrix P (0)P (0)′ is nonsingular and one solution to (4.13) is given
byExercise 12: Verify that

this is so by direct
substitution of the
“candidate” solution in
(4.13).

Sidebar 25:

P (0)′
`

P (0)P (0)′
´

−1
is called

the pseudo-inverse of P (0).

[
−xeq

ueq

]

= P (0)′
(
P (0)P (0)′

)−1
[
0
r

]

Also in this case, s = 0 should not be an invariant zero of the system because otherwise
P (0) cannot be full rank.
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4.6.1 State-feedback: Reduction to optimal regulation

The optimal set-point problem can be reduced to that of optimal regulation by considering
an auxiliary system with state x̃ := x− xeq, whose dynamics are:

˙̃x = Ax+Bu = A(x − xeq) +B(u− ueq) + (Axeq +Bueq)

z̃ = Gx+Hu− r = G(x− xeq) +H(u− ueq) + (Gxeq +Hueq − r)

The last terms on each equation cancel because of (4.13) and we obtain

˙̃x = Ax̃+Bũ, z̃ = Gx̃+Hũ. (4.15)

We can then regard (4.14) and (4.15) as an optimal regulation problem for which the optimal
solution is given by

ũ(t) = −Kx̃(t)

as in Theorem 1. Going back to the original input and state variables u and x, we conclude
that the optimal control for the set-point problem defined by (4.12) and (4.14) is given by

u(t) = −K
(
x(t) − xeq

)
+ ueq , t ≥ 0. (4.16)

Since the solution to (4.13) can be written in form

xeq = Fr, ueq = Nr,

for appropriately defined matrices F and N , this corresponds to the control architecture in
Figure 4.2. Sidebar 26: As seen in

Exercise 11, the feed-forward
term Nr is absent when the
process has an integrator.

−+ +

+

PSfrag replacements

r

x

xeq

z
u

ueq

ẋ = Ax + BuKF

N

Figure 4.2. Linear quadratic set-point control with state feedback

Closed-loop transfer functions To determine the transfer function from the reference
r to the control input u, we use the diagram in Figure 4.2 to conclude that

û = Nr̂ +KFr̂ −K(sI −A)−1Bû ⇔ û =
(
I + L̂(s)

)−1
(N +KF )r̂,

where L̂(s) := K(sI − A)−1B is the open-loop gain of the LQR state-feedback controller.
We therefore conclude that

1. When the open-loop gain L̂(s) is small we essentially have

û ≈ (N +KF )r̂.

Since at high frequencies L̂(s) falls at −20dB/dec the transfer function from r to u Sidebar 27: N + KF is
always nonzero since
otherwise the reference
would not affect the control
input.

will always converge to N +KF 6= 0 at high frequencies.
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2. When the open-loop gain L̂(s) is large we essentially have

û ≈ L̂(s)−1(N +KF )r̂.

To make this transfer function small we necessarily need to increase the open-loop
gain L̂(s).

The transfer function from r to the controlled output z can be obtained by composing
the transfer function from r to u just computed with the transfer function from u to z:

ẑ = Ĝ(s)
(
I + L̂(s)

)−1
(N +KF )r̂,

where Ĝ(s) := G(sI −A)−1B +H . We therefore conclude that

1. When the open-loop gain L̂(s) is small we essentially have

ẑ ≈ Ĝ(s)(N +KF )r̂,

and therefore the closed-loop transfer function mimics that of the process.

2. When the open-loop gain L̂(s) is large we essentially have

ẑ ≈ Ĝ(s)L̂(s)−1(N +KF )r̂.

Moreover, from Kalman’s equality we also have that ‖L̂(jω)‖ ≈ 1√
ρ
‖Ĝ(jω)‖ when

‖L̂(jω)‖ � 1, R := ρI , and H = 0 (cf. Section 3.3). In this case we obtainSidebar 28: Since z will
converge to a constant r, we
must have ‖ẑ(0)‖ = ‖r̂(0)‖
and therefore when
‖L̂(0)‖ � 1 we must have
‖N + KF‖ ≈ √

ρ.

