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Lecture 4: Performance Limitations in MIMO Systems (Ch.6)
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Lecture 3 recap: Introduction to MIMO Feedback

dy dy
T + ut Yt & B Y

—:<f—»- K ¢

@ loop-gain: at output L = GK, atinput L, = KG

@ sensitivity and complimentary sensitivity at output
S=0+L7", T=L(/+L)"
e.g,e=Sr— Sd; — SGd> — Tn

@ sensitivity and complimentary sensitivity at input
Si=(+L)", Ti=L(l+L)"

eg., u= —Tdb
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Lecture 3 recap: Performance in MIMO Systems

@ consider all signals as sinusoids with frequency w and use 2-norm
to quantify amplitude [y (w)[l = /iy lyil?
@ then, with y = G(s)u

@ thus, to bound control error for reference r and disturbance d,

1
7 (S(iw)) < — Yw & [[wpS|e <1
( ( ))— |WP(Iw)| H P ”
@ similarly, for noise
1
a(T(iw)) < - Yw & WrT | <1
(TG)) < s lwr T|
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Remark on sinusoids and H,.-norm

Yyv
>,

@ we assume sinusoid signals throughout, and worst case signals
are then, for a generalized plant z = F(P, K)w

EO
T Tl ~ "7 FUD = 1Pl

@ but, the H..-norm equals the induced 2-norm for any time domain

signal
z(t
”FHoo: max ” ()“2
w(t)#0 [|w(t)]2
Hence, “worst case signal” is always a sinusoid

Lecture 4:Limitations in MIMO systems () FEL3210 MIMO Control 4/36



|
Outline

Performance limitations in MIMO feedback
@ S+T=1
@ RHP zeros and poles

@ interpolation constraints
@ disturbances and RHP zeros

@ The Sensitivity Integral
@ Limitations from input constraints
@ “Limitations” from uncertainty
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Algebraic Limitation|. S+ T =/

From Fan’s Theorem
oi(A) — a(B) < gi(A+ B) < gi(A) + 5(B)

and S+ T =1

Thus, at any frequency w
@ can not make both 5(S) and 5(T) small
@ 5(T)>>1 < 5(S)>>1
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Recap: Zero and pole directions

@ Zero direction: if z is a zero of G(s), then
G(z)u; =0-y;
Normalize so that ut’u, =1, y!y, =1, then we can also write
¥/ G(2)=0-u;
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Recap: Zero and pole directions

@ Zero direction: if z is a zero of G(s), then
G(z)u; =0-y;
Normalize so that ut’u, =1, y!y, =1, then we can also write
¥/ G(2)=0-u;

@ Pole directions: if p is a pole of G(s), then

G(p)up =00 - yp
If G="(p) exist, we can also write

G (P)Yp=0"Up
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Recap: Zero and pole directions

@ Zero direction: if z is a zero of G(s), then
G(z2)u; =0-y;
Normalize so that ut’u, =1, y!y, =1, then we can also write
¥/ G(2) =0 uf

@ Pole directions: if p is a pole of G(s), then
G(p)up =00 - yp
If G=(p) exist, we can also write
G (P)Yp=0"Up
— In the following we assume all zero and pole directions have been

normalized to have length 1, e.g., yXy. =1, y)yp, = 1
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Algebraic Limitation Il. Interpolation constraints

@ If G(s) has a RHP zero at z with output direction y, then for
internal stability we require

yHT(2)=0; yHS(z)=y!

e follows from yY'L(z) = 0= yHT(z) =0
Yl (I~ S(z)) =0

Thus,
— T(s) must retain any RHP zero and zero direction in G(s)

— essentially, S(z) = 1 in zero output direction
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Algebraic Limitation Il. Interpolation constraints

@ If G(s) has a RHP pole at p with output direction yp, then for
internal stability we require

S(Pyp =0 T(P)yp=Yp
o follows from L="(p)y, =0and S = TL™!

