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FEL3210 Multivariable Feedback Control

Lecture 4: Performance Limitations in MIMO Systems (Ch.6)

Elling W. Jacobsen, Automatic Control Lab, KTH
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Lecture 3 recap: Introduction to MIMO Feedback

loop-gain: at output L = GK , at input LI = KG

sensitivity and complimentary sensitivity at output

S = (I + L)−1, T = L(I + L)−1

e.g, e = Sr − Sd1 − SGd2 − Tn

sensitivity and complimentary sensitivity at input

SI = (I + LI)
−1, TI = LI(I + LI)

−1

e.g., u = −TId2
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Lecture 3 recap: Performance in MIMO Systems

consider all signals as sinusoids with frequency ω and use 2-norm
to quantify amplitude ‖y(ω)‖2 =

√∑l
i=1 |yi |2

then, with y = G(s)u

σ (G(iω)) ≤ ‖y‖2
‖u‖2

≤ σ̄ (G(iω))

thus, to bound control error for reference r and disturbance d1

σ̄ (S(iω)) ≤ 1
|wP(iω)|

∀ω ⇔ ‖wPS‖∞ ≤ 1

similarly, for noise

σ̄(T (iω)) ≤ 1
|wT (iω)|

∀ω ⇔ ‖wT T‖∞ ≤ 1
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Remark on sinusoids and H∞-norm

we assume sinusoid signals throughout, and worst case signals
are then, for a generalized plant z = F (P,K )w

max
ω

max
w(ω)

‖z(ω)‖2
‖w(ω)‖2

= max
ω

σ̄ (F (jω)) = ‖F‖∞

but, the H∞-norm equals the induced 2-norm for any time domain
signal

‖F‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

Hence, “worst case signal” is always a sinusoid
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Outline

Performance limitations in MIMO feedback
S + T = I
RHP zeros and poles

interpolation constraints
disturbances and RHP zeros

The Sensitivity Integral
Limitations from input constraints
”Limitations” from uncertainty
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Algebraic Limitation I. S + T = I

From Fan’s Theorem

σi(A)− σ̄(B) ≤ σi(A + B) ≤ σi(A) + σ̄(B)

and S + T = I
|1− σ̄(T )| ≤ σ̄(S) ≤ 1 + σ̄(T )

|1− σ̄(S)| ≤ σ̄(T ) ≤ 1 + σ̄(S)

Thus, at any frequency ω
can not make both σ̄(S) and σ̄(T ) small
σ̄(T ) >> 1 ⇔ σ̄(S) >> 1
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Recap: Zero and pole directions

Zero direction: if z is a zero of G(s), then

G(z)uz = 0 · yz

Normalize so that uH
z uz = 1, yH

z yz = 1, then we can also write

yH
z G(z) = 0 · uH

z

Pole directions: if p is a pole of G(s), then

G(p)up =∞ · yp

If G−1(p) exist, we can also write

G−1(p)yp = 0 · up

– In the following we assume all zero and pole directions have been
normalized to have length 1, e.g., yH

z yz = 1, yH
p yp = 1
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Algebraic Limitation II. Interpolation constraints

If G(s) has a RHP zero at z with output direction yz , then for
internal stability we require

yH
z T (z) = 0 ; yH

z S(z) = yH
z

follows from yH
z L(z) = 0⇒ yH

z T (z) = 0
⇒ yH

z (I − S(z)) = 0

Thus,
– T (s) must retain any RHP zero and zero direction in G(s)

– essentially, S(z) = 1 in zero output direction
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Algebraic Limitation II. Interpolation constraints

If G(s) has a RHP pole at p with output direction yp, then for
internal stability we require

S(p)yp = 0 ; T (p)yp = yp

follows from L−1(p)yp = 0 and S = TL−1

Thus,
– S(s) must have RHP zeros where G(s) has RHP poles

– essentially, T (p) = 1 in pole output direction
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Analytical Constraint I. Minimum peaks from RHP
poles and zeros

From the interpolation constraints and Maximum Modulus Thm
Assume G(s) has a RHP zero at z. Then, with a scalar weight wP

‖wPS‖∞ = max
ω

σ̄(wPS) = max
ω
|wp|σ̄(S) ≥ |wP(z)|

– generalization of Thm. 5.3 for SISO systems (not considering RHP
poles)

– same restriction on σ̄(S) as on |S| in SISO case

Assume G(s) has a RHP pole at p. Then, with a scalar weight wT

‖wT T‖∞ = max
ω

σ̄(wT T ) = max
ω
|wT |σ̄(T ) ≥ |wT (p)|

– generalization of Thm. 5.4 for SISO systems (not considering RHP
zeros)