‖ẑ(ω)‖ ≈ ‖N +KF‖√
ρ

‖r̂(ω)‖,

which shows a “flat” Bode plot from r to z.

4.6.2 Output-feedback

When the state is not accessible we need to replace (4.16) by

u(t) = −K
(
x̂(t) − xeq

)
+ ueq , t ≥ 0,

where x̂ is the state-estimate produced by an LQG/MEE state-estimator

˙̂x = (A− LC)x̂+Bu+ Ly = (A− LC −BK)x̂+BKxeq +Bueq + Ly.

Defining x̄ := xeq − x̂ and using the fact that Axeq +Bueq = 0, we conclude that

˙̄x = −(A− LC −BK)x̂+ (A−BK)xeq − Ly = (A− LC −BK)x̄− L(y − Cxeq).

This allow us to re-write the equations for the LQG/LQR set-point controller as:

˙̄x = (A− LC −BK)x̄− L(y − Cxeq), u = Kx̄+ ueq , (4.17)

which corresponds to the control architecture shown in Figure 4.3.Sidebar 29: When z = y,
we have G = C, H = 0 and
in this case Cxeq = r. This
corresponds to CF = 1 in
Figure 4.3. When the
process has an integrator we
get N = 0 and obtain the
usual unity-feedback
configuration.

Exercise 13. Verify that the LQG/LQR set-point controller (4.17) makes the closed-loop
asymptotically stable.

Hint: Write the state of the closed-loop in terms of x− xeq and e := x− x̂. �
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Figure 4.3. LQG/LQR set-point control

Closed-loop transfer functions The closed-loop transfer functions from the reference
r to the control input u and controlled output z are now given by

û =
(
I + Ĉ(s)P̂ (s)

)−1
(N + Ĉ(s)CF )r̂,

ŷ = Ĝ(s)
(
I + Ĉ(s)P̂ (s)

)−1
(N + Ĉ(s)CF )r̂,

where

Ĉ(s) := K(sI −A+ LC +BK)−1L, P̂ (s) := C(sI −A)−1B.

When LTR succeeds, i.e., when

Ĉ(jω)P̂ (jω) ≈ L̂(jω), ∀ω ∈ [0, ωmax],

the main difference between these and the formulas seen before for state feedback is th
fact that the matrix N + KF multiplying by r̂ has been replaced by the transfer matrix
N + Ĉ(s)CF .

When N = 0, this generally leads to smaller transfer functions when the loop gain is
low, because we now have

û ≈ Ĉ(s)CF r̂, ŷ ≈ Ĝ(s)Ĉ(s)CF r̂,

and Ĉ(s) falls at least at −20dB/dec.

4.7 LQR/LQG with Matlab

Matlab Hint 4 (kalman). The command [est,L,P]=kalman(sys,QN,RN) computes the
optimal LQG estimator gain for the process

ẋ = Ax+ Bu+ BBd, y = Cx+ n,

where d(t) and n(t) are uncorrelated zero-mean Gaussian noise processes with co-variance
matrices

E
[
d d′

]
= QN, E

[
nn′] = RN.

sys should be a state-space model defined by sys=ss(A,[B BB],C,0). This command
returns the optimal estimator gain L, the solution P to the corresponding Algebraic Riccati
Equation, and a state-space model est for the estimator. The inputs to est are [u; y] and
its outputs are [ŷ; x̂]. �

Matlab Hint 5 (reg). The command reg(sys,K,L) computes a state-space model for a
positive output-feedback LQG/LQG controller for the process with state-space model sys
with regulator gain K and estimator gain L. �
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4.8 LTR design example

Example 2 (Aircraft roll-dynamics). Figure 4.4(a) shows Bode plots of the open-loop
gain for the state-feedback LQR state-feedback controller vs. the open-loop gain for several
output-feedback LQG/LQR controllers The LQR controller was designed using the con-
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Figure 4.4. Bode plots of the open-loop gain and closed-loop step response

trolled output z :=
[

θ γθ̇
]′

, γ = .1 and ρ = .01. For the LQG state-estimators we used

B̄ = B and RN = σ for several values of σ. We can see that, as σ decreases, the range
of frequencies over which the open-loop gain of the output-feedback LQG/LQR controller
matches that of the state-feedback LQR state-feedback increases. Moreover, at high fre-
quencies the output-feedback controllers exhibit much faster (and better!) decays of the
gain’s magnitude. �

4.9 Exercises

Exercise 14. Assume that the pair (−A, B̄) is stabilizable and that the pair (A,C) is
observable. Prove thatSidebar 30: This result is

less interesting than
Theorem 6 because often
(A, C) is not observable, just
detectable. This can happen
when we augmented the
state of the system to
construct a “good”
controlled output z but these
augmented states are not
observable.

(i) There exists a symmetric positive definite solution P to the ARE (4.5), for which
−A− B̄R−1B̄′P is Hurwitz. �

(ii) There exists a symmetric positive definite solution S := P−1 to the dual ARE (4.7),
for which A− LC is Hurwitz.

Solution to Exercise 14. Part (i) is a direct application of Theorem 3 for N = 0, using the
fact that observability of the pair (−A,C ′QC) is equivalent to observability of (A,C) by
the eigenvector test.

The fact that S := P−1 satisfies (4.7) has already been established from the construction
of the dual ARE (4.7). To prove (ii) it remains to show that A − LC is Hurwitz. To this
effect we re-write the symmetric of (ii) as

(A′ − C ′QCP−1)P + P (A− P−1C ′QC) + C ′QC + PB̄R−1B̄′P = 0.
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and therefore

(A− LC)′P + P (A− LC) = −S, S := C ′QC + PB̄R−1B̄′P.

The stability of A−LC then follows from the observability Lyapunov test as long as we are
able to establish the observability of the pair (A− LC, S).

To show that the pair (A − LC, S) is indeed observable we use the eigenvector test. By
contradiction assume that x is an eigenvector of A− LC that lies in the kernel of S, i.e.,

(
A− LC

)
x = λx,

(
C ′QC + PB̄R−1B̄′P

)
x = 0.

These equations imply that Cx = 0 and B̄′Px = 0 and therefore

Ax = λx, Cx = 0,

which contradicts the fact that the pair (A,C) is observable. �
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Chapter 5

LQG/LQR and the Youla
Parameterization

Summary

1. Youla parameterization of all stabilizing controllers

2. Q-design of linear controllers

3. Convexity

5.1 Youla Parameterization

Consider a continuous-time LTI system of the form:

ẋ = Ax+Bu, y = Cx, x ∈ R
n, u ∈ R

k, y ∈ R
m, (CLTI)

where u is the control signals and y the measured output. We saw in Chapter 3 that an
LQG/LQR set-point controller is of the form

˙̂x = (A− LC)x̂+Bu+ Ly, u = −K(x̂− xeq) + ueq, (5.1)

where (xeq, ueq) is an equilibrium pair consistent with the desired set-point and A − LC,
A−BK are Hurwitz.

Suppose however, that instead of (5.1) we use

˙̂x = (A− LC)x̂+Bu+ Ly, u = −K(x̂− xeq) + ueq + v, (5.2)

where v is the output of an asymptotically stable system driven by the output estimation
error ỹ := y − Cx̂:

ẋQ = AQxQ +BQỹ, v = CQxQ +DQỹ, ỹ ∈ R
m, v ∈ R

k, (5.3)

with AQ Hurwitz. Defining x̄ := xeq − x̂ and using the fact that Axeq + Bueq = 0, we can
re-write (5.2) and the output estimation error as Sidebar 31: When the

transfer matrix of (5.3) is
equal to zero, we recover the
original LQG/LQR set-point
controller.

˙̄x = (A− LC −BK)x̄− L(y − Cxeq) −Bv

u = Kx̄+ ueq + v

ỹ = Cx̄ + (y − Cxeq)
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Figure 5.1. LQG/LQR set-point control with Q block.

which corresponds to the control architecture shown in Figure 5.1.