Thus,
— 5(s) must have RHP zeros where G(s) has RHP poles

— essentially, T(p) = 1 in pole output direction
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Analytical Constraint I. Minimum peaks from RHP
poles and zeros

From the interpolation constraints and Maximum Modulus Thm
@ Assume G(s) has a RHP zero at z. Then, with a scalar weight wp
|lwpS||s = max a(wpS) = max |Wp|5(S) > |wp(2)|

— generalization of Thm. 5.3 for SISO systems (not considering RHP
poles)
— same restriction on 5(S) as on |S| in SISO case
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Analytical Constraint I. Minimum peaks from RHP

poles and zeros

From the interpolation constraints and Maximum Modulus Thm
@ Assume G(s) has a RHP zero at z. Then, with a scalar weight wp

|lwpS||s = max a(wpS) = max |Wp|5(S) > |wp(2)|

— generalization of Thm. 5.3 for SISO systems (not considering RHP

poles)
— same restriction on 5(S) as on |S| in SISO case

@ Assume G(s) has a RHP pole at p. Then, with a scalar weight wt
Wt Tl = maxa(wr T) = max|wr|a(T) > [wr(p)|

— generalization of Thm. 5.4 for SISO systems (not considering RHP

zeros)
— require minimum bandwidth for (T) to stabilize system
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Minimum peaks - combined RHP poles and zeros

Theorem 6.1 consider a rational G(s) with N distinct RHP zeros and
N, distinct RHP poles, with corresponding normalized output directions
Yz,i and yp i, respectively. Then the following tight lower bounds apply

. . — —1/2 —1/2
min [Sloe = min | Tl = \/1 +52 (020,00, %)

where

VeiVei Qs — Yoo Qs — Vi
zi+z P pi+p TPz p

[Q:]j =

— computable tight bound for any number of RHP poles and zeros

— minimum peaks depend on distance between z and p as well as

the alignment of their directions (no interference if orthogonal
directions)
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Special case: single RHP pole and zero

For a system G(s) with one RHP pole p and one RHP zero z,
Theorem 6.1 yields

1z + p?
1z —pl2

mKin |1S]loc = m,in 1Tl = \/sm2<z>+ 5C0S2¢)

where ¢ = cos™ |y yp|

Example:

1 st 47 -0.32 1
—1 . _ _ _ _
Glo) = s+1<s1 s+1>' Z_Z’VZ‘(0.95>""1’VP‘<O>

this yields ¢ = 1.25 rad, and
min ||S|jcoc = MIiN || T||cc = 1.1
K K

For SISO plant with z =2 and p = 1 we get
min || S]lcc = Min || T||oc = 1.73 (¢ = 0)
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Moving the constraints from RHP zeros to specific
outputs

@ the constraint
yi'T(z)=0

imposes only / constraints for the /2 elements Tj(s) of T(s)

@ thus, there exist some freedom in which elements Tj(s) to restrict
in order to satisfy interpolation constraints
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Example:

consider example system with RHP zero z and

_[-032
Y2=1\ 095
yiT(z)=0=

—0.32T11(Z) + 0.95T54 (Z) =0 A -0.232 T12(Z) + 095T22(Z) =0

@ with decoupling control

Ti2(s)=T21(s) =0 = Ti1(2)=Te(2)=0
i.e., RHP zero appears in both outputs
@ with perfect control of output y4,

T11(8) =1 A Ti2(s) =0 = Txn(2)=0

i.e., RHP zero appears in output y» only
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Pinned zeros

@ the effect of a RHP zero z can be moved to outputs with non-zero
elements in the output zero direction, i.e., y,; # 0

@ a RHP zero z with some elements y,; = 0 is called a pinned
zero, i.e., it is pinned to outputs with y,; # 0
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Analytical Constraint Il. Sensitivity integral

Assume the loop-gain L(s) has entries with pole excess at least 2, and

Np RHP poles at p;. Then, for closed-loop stability the sensitivity
function must satisfy

Np

/00 In|det S(jw)|dw = WZ Re(p;)
0

i=1

— essentially, det S(s) is a sensitivity function with det S(c0) = 1.
The rest then follows from Cauchy integral theorem (see Lec.2)
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Analytical Constraint Il. Sensitivity integral

@ for any square matrix
|det(S)| = [ [ oi(S)
i

hence, the sensitivity integral can be written

0o Ne
3 / Inoy (S(jw)) dw = =3 Re(p)
i /0 =1

— interpretation: must make trade-off between frequencies as well as
between system directions.
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Controllability Analysis

@ Given a system G(s) and a set of performance specifications, we
would like to analyze if the specifications are feasible.

