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In the last lecture we discussed the general scheme for

feedback control from estimated states, involving
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Feedback from Estimated States

In the last lecture we discussed the general scheme for

feedback control from estimated states, involving
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Feedback from Estimated States

In the last lecture we discussed the general scheme for

feedback control from estimated states, involving

a state feedback gain K

a state estimator (observer), with gain L

To design

�

we used

the Bass-Gura formula to

make

� � 	 � ��� Hurwitz

To design

�

in the ob-

server, we used duality

and the same Bass-Gura

formula to make

� � 	 � � �� Hurwitz
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Feedback from Estimated States

By designing K such that (A − BK) is Hurwitz, with the desired

eigenvalues, we can guarantee that the closed-loop system

will be asymptotically and BIBO stable, and will have the

specified dynamic response.
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Feedback from Estimated States

By designing K such that (A − BK) is Hurwitz, with the desired

eigenvalues, we can guarantee that the closed-loop system

will be asymptotically and BIBO stable, and will have the

specified dynamic response.

By designing L such that (A − LC) is Hurwitz, we guarantee

that the observer will be asymptotically stable, and the

estimate of the states x̂(t) will converge to the real states

x(t) as t → ∞.
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Feedback from Estimated States

By designing K such that (A − BK) is Hurwitz, with the desired

eigenvalues, we can guarantee that the closed-loop system

will be asymptotically and BIBO stable, and will have the

specified dynamic response.

By designing L such that (A − LC) is Hurwitz, we guarantee

that the observer will be asymptotically stable, and the

estimate of the states x̂(t) will converge to the real states

x(t) as t → ∞.

But K and the observer are designed independently . . . Will

they work the same when we put them together in a

feedback from estimated states scheme?
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Feedback from Estimated States

Three basic questions arise regarding feedback from estimated

states:

The closed-loop eigenvalues were set as those of (A − BK)

by using state feedback

u = −Kx.

Would we still have the same eigenvalues if we do feedback

from estimated states

u = −Kx̂ ?
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by using state feedback
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Feedback from Estimated States

Three basic questions arise regarding feedback from estimated

states:

The closed-loop eigenvalues were set as those of (A − BK)

by using state feedback

u = −Kx.

Would we still have the same eigenvalues if we do feedback

from estimated states

u = −Kx̂ ?

Would the interconnection affect the observer eigenvalues,

those of (A − LC) ?

What would be the effect of the observer in the closed-loop

transfer function?
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Feedback from Estimated States

To answer these questions we take a look at the state equations

of the full system, putting together plant and observer, that is,

ẋ = Ax+Bu plant

˙̂x = (A − LC)x̂ + LCx+Bu observer
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Feedback from Estimated States

To answer these questions we take a look at the state equations

of the full system, putting together plant and observer, that is,

ẋ = Ax−BKx̂ + BNr plant

˙̂x = (A − LC)x̂ + LCx−BKx̂ + BNr observer

after replacing u = Nr − Kx̂.
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Feedback from Estimated States

To answer these questions we take a look at the state equations

of the full system, putting together plant and observer, that is,

ẋ = Ax−BKx̂ + BNr plant

˙̂x = (A − LC)x̂ + LCx−BKx̂ + BNr observer

after replacing u = Nr − Kx̂. Packaging these equations in a

more compact form we have





ẋ

˙̂x



 =





A −BK

LC (A − LC − BK)









x

x̂



 +





BN

BN



 r

y =
[

C 0

]





x

x̂




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Feedback from Estimated States

Let’s make a change of coordinates, so that the new

coordinates are the plant state x and the estimation error

ε = x − x̂,




x

ε



 =





x

x − x̂



 =





I 0

I −I





︸ ︷︷ ︸
P





x

x̂





Note that P−1 =
[

I 0
I −I

]−1
=

[

I 0
I −I

]

= P.
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Feedback from Estimated States

Let’s make a change of coordinates, so that the new

coordinates are the plant state x and the estimation error

ε = x − x̂,




x

ε



 =





x

x − x̂



 =





I 0

I −I





︸ ︷︷ ︸
P





x

x̂





Note that P−1 =
[

I 0
I −I

]−1
=

[

I 0
I −I

]

= P. With this equivalence

transformation we get the matrices in the new coordinates as

ĀKL = PAKLP−1 =





(A − BK) BK

0 (A − LC)



 , B̄KL = PBKL =





BN

0





C̄KL = CKLP−1 =
[

C 0

]
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Feedback from Estimated States

The full system in the new coordinates is thus represented as





ẋ

ε̇



 =





(A − BK) BK

0 (A − LC)









x

ε



 +





BN

0



 r

y =
[

C 0

]





x

ε





Because ĀKL is triangular, its eigenvalues are the union of those

of (A − BK) and (A − LC).