Since A−LC is Hurwitz, the output estimation error ỹ converges to zero and therefore
v will also converge to zero because AQ is Hurwitz. We thus conclude that the controller
(5.2)–(5.3) will have the same exact asymptotic behavior as (5.1). In particular, it will also
be asymptotically stable. However, these two controllers will generally result in completely
different transient behaviors and different closed-loop transfer functions.

We just saw that the controller (5.2)–(5.3) has the property that it stabilizes the closed
loop for every LTI asymptotically stable LTI system (5.3). It turns out that this controller
architecture has several other important properties, summarized in the following result:

Theorem 8 (Youla Parameterization).

P3 The controller (5.2)–(5.3) makes the closed-loop asymptotically stable for every Hur-
witz matrix AQ.

P4 For every controller transfer function Ĉ(s) that asymptotically stabilizes (CLTI), thereAttention! This realization
will generally not be
minimal but it is always
stabilizable and detectable.

exist matrices AQ, BQ, CQ, DQ such that (5.2)–(5.3) is a realization for Ĉ(s).

P5 The closed-loop transfer function T̂ (s) from the reference to any signal in Figure 5.1
Sidebar 32: When noise
and disturbances are present,
the transfer functions from
these signals to any signal in
Figure 5.1 can also be
expressed as in (5.4).

can always be written as

T̂ (s) = T̂0(s) + L̂(s)Q̂(s)R̂(s), (5.4)

where Q̂(s) := CQ(sI −AQ)−1BQ +DQ is the transfer function of (5.3).

Attention! Different inputs
and outputs will correspond
to different transfer matrices
T̂0(s), L̂(s), and R̂(s) but
the closed-loop transfer
matrices will always be affine
in Q̂(s).

P3 follows from the previous discussion, but P4 and P5 are nontrivial. The proof of
these properties can be found in [2, Chapter 5].

Attention! Theorem 8 allows one to construct every controller that stabilizes an LTI pro-
cess and every stable closed-loop transfer matrix using a single LQG/LQR controller, by
allowing Q̂(s) to range over the space of BIBO stable transfer matrices.

Because of this we say that (5.4) is a parameterization of the set of all stable closed-loop
transfer matrices for the process (CLTI). �
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Exercise 15. Show that the controller (5.2)–(5.3) can also be realized has

[
˙̄x
ẋQ

]

=

[
A− LC −BK −BDQC −BCQ

BQC AQ

] [
x̄
xQ

]

−
[
L+BDQ

−BQ

]

(y − Cxeq)

u =
[
K +DQC CQ

]
[
x̄
xQ

]

+DQ(y − Cxeq) + ueq. �

5.2 Q-design

The Youla parameterization is a powerful theoretical result with multiple practical appli-
cations. We use it here to improve upon LQG/LQR controllers by numerical optimization.
To this effect, suppose that we have designed an LQG/LQR controller for (CLTI) but are
not satisfied with some of the closed-loop responses. For concreteness, we assume that we
wish to enforce that

1. The step response from the reference r(t) ∈ R to a scalar output s(t) ∈ R satisfies Sidebar 33: To enforce a
1% settling time smaller
than or equal to tsettling one
would chose zmin(t) = .99,
zmax(t) = 1.01, ∀t ≥ tsettling.

smin(t) ≤ s(t) ≤ smax(t), ∀t ∈ [tmin, tmax]. (5.5)

2. The frequency response from the reference r(t) ∈ R to a scalar output w(t) satisfies

|ĥ(jω)| ≤ `(ω), ∀ω ∈ [ωmin, ωmax], (5.6)

where ĥ(s) is the transfer function from r to w.

The basic idea is to search for a k × m BIBO stable transfer matrix Q̂(s), for which the
controller in Figure 5.1 satisfies the desired properties. The search for the transfer function
will be carried out numerically.

For numerical tractability, one generally starts by selectingN , k×m BIBO stable transfer
matrices

{Q̂1(s), Q̂2(s), · · · , Q̂N},

and restricts the search to linear combinations of these, i.e., to transfer matrices of the form

Q̂(s) :=

N∑

i=1

αiQ̂i(s), (5.7)

where α :=
[
α1 α2 · · · αN

]
is an N -parameter vector to be optimized. For this choice

of Q̂(s), any closed-loop transfer function can be written as

T̂ (s) = T̂0(s) +

N∑

i=1

αiT̂i(s), T̂i(s) := L̂(s)Q̂i(s)R̂(s).