@ The analysis should be independent of the controller K(s), i.e.,
provide an answer as to whether there exist any controller that
can meet the specifications.

@ The algebraic and analytical constraints presented above are
fundamental and must be satisifed by any controller.

@ Next:

functional controllability

@ requirements imposed by disturbances

o limitations from input constraints

o limitations from uncertainty
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Functional Controllability

Definition: A system G(s) with m inputs and | outputs is functionally
controllable if the normal rank r of G(s) equals the number of outputs |

— a system with fewer inputs than outputs, m < /, has rank
r < m < I and is hence functionally uncontrollable.

— asquare n x n system G(s) is functionally uncontrollable iff
det G(s) =0, i.e., G(s) is singular for all s.
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Performance requirements from disturbances

Recall
y=Gu+ Gygd = e:SGdd:Sgd1d1+Sgd2d2+...
where d; are scalar disturbances

@ performance requirement ||e(w)||2 < 1 implies, for each
disturbance d;

7(S94) <1Vw & [Sggllec <1
@ define disturbance direction

9d;
Yo, = 7
194112
@ requirement becomes
5(Syq) < 1 Y
19412

thus, requirement on S is only in the disturbance direction y,
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Disturbances and directions of S

Consider SVD of given sensitivity function, S = Ux V"
Sv=3a(S)u, Sv=g(Su

@ Case 1: disturbance alligned with high-gain direction of S

ya=v = a(9)<

- Hgd,Hz

i.e., requirement is on 5(S)
@ Case 2: disturbance alligned with low-gain direction of S

Yo =V = 0o(S)<

B ||Qd,H2

i.e., requirement is on g(S)
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Disturbances and RHP zeros

If G(s) has a RHP zero z, then y}S(z) = y! and

15941100 > 15 Sgallo > V2 ga(2)|

@ hence, must require
¥5'9q(2) < 1
recall, for SISO |gq4(2)| < 1

@ requirements depend on allignment of y, and y:

— if y, Lyg then yHgy = 0, i.e., no interference between disturbance
and RHP zero

— if y, || ya then yH gy = [|94(2)|]2 and we require || g4 (2)|]2 < 1, as in
SISO case
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Example: RHP zero and disturbance attenuation

1 st g4 7 1 —-0.6 50
= — s—1 ; =
G(s) 0.1s+ 1 ( 1 s+1) + Ga 0.1s+ 1 (1.8 16)

Zero at s = 2 with y!' = (-0.31 0.95)

@ For disturbance d,
Y5 9a,(2)| = 1.58

@ For disturbance d>
¥4 9, (d)| = 0.25

Thus, attenuation of disturbance d; not feasible
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Limitations imposed by input constraints

Perfect disturbance attentuation

y=Gu+ gd,.d,- y::>0 u= —G‘1gd,.d,-

@ with |d;| <1 Vw the condition ||u(w)||2 < 1 Yw implies
5(G7'gy) <1Vw = ||G " gailloo <1

@ similar for reference tracking, with Gg = R

Disturbances and setpoint changes closely alligned with weak output
direction u of G most difficult
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Example:
10 —11) (3 2
G:<11 —10)' Gd_(s —2)

inputs for perfect disturbance attenuation

s (014 -2
u=a G""(-0.14 —2>

— disturbance d, requires largest inputs despite [|ga, |2 < ||ga, |12
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”Limitations” imposed by uncertainty

Inputs and outputs are always uncertain

]—-7
+ a | +

+ +

"True” plant
Gp = (I + Eo)G(I + E))

@ The uncertainty blocks E; and Ep can represent physical
uncertainty in actuators and sensors, as well as "lumped” model
uncertainty

@ The blocks E; and Ep will often have structure, e.g., be diagonal in
the case of independent input/output uncertainty

@ We typically describe uncertainty in terms of structure and norm
bounds on E; and Ep (more on this later)
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Feedforward Control and Uncertainty

’—-7

+ +

y = Trr
Consider perfect feedforward control T, = | = Ki= G
@ With output uncertainty G, = (/ + E,) G we get

Trp = (I + Eo)Tr

i.e., same relative uncertainty as in G
@ With input uncertainty G, = G(/ + E|) we get

To=GU+E)G"'=(I+GEG")T,

i.e., relative uncertainty becomes GE,G~!
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Feedforward Control and Uncertainty