– require minimum bandwidth for σ̄(T ) to stabilize system
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Minimum peaks - combined RHP poles and zeros

Theorem 6.1 consider a rational G(s) with Nz distinct RHP zeros and
Np distinct RHP poles, with corresponding normalized output directions
yz,i and yp,i , respectively. Then the following tight lower bounds apply

min
K
‖S‖∞ = min

K
‖T‖∞ =

√
1 + σ̄2

(
Q−1/2

z QzpQ−1/2
p

)
where

[Qz ]ij =
yH

z,iyz,j

zi + z̄j
, [Qp]ij =

yH
p,iyp,j

p̄i + pj
, [Qzp]ij =

yH
z,iyp,j

zi − pj

– computable tight bound for any number of RHP poles and zeros
– minimum peaks depend on distance between z and p as well as

the alignment of their directions (no interference if orthogonal
directions)
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Special case: single RHP pole and zero

For a system G(s) with one RHP pole p and one RHP zero z,
Theorem 6.1 yields

min
K
‖S‖∞ = min

K
‖T‖∞ =

√
sin2φ+

|z + p|2
|z − p|2

cos2φ

where φ = cos−1|yH
z yp|

Example:

G(s) =
1

s + 1

( s+1
s−1 s + 7
1 s + 1

)
; z = 2, yz =

(
−0.32
0.95

)
, p = 1, yp =

(
1
0

)
this yields φ = 1.25 rad , and

min
K
‖S‖∞ = min

K
‖T‖∞ = 1.1

For SISO plant with z = 2 and p = 1 we get
min ‖S‖∞ = min ‖T‖∞ = 1.73 (φ = 0)
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Moving the constraints from RHP zeros to specific
outputs

the constraint
yH

z T (z) = 0

imposes only l constraints for the l2 elements Tij(s) of T (s)

thus, there exist some freedom in which elements Tij(s) to restrict
in order to satisfy interpolation constraints
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Example:

consider example system with RHP zero z and

yz =

(
−0.32
0.95

)
yH

z T (z) = 0⇒

−0.32T11(z) + 0.95T21(z) = 0 ∧ −0.32T12(z) + 0.95T22(z) = 0

with decoupling control

T12(s) = T21(s) = 0 ⇒ T11(z) = T22(z) = 0

i.e., RHP zero appears in both outputs
with perfect control of output y1,

T11(s) = 1 ∧ T12(s) = 0 ⇒ T22(z) = 0

i.e., RHP zero appears in output y2 only
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Pinned zeros

the effect of a RHP zero z can be moved to outputs with non-zero
elements in the output zero direction, i.e., yz,i 6= 0
a RHP zero z with some elements yz,i = 0 is called a pinned
zero, i.e., it is pinned to outputs with yz,i 6= 0
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Analytical Constraint II. Sensitivity integral

Assume the loop-gain L(s) has entries with pole excess at least 2, and
NP RHP poles at pi . Then, for closed-loop stability the sensitivity
function must satisfy∫ ∞

0
ln |det S(jω)|dω = π

NP∑
i=1

Re(pi)

– essentially, det S(s) is a sensitivity function with det S(∞) = 1.
The rest then follows from Cauchy integral theorem (see Lec.2)
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Analytical Constraint II. Sensitivity integral

for any square matrix

|det(S)| =
∏

i

σi(S)

hence, the sensitivity integral can be written∑
i

∫ ∞
0

lnσi (S(jω)) dω = π

NP∑
i=1

Re(pi )

– interpretation: must make trade-off between frequencies as well as
between system directions.
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Controllability Analysis

Given a system G(s) and a set of performance specifications, we
would like to analyze if the specifications are feasible.
The analysis should be independent of the controller K (s), i.e.,
provide an answer as to whether there exist any controller that
can meet the specifications.
The algebraic and analytical constraints presented above are
fundamental and must be satisifed by any controller.
Next:

functional controllability
requirements imposed by disturbances
limitations from input constraints
limitations from uncertainty
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Functional Controllability

Definition: A system G(s) with m inputs and l outputs is functionally
controllable if the normal rank r of G(s) equals the number of outputs l

– a system with fewer inputs than outputs, m < l , has rank
r ≤ m < l and is hence functionally uncontrollable.