Therefore the step response s(t) and the transfer function ĥ(s) can also be expressed as Sidebar 34: The si(t) and

ĥi(s) can be computed using
a Simulink diagram as in
Figure 5.1.s(t) = s0(t) +

N∑

i=1

αisi(t), ĥ(s) = ĥ0(s) +

N∑

i=1

αiĥi(s). (5.8)

The requirements (5.5)–(5.6), lead to the following feasibility problem:
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Problem 1 (Feasibility). Find a N -vector α :=
[
α1 α2 · · · αN

]
such that

∣
∣
∣ĥ0(jω) +

N∑

i=1

αiĥi(jω)
∣
∣
∣ ≤ `(ω), ∀ω ∈ [ωmin, ωmax],

smin(t) ≤ s0(t) +

N∑

i=1

αisi(t) ≤ smax(t), ∀t ∈ [tmin, tmax]. �

From a numerical perspective, it is often preferable to work with an optimization problem:

Problem 2 (Minimization). Find an N -vector α :=
[
α1 α2 · · · αN

]
thatMatlab hint 6: fmincon

can be used to solve
nonlinear constrained
optimizations of this type.
However, this function does
not fully explore convexity.

minimizes J := max
ω∈[ωmin,ωmax]

1

`(ω)

∣
∣
∣ĥ0(jω) +

N∑

i=1

αiĥi(jω)
∣
∣
∣,

subject to smin(t) ≤ s0(t) +

N∑

i=1

αisi(t) ≤ smax(t), ∀t ∈ [tmin, tmax].

Problem 1 has a feasible solution if and only if the minimum J in Problem 2 is smaller than
or equal to one. �

Sidebar 34 (Computing the si(t) and ĥi(s)). The step response s0(t) and the transfer
function h0(s) correspond to the original LQG/LQR controller (Q̂(s) = 0).

To compute si(t) and hi(s), one sets (5.3) to be a realization of Q̂i(s) and computes the
closed-loop step response and transfer function. From (5.8), we know that these must beMatlab hint 7: When

using MATLAB/Simulink to
compute these transfer
functions, one generally does
not obtain minimal
realization, so one may want
to use minreal(sys) to
remove unnecessary states.

equal to

s0(t) + si(t), ĥ0(s) + ĥi(s),

from which we can recover si(t) and ĥi(s) by subtracting s0(t) and ĥ0(s), respectively. �

Sidebar (Selecting the Q̂i(s)). There is no systematic procedure to select the Q̂i(s).
Often one decides on a few positions for the poles

{p1, p2, . . . , pq},

and then selects the Q̂i(s) to be k ×m transfer matrices with all entries but one equal to
zero. The nonzero entries will be of the form

si
∏

j=1(s− pj)
, i ∈ {1, . . . , q},

which leads to N := k×m× q distinct transfer matrices. To restrict the Q̂i(s) to be strictly
proper one would only use i < q. �

5.3 Convexity

One needs to be quite careful in choosing which criteria to optimize.

A closed-loop control specification is said to be convex if given any two closed-loop trans-
fer functions T̂1(s) and T̂2(s) that satisfy the constraint, the closed-loop transfer function

T̂1(s) + T̂2(s)

2
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also satisfies the constraint. A closed-loop optimization criteria is said to be convex if given
any two closed-loop transfer functions T̂1(s) and T̂2(s) for which the value of the criteria is
J1 and J2, respectively, the closed-loop transfer function

T̂1(s) + T̂2(s)

2

leads to a value for the criteria smaller than or equal to

J1 + J2

2
.

Convex control specifications and criteria are especially appealing from a numerical per-
spective because local minima are always global minima. However, criteria that are convex
but not differentiable can sometimes trap optimization algorithms that do not fully explore
convexity.