Controller and observer do not affect each other in the

interconnection.
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Feedback from Estimated States

Note that the estimation

error is uncontrollable,

hence the observer

eigenvalues will not

appear in the closed

loop transfer function.
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Feedback from Estimated States

The property of independence between control and state

estimation is called the Separation Principle

Separation Principle: The design of the state feedback and the

design of the state estimator can be carried out independently.

The eigenvalues of the closed-loop system are as designed

by the state feedback law, unaffected by the use of a state

estimator.
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Feedback from Estimated States

The property of independence between control and state

estimation is called the Separation Principle

Separation Principle: The design of the state feedback and the

design of the state estimator can be carried out independently.

The eigenvalues of the closed-loop system are as designed

by the state feedback law, unaffected by the use of a state

estimator.

The eigenvalues of the observer are unaffected by the state

feedback law.
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Feedback from Estimated States

The closed-loop transfer function will only have the eigenvalues

arising from (A − BK), since the estimation error is uncontrollable,

Gcl(s) = C(sI − A + BK)−1BN.

Transients in state estimation, however, will be seen at the output,

since the estimation error is observable.
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Feedback from Estimated States

Discrete-Time Control Design

Dead-Beat Control
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Discrete-Time Control Design

For discrete-time state equations

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k],

the design procedure for a state feedback law u[k] = −Kx[k] is

the same as for continuous-time systems.

The same goes for a discrete-time state observer,

x̂[k + 1] = (A − LC)x̂[k] + Bu[k] + Ly[k].

One difference is the location of the desired eigenvalues. E.g.,

for asymptotic stability, they should be inside the unit circle.
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Discrete-Time Control Design

For discrete-time state equations

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k],

the design procedure for a state feedback law u[k] = −Kx[k] is

the same as for continuous-time systems.

The same goes for a discrete-time state observer,

x̂[k + 1] = (A − LC)x̂[k] + Bu[k] + Ly[k].

One difference is the location of the desired eigenvalues. E.g.,

for asymptotic stability, they should be inside the unit circle.

A practical rule to choose desired discrete-time eigenvalues is

1. choose a desired location in continuous-time, say pi

2. translate it to discrete-time using the relation λi = epiT .
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Discrete-Time Control Design

Loci with

constant

damping

�

and

constant

frequencies

�

in

the discrete

complex plane.

In MATLAB this grid

may be obtained

with the zgrid

command.
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Discrete-Time Control Design: Example

Example (Discrete-time speed control of a DC motor). We return

to the DC motor we considered in the examples of the last

lecture. We will suppose that the motor is to be controlled with a

PC. Hence, the controller has to be discrete-time.
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Discrete-Time Control Design: Example

Example (Discrete-time speed control of a DC motor). We return

to the DC motor we considered in the examples of the last

lecture. We will suppose that the motor is to be controlled with a

PC. Hence, the controller has to be discrete-time.

This time, with a view to design a discrete-time

control law, we first discretise the continuous-

time model
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The first design parameter to define is the sam-

pling period

	

.
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Discrete-Time Control Design: Example

Example (Discrete design, step 1: choice of sampling period).

From Shannon’s Sampling Theorem, the sampling frequency

ωs = 2π/T should be at least twice the bandwidth of the

closed-loop system (because we will change the system

bandwidth with the control action).
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Discrete-Time Control Design: Example

Example (Discrete design, step 1: choice of sampling period).

From Shannon’s Sampling Theorem, the sampling frequency

ωs = 2π/T should be at least twice the bandwidth of the

closed-loop system (because we will change the system

bandwidth with the control action).

The specification that we had for the previous continuous-time

design was a settling time ts of about 1s. The rule based on

Shannon’s Theorem would then give a sampling time of less than

T = 0.5s. In practice T is chosen at least 10 to 20 times faster than

the desired closed-loop settling time. Here we choose

T = 0.1s
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Discrete-Time Control Design: Example

Example (Discrete design, step 1: choice of sampling period).