– a square n × n system G(s) is functionally uncontrollable iff
det G(s) ≡ 0, i.e., G(s) is singular for all s.
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Performance requirements from disturbances

Recall

y = Gu + Gdd ⇒ e = SGdd = Sgd1d1 + Sgd2d2 + . . .

where di are scalar disturbances
performance requirement ‖e(ω)‖2 < 1 implies, for each
disturbance di

σ̄(Sgdi ) ≤ 1 ∀ω ⇔ ‖Sgdi‖∞ ≤ 1

define disturbance direction

ydi =
gdi

‖gdi‖2
requirement becomes

σ̄(Sydi ) ≤
1

‖gdi‖2
∀ω

thus, requirement on S is only in the disturbance direction ydi
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Disturbances and directions of S

Consider SVD of given sensitivity function, S = UΣV H

Sv̄ = σ̄(S)ū , Sv = σ(S)u

Case 1: disturbance alligned with high-gain direction of S

ydi = v̄ ⇒ σ̄(S) ≤ 1
‖gdi‖2

∀ω

i.e., requirement is on σ̄(S)

Case 2: disturbance alligned with low-gain direction of S

ydi = v ⇒ σ(S) ≤ 1
‖gdi‖2

∀ω

i.e., requirement is on σ(S)
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Disturbances and RHP zeros

If G(s) has a RHP zero z, then yH
z S(z) = yH

z and

‖Sgdi‖∞ ≥ ‖y
H
z Sgdi‖∞ ≥ |y

H
z gdi (z)|

hence, must require
|yH

z gdi (z)| < 1

recall, for SISO |gdi (z)| < 1

requirements depend on allignment of yz and ydi :
– if yz⊥ydi then yH

z gdi = 0, i.e., no interference between disturbance
and RHP zero

– if yz ‖ yd then yH
z gdi = ‖gd (z)‖2 and we require ‖gdi (z)‖2 < 1, as in

SISO case
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Example: RHP zero and disturbance attenuation

G(s) =
1

0.1s + 1

( s+1
s−1 s + 7
1 s + 1

)
; Gd =

1
0.1s + 1

(
−0.6 50
1.8 16

)
Zero at s = 2 with yH

z =
(
−0.31 0.95

)
For disturbance d1

|yH
z gd1(2)| = 1.58

For disturbance d2
|yH

z gd2(d)| = 0.25

Thus, attenuation of disturbance d1 not feasible
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Limitations imposed by input constraints

Perfect disturbance attentuation

y = Gu + gdi di
y=0⇒ u = −G−1gdi di

with |di | ≤ 1 ∀ω the condition ‖u(ω)‖2 < 1 ∀ω implies

σ̄(G−1gdi ) < 1 ∀ω ⇒ ‖G−1gdi‖∞ < 1

similar for reference tracking, with Gd = R

Disturbances and setpoint changes closely alligned with weak output
direction u of G most difficult
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Example:

G =

(
10 −11
11 −10

)
; Gd =

(
3 2
3 −2

)
inputs for perfect disturbance attenuation

u = G−1Gd =

(
0.14 −2
−0.14 −2

)

– disturbance d2 requires largest inputs despite ‖gd2‖2 < ‖gd1‖2
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”Limitations” imposed by uncertainty

Inputs and outputs are always uncertain

”True” plant
Gp = (I + Eo)G(I + EI)

The uncertainty blocks EI and EO can represent physical
uncertainty in actuators and sensors, as well as ”lumped” model
uncertainty
The blocks EI and EO will often have structure, e.g., be diagonal in
the case of independent input/output uncertainty
We typically describe uncertainty in terms of structure and norm
bounds on EI and EO (more on this later)
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Feedforward Control and Uncertainty

y = Tr r

Consider perfect feedforward control Tr = I ⇒ Kf = G−1

With output uncertainty Gp = (I + Eo)G we get

Trp = (I + Eo)Tr

i.e., same relative uncertainty as in G
With input uncertainty Gp = G(I + EI) we get

Trp = G(I + EI)G−1 = (I + GEIG−1)Tr

i.e., relative uncertainty becomes GEIG−1
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Feedforward Control and Uncertainty

With input uncertainty

Trp = (I + GEIG−1)Tr

Consider norm of GEIG−1 (at each frequency ω)

‖GEIG−1‖i2 ≤ ‖G(jω)‖i2‖EI(jω)‖i2‖G−1(jω)‖i2

With ‖ · ‖i2 = σ̄(·) and σ̄(G−1) = 1/σ(G)

‖GEIG−1‖ ≤ ‖EI‖
σ̄(G)