With input uncertainty
Tp=(I4+GEG T,
@ Consider norm of GE;G~' (at each frequency w)
IGE,G iz < || G(jw)l|i2l| Er(je) i G (jw) ]2
@ With || - |2 =&()and (G ') = 1/a(G)

IcEe ' < IE1% ) = IElH(G)

bound is tight for full block uncertainty E;

@ Thus, for plants with large condition numbers uncertainty at the
input “blows up” with feedforward control
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Feedforward Control and Uncertainty

@ If we restrict the uncertainty block E; to be diagonal, we can write

E/= D/ED;™
for any diagonal D,
@ The uncertainty GE;G~' can then be written

(GDy)E/(GD))™"
@ This yields
IGEIG iz < ||Eilliz n}j/”W(GD/) = |E/lli2v"(G)

where v* is the minimized condition number
@ With |E; ;| = ¢ the diagonal elements of GE;G~" are given by

[GE,G i = T4 \j(G)g

where \; are elements of the RGAA = G x (G™')7 (see book)
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The Loop Gain L = GK and uncertainty

’—-7

+ +

@ The effects of uncertainty on feedforward control will also be seen
in the loop-gain L = GK of feedback control systems (when we
apply decoupling)

@ Thus, the effects of output uncertainty should be similar to the
SISO case

@ The effect of input uncertainty, however, can be severe for systems
that are ill-conditioned, i.e., lead to a blow-up of the loop-gain (L)
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Feedback Control and Output Uncertainty

@ With Gp = (I + Ep)G
I+ GoK = I+ (I+Ep)GK = </+ EoGK(I + GK)—‘) (I+ GK)
= (I+ EoT)(I + GK)
@ The sensitivity function
Sp=(I+GpK)™ ' =S(I+ EoT)™
@ The complementary sensitivity T, =/ — Sp
To = (I+ SpEo)T

Thus, like in SISO case, feedback reduces effect of uncertainty when
S is "small” (recall Bode’s definition of sensitivity S = (dT/T)/(dG/G))
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Feedback and Input Uncertainty

With Gp + G(I+ Ej); E;=diag(ei), el < |w

@ Apply decoupling control u = k(s)G~'(s), to obtain
__k(s)
14+ k(s)

T(s)=t(s)l; S(s)=(1—-1t(s))!l; t(s)
@ The loop gain becomes
GpK = GK(I+ GE/,G™)

@ The diagonal relative errors of the loop-gain are given by (see
above)

n
[GE,G"]i =) _ Mi(G)e
j=1
@ for closed-loop we get (see book for derivation)
(wit|

ANG)||iso
I
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Summary on Effects of Uncertainty

@ The loop-gain for MIMO plants highly sensitive to input uncertainty
when ||Allic >> 1 and we try to compensate for strong
directionality in controller K

@ Dilemma: plants that mostly need compensation for strong
directionality are also least robust to such compensation!

@ Need to make trade-off between nominal performance and
robustness.
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Heat-exchanger revisited
Recall heat-exchanger from lecture 3

Te\ 1 —-18.74 17.85\ (qc
Ty) 100s+1 \—-17.85 18.74) \qy
— Relative Gain Array (RGA)

A(Giw)) = <1%88 7388)

explains severe sensitivity to input uncertainty with decoupler

[Allisc =20.6

10"
yyyyyyyyy [rad/min]
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A procedure for MIMO controllability analysis

@ scale system

@ check for functional controllability, i.e., r > /?

© determine poles and zeros in the RHP

© check minimum peaks for all relevant closed-loop
transfer-functions, and determine whether they indicate expected
difficulties due to severe peaks

© compute the RGA to check for (scaling independent) directionality;
large RGA elements imply that input uncertainty will restrict
achieveable robust performance.

© determine performance requirements from disturbances and
setpoints, e.g., [|Syq 2 < m Yw

@ check if RHP zeros and poles prevent acceptable disturbance
attenuation

© check if input constraints prevent acceptable disturbance
attenuation
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Lecture 5-6: Robust Stability and Robust Performance

A
I—

A ya
—»] — |
v 4 p —
— I
u v
K
L=

@ Modeling uncertainty using model sets, e.g.,
Gp={G+A|[All <w}

@ Analysis of robust stability and robust performance
@ Note! Next lecture is on Tue Mar 6
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