Convexity holds for criteria of the type

J := max
t∈[tmin,tmax]

f(s(t), t), J :=

∫ tmax

tmin

f(s(t), t)dt

J := max
ω∈[ωmin,ωmax]

f
(
ĥ(jω), ω

)
, J :=

∫ ωmax]

ωmin

f
(
ĥ(jω), ω

)
dω,

or control specifications of the type

f(s(t), t) ≤ 0, ∀t ∈ [tmin, tmax],

∫ tmax

tmin

f(s(t), t)dt ≤ 0

f
(
ĥ(jω), ω

)
, ∀ω ∈ [ωmin, ωmax],

∫ ωmax]

ωmin

f
(
ĥ(jω), ω

)
dω,

where s(t) is a closed-loop “time-response,” ĥ(s) a closed-loop “frequency response,” and
f(α, β) is a convex function on α, for every β. However, the criteria on the left-hand-side
are generally not differentiable. This is the case of the criterion in Problem 2.

The settling time

J := min{T ≥ 0 : |s(t) − 1| ≤ 1%, ∀t ≥ T},

is not convex and therefore one should avoid using it directly as an optimization criteria.
Instead, one should solve a sequence of problems in which one successfully enforces decreas-
ing upper-bounds on the settling time, until the problem becomes unfeasible. The convexity
properties of controller specifications is extensively discussed in [1, Chapter 8].

47



48



Bibliography

[1] S. P. Boyd and C. H. Barratt. Linear Controller Design: Limits of Performance.
Prentice-Hall, New Jersey, 1991.

[2] G. E. Dullerud and F. Paganini. A Course in Robust Control Theory. Number 36 in
Texts in Applied Mathematics. Springer, New York, 1999.

[3] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic
Systems. Prentice Hall, Upper Saddle River, NJ, 4th edition, 2002.

[4] H. Kwakernaak and R. Sivan. Linear optimal control systems. Wiley Interscience, New
York, 1972.

[5] R. S. Sánchez-Peña and M. Sznaier. Robust Systems: Theory and Applications. Adaptive
and Learning Systems for Signal Processing Communications, and Control. John Wiley
& Sons, Inc., New York, 1998.

[6] J. V. Vegte. Feedback Control Systems. Prentice Hall, New Jersey, 3rd edition, 1994.

49



Index

Q-design, 45–46
kalman, 39
lqr, 6
nyquist, 27
reg, 39
sigma, 26

aircraft roll-dynamics, 24–26, 40
algebraic Riccati equation, 6, 9–15, 31
ARE, see algebraic Riccati equation

Bryson’s rule, 4, 7

certainty equivalence, 29
cheap control, 21–24

closed-loop poles, 21–23
LQR cost, 23–24

complementary sensitivity function, 19
constructibility Gramian, 30
controlled output, 3
convex

control specification, 46
optimization criterion, 47

convexity, 46–47

domain of the Riccati operator, 9
dual algebraic Riccati equation, 31, 40
dual ARE, see dual algebraic Riccati equa-

tion

feedback invariant, 5

gain margin, 19

Hamiltonian matrix, 9, 21
Hurwitz matrix, 6

Kalman
equality, 18
filter, 33
inequality, 18

linear quadratic Gaussian estimation, 33
linear quadratic regulation, 3–6, 17–26
loop-shaping, 20–21

loop transfer recovery, 35
LQG, see linear quadratic Gaussian esti-

mation
LQG/LQR controller, 34, 35
LQR, see linear quadratic regulation
LTR, see loop transfer recovery

measured output, 3
MEE, see minimum-energy estimation
minimum-energy estimation, 30–33

Nyquist plot, 19, 27
Nyquist Stability Criterion, 28

orthogonal matrix, 24
over-actuated system, 36

phase margin, 19
pseudo-inverse, 36

roll-off rate, 21
root locus, 23
Rosenbrock’s system matrix, 36

sensitivity function, 19
separation principle, 34
set-point control, 36–39
square completion, 5
stability matrix, 6
stabilizing solution to the ARE, 10
stable subspace, 11

under-actuated system, 36

Youla parameterization, 43–44

50