σ(G)
= ‖EI‖γ(G)

bound is tight for full block uncertainty EI

Thus, for plants with large condition numbers uncertainty at the
input ”blows up” with feedforward control
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Feedforward Control and Uncertainty

If we restrict the uncertainty block EI to be diagonal, we can write

EI = DIEID−1
I

for any diagonal DI

The uncertainty GEIG−1 can then be written

(GDI)EI(GDI)
−1

This yields

‖GEIG−1‖i2 ≤ ‖EI‖i2 min
DI

γ(GDI) = ‖EI‖i2γ∗(G)

where γ∗ is the minimized condition number
With |EI,jj | = εj the diagonal elements of GEIG−1 are given by

[GEIG−1]ii = Σn
j=1λij(G)εj

where λij are elements of the RGA Λ = G × (G−1)T (see book)
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The Loop Gain L = GK and uncertainty

The effects of uncertainty on feedforward control will also be seen
in the loop-gain L = GK of feedback control systems (when we
apply decoupling)
Thus, the effects of output uncertainty should be similar to the
SISO case
The effect of input uncertainty, however, can be severe for systems
that are ill-conditioned, i.e., lead to a blow-up of the loop-gain σ̄(L)
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Feedback Control and Output Uncertainty

With Gp = (I + EO)G

I + GpK = I + (I + EO)GK =
(

I + EOGK (I + GK )−1
)

(I + GK )

= (I + EOT )(I + GK )

The sensitivity function

Sp = (I + GpK )−1 = S(I + EOT )−1

The complementary sensitivity Tp = I − Sp

Tp = (I + SpEO)T

Thus, like in SISO case, feedback reduces effect of uncertainty when
S is ”small” (recall Bode’s definition of sensitivity S = (dT/T )/(dG/G))
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Feedback and Input Uncertainty

With Gp + G(I + EI) ; EI = diag(εi), |εi | < |wI |
Apply decoupling control u = k(s)G−1(s), to obtain

T (s) = t(s)I ; S(s) = (1− t(s))I ; t(s) =
k(s)

1 + k(s)

The loop gain becomes

GpK = GK (I + GEIG−1)

The diagonal relative errors of the loop-gain are given by (see
above)

[GEIG−1]ii =
n∑

j=1

λij(G)εj

for closed-loop we get (see book for derivation)

σ̄(Sp) ≥ σ̄(S)

(
1 +

|wI t |
1 + |wI t |

‖Λ(G)‖i∞
)

Lecture 4:Limitations in MIMO systems () FEL3210 MIMO Control 32 / 36



university-logo

Summary on Effects of Uncertainty

The loop-gain for MIMO plants highly sensitive to input uncertainty
when ‖Λ‖i∞ >> 1 and we try to compensate for strong
directionality in controller K
Dilemma: plants that mostly need compensation for strong
directionality are also least robust to such compensation!
Need to make trade-off between nominal performance and
robustness.
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Heat-exchanger revisited
Recall heat-exchanger from lecture 3(

Tc
TH

)
=

1
100s + 1

(
−18.74 17.85
−17.85 18.74

)(
qC
qH

)
– Relative Gain Array (RGA)

Λ(G(iω)) =

(
10.8 −9.8
−9.8 10.8

)
⇒ ‖Λ‖i∞ = 20.6

explains severe sensitivity to input uncertainty with decoupler

10
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10
−2

10
−1

10
0

10
1

10
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10
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10
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10
0

10
1

frequency [rad/min]

max and min singular values of S
p
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A procedure for MIMO controllability analysis
1 scale system
2 check for functional controllability, i.e., r ≥ l?
3 determine poles and zeros in the RHP
4 check minimum peaks for all relevant closed-loop

transfer-functions, and determine whether they indicate expected
difficulties due to severe peaks

5 compute the RGA to check for (scaling independent) directionality;
large RGA elements imply that input uncertainty will restrict
achieveable robust performance.

6 determine performance requirements from disturbances and
setpoints, e.g., ‖Sydi‖2 <

1
‖gdi
‖2
∀ω

7 check if RHP zeros and poles prevent acceptable disturbance
attenuation

8 check if input constraints prevent acceptable disturbance
attenuation
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Lecture 5-6: Robust Stability and Robust Performance

Modeling uncertainty using model sets, e.g.,

Gp = {G + ∆ | ‖∆‖∞ < wI}

Analysis of robust stability and robust performance
Note! Next lecture is on Tue Mar 6
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