From Shannon’s Sampling Theorem, the sampling frequency

ωs = 2π/T should be at least twice the bandwidth of the

closed-loop system (because we will change the system

bandwidth with the control action).

The specification that we had for the previous continuous-time

design was a settling time ts of about 1s. The rule based on

Shannon’s Theorem would then give a sampling time of less than

T = 0.5s. In practice T is chosen at least 10 to 20 times faster than

the desired closed-loop settling time. Here we choose

T = 0.1s

Note that the maximum sampling speed is limited by the

available computer clock frequency, and thus the time required

for computations and signal processing operations.

Lecture 19: Feedback from Estimated States – p. 16



The University of Newcastle

Discrete-Time Control Design: Example

Example (Discrete design, step 2: discretisation of the plant).

Having defined the sampling-time T , we compute the

discrete-time state matrices

Ad = eAt, and Bd =

∫T

0

eAτB dτ

From MATLAB, we do [Ad,Bd]=c2d(A,B,0.1) and obtain

Ad =





0.3678 0.0563

−0.0011 0.8186



 , Bd =





0.0068

0.1812





As we can verify, the open loop discrete-time eigenvalues are

0.3679 = e(−9.9975×0.1) and 0.8185 = e(−2.0025×0.1)
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Discrete-Time Control Design: Example

Example (Discrete design, step 3: design of discrete feedback

gain). The discrete-time characteristic polynomial is
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Discrete-Time Control Design: Example

Example (Discrete design, step 3: design of discrete feedback

gain). The discrete-time characteristic polynomial is

� �� � � �� 	 � � �� � � � � � � �� 	 � � 	� 
 
 	 � � � � �
	

	 �
�

� � � 
� � �
�

� � � �

For the desired discrete characteristic polynomial, we first obtain the

discrete mapping

� � � � �

of the eigenvalues

� �� 	 � 	 � � �

specified

for the continuous-time system, i.e.,

� � � 	 � � 
 � �� � 
� 
� �

� �
�

� � � � � � �
�

� � � �

which yield the desired discrete characteristic polynomial
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	 �
�

� � � �� � �
�

� � � �
�
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Discrete-Time Control Design: Example

Example (Discrete design, step 3: design of discrete feedback

gain). The discrete-time characteristic polynomial is

� �� � � �� 	 � � �� � � � � � � �� 	 � � 	� 
 
 	 � � � � �
	

	 �
�

� � � 
� � �
�

� � � �

For the desired discrete characteristic polynomial, we first obtain the

discrete mapping

� � � � �

of the eigenvalues

� �� 	 � 	 � � �

specified

for the continuous-time system, i.e.,

� � � 	 � � 
 � �� � 
� 
� �

� �
�

� � � � � � �
�

� � � �

which yield the desired discrete characteristic polynomial

�� �� � � �
	

	 �
�

� � � �� � �
�

� � � �
�

From the coefficients of

�� �� �
and

� �� �

we get the discrete state

feedback gain

¯

�
� �

h � 	 �
�

� � � � � �
�

� � � 
 � � �
�

� � � � 	 �
�

� � � � � i �

h

	 �
�

� � � � �
�

� � � �i
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Discrete-Time Control Design: Example

Example (Discrete design, step 3, continuation). We then

compute, just following the same procedure used in

continuous-time, from the discrete matrices Ad and Bd, the

discrete controllability matrices Cd and C̄d,

Cd =





0.0068555 0.0127368

0.1812645 0.1483875



 , and C̄d =





1 −1.1864

0 1





−1

We thus obtain, in the original coordinates, the discrete-time

feedback gain

Kd = K̄dC̄dC
−1
d =

[

8.3011164 −0.4270676

]

As can be verified with MATLAB, (Ad − BdKd) will have the

desired discrete eigenvalues.
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Discrete-Time Control Design: Example

Example (Discrete design: continuation). In a similar fashion, we

can carry out the design of the discrete-time observer, based on

the discrete-time model of the plant. The output feedback

design is finally implemented on the continuous-time plant

through a Zero Order Hold and a Sampler.

Discrete equivalent plant

�


T

Continuous time plant

ZOH	

� � � �
 � � �

Discrete-time
Observer

�
�


 � � � � � � �

�� � � �
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Discrete-Time Control Design: Example

Example (Discrete design: MATLAB script). We used the following
MATLAB script to compute the gains and run the simulations.

% Continuous-time matrices

A=[-10 1;-0.02 -2];B=[0;2];C=[1 0];D=0;

G=ss(a,B,C,D); % state space system definition

T=0.1; % Sampling time

Gd=c2d(G,T,’zoh’) % discretisation

% Discrete-time feedback gain

Kd=place(Gd.a,Gd.b,exp([-5-i,-5+i]*T))

% Discrete-time observer gain

Ld=place(Gd.a’,Gd.c’,exp([-6-i,-6+i]*T))’

% steady state error compensation

N=inv(Gd.c*inv(eye(2)-Gd.a+Gd.b*Kd)*Gd.b)

% Run simulink diagram

sim(’dmotorOFBK’)

% Plots (after simulations have been run)

subplot(211),plot(y(:,1),y(:,2));grid

subplot(212),stairs(u(:,1),u(:,2));grid
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Discrete-Time Control Design

Example (Discrete design: SIMULINK diagram). We used the

following SIMULINK diagram to run the simulations.

y(t)

u[k]

r Zero−Order
Hold

z

1

Unit Delay

Kd* u Ld* u

Gd.b* u

Gd.a−Ld*Gd.c* u

G.c* u

Matrix
Gain2

G.b* u

Matrix
Gain1

G.a* u

Matrix
Gain

1
s

Integrator

N

Gain

Notice the sampled signals coloured in red (check the option “Sample

Time Colors” in the Format menu). All blocks with discrete-time signals

include a sampler at their input.
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Discrete-Time Control Design: Example

Example (Discrete design: simulations). The following plots show

the response of the closed-loop sampled-data controlled system:

continuous-time output

� � � �

and discrete-time control signal

 � � �

.
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Discrete-Time Design: Peculiarities

Two special differences in the discrete-time design procedure:

The gain

�

for steady state error compensation is, as in

continuous-time, the inverse of the steady-state DC gain of the

closed-loop transfer function. Notice though, that in discrete-time

� �

�

� �� � 	 �
� � �
�

�
�

� � � �
�

˛

˛� � �
�

�

� � � 	 �
� � �
�

�
�

� � � �
�
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Discrete-Time Design: Peculiarities

Two special differences in the discrete-time design procedure:

The gain

�

for steady state error compensation is, as in

continuous-time, the inverse of the steady-state DC gain of the

closed-loop transfer function. Notice though, that in discrete-time

� �

�

� �� � 	 �
� � �
�

�
�

� � � �
�

˛

˛� � �
�

�

� � � 	 �
� � �
�

�
�

� � � �
�

If we implement robust tracking by adding Integral Action into the

state feedback design, notice that the plant augmentation is

different in discrete-time,

�
� �

2

4

�
�

�

	 � �

3

5

since the discrete-integration of the tracking error has to be

implemented as
� � � � � � � � � � � � 
 	 � � � � �
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Discrete-Time Design: Peculiarities

The implementation of the discrete-time integral action in the

diagram should be consistent, i.e. discrete-integration of the

tracking error.

�

�

� � � �

�

�� � � �

˙

	 � � � 	 � � �




� � � �

��
� � �

�
� � �


 � � �

�
�

�

�

�

� �

ZOH

Apart from these two differences, and the locations for the

eigenvalues/poles, the discrete-time design is obtained by

performing the same computations for continuous-time state

feedback and observer design.
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Discrete-Time Design: Dead-Beat Control

A special discrete-time design that has no correlate in

continuous-time is dead-beat control.

A dead-beat response is a response that settles in its final value

at a finite time. This feature arises in a discrete-time system which

has all its poles at z = 0, e.g.,

G(z) =
(7z − 1)(5z − 1)

24z3
,

Step Response
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which will settle in 3 sampling periods (the dynamics is just a

delay of 3 sample periods).
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Discrete-Time Design: Dead-Beat Control

To design a dead-beat controller, we just have to find

�
� to place all

the closed-loop poles at

� � �

. The discrete-time observer can also be

designed dead-beat, with

�
� to place all the observer poles at
� � �

.

The plot shows the response of

the DC motor of the example

controlled to have dead-beat

response (state feedback — no

observer).

There is not much flexibility in

dead-beat control, the only

parameter to change the

response is the sampling period.

Dead-beat usually requires

large control action, which may

saturate actuators.
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Conclusions

We have reviewed the state feedback and state estimator

design procedure, and showed that the Separation Principle

holds: the two designs can be carried out independently
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the choice of desired eigenvalues (which have to be in
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