FEL3210 Multivariable Feedback Control

Lecture 6: Robust stability and performance in MIMO systems
[Ch.8]

Elling W. Jacobsen, Automatic Control Lab, KTH
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Lecture 5: model uncertainty in frequency domain

Represent uncertainty by disc at each frequency (SISO systems)

Im

@ nominal model G is center of
disc

@ true system assumed to lie
within disc

A disc with radius |wa(jw)| at a given frequency can be generated by

Gp(jw) = G(jw) + [Wa(jw)[Aa(jw) ; |Aa(w)| <1
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Lecture 5: robust stability (RS)

E & s - G ua ya
=

Assume || Al < 1, then using Small Gain Theorem

RS < [M|w <1

— necessary and sufficient condition for robust stability, i.e.,
stabilization of all plants within uncertainty set
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Todays lecture

@ MIMO systems: uncertainty represented by perturbation matrices
A(s) which often will have a restricted structure (block-diagonal)

@ RS problem with structured perturbation matrices can not be
solved using H..-analysis; yields sufficient conditions only.

@ Need the structured singular value 1. to derive necessary and
sufficient conditions for RS with structured A(s)

@ Robust performance (RP) problems can be cast as RS problems
with structured uncertainty.
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Uncertainty in MIMO systems
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@ “pull out” all sources of uncertainty into a block-diagonal matrix
Ay

A = diag{A;} =

— if |Aillse < 1then ||A]ls < 1, follows from the fact that singular

values of block-diagonal matrices equals singular values of blocks
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General control configuration including uncertainty

For synthesis of controller K

A
UA ya
w - P z
u v
K

@ the block-diagonal matrix A(s) includes all possible perturbations
of the system, normed such that ||Al|s < 1
@ performance objective: minimize the gain from w to z
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Control configuration for analysis

For analysis, with given controller K,

A
(N YA

o Nisa lower LFT' of P
N = Fi(P,K) = P11 + P12K(I — PaaK) ™ Py

@ the transfer-function z = Fw is given by an upper LFT of N
F = Fu(N,A) = Nop + Nt A1 — Ny1A)~"Njp

"Linear Fractional Transformation
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Configuration for analysis of RS

for analysis of robust stability we only need to consider

A

¥ 3

uA

M

Y

where M = Ny
@ see also lecture 5
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Obtaining P, N and M - an example

The generalized plant has outputs [ya z v] and inputs [ua w u]. From
block-diagram we derive

o 0 W
P=|WeG Wpr WprG
G -l -G

Now N = f/(P, K) = Py + P12K(I— szK)_1P21 with

0 0 W,
Py = (WPG Wp) , Pz = (WPIG) ,Por=(-G —I), Po=-G
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This yields
N — ~WKG(I + KG)™' —WK(I + GK)™!
—\ WeG(I + KG)™! We(I+ GK)™!

And finally, M = Ny; = —W,KG(I + KG)~
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Definitions of robust stability and performance

UA (aN

e | 1\'7 | -2

o NS ¥ Nis internally stable

o NP L ||Nooo < 1

e RS & F=r,(N,A)is stable VA, | Al|o < 1
0 AP € |[Flloe <1,YA, Al <1

Next: results for testing all conditions without having to search through
all possible A’s.
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Generalized Nyquist criterion for RS

Assume M(s) and A(s) stable. Then the M — A-loop is stable if and
only if det(l — MA(jw)) does not encircle 0 for any A, any w

& det(/— MA) #£ 0, Yw, VA
& MN(MA) #£ 1, Vi, Yw, VA

£ S N (MA)| < 1, Vi, Y, VA

Thus,
RS < p(MA)<1,Vw,VA

— difficult condition to check in the general case. Must in principle
consider all possible A’s - an inifinite set.

— a sufficient condition is 5(M) < 1,Vw (see lecture 5), but
potentially highly conservative when A has structure
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Unstructured uncertainty - A full matrix

Assume A is a full complex matrix at each frequency. Then
RS < p(MA) <1 Vw,VA & F(M)<1 Vo & |M]w <1

Proof: we can always choose a full A such that p(MA) = 6(M)
— SVDof M: M = Uz VH
— choose A = VU" to obtain MA = UXU"  (5(A) =1)
— p(MA) = p(UEU) = p(5) = 5(M)
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Unstructured uncertainty - example

Wi

1N

A

N

v I{ (7 ’_‘

e

+
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w

W

assume A/(s) is a full matrix with ||A/|| < 1. Then

RS <«

@ simple condition, similar to SISO case for which T, =T

Moo < 1;

M= W,KG(1 + KG) ' = W T,

@ but, allowing full A may be highly conservative, e.g.,

— independent input uncertainty: A, diagonal

— combining sources of uncertainty: A block-diagonal
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Combining multiple perturbations — example

@ “pull out” perturbations A; and Ap

_(n 0
a- (% o)

@ from block-diagram we derive

M— ( -WnTiWy  —Wjy KSWzo)
WioGS Wy WioTWa0o

@ a sulfficient condition for RS is ||M||. < 1, but we seek a tight
condition utilizing the information that A is structured.
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Comment: lumping uncertainty into a single
perturbation

@ alternative to using structured A is to lump all uncertainties into a
single perturbation, e.g., at the output

@ for SISO plants, input uncertainty may be moved to the output,
and vice versa, without affecting the model set I

SISO: G(l+A)=(+00)G = Ao=A4
@ but, for MIMO plants
MIMO: G(I+A)=(+A0)G = Ap=GAG

— we get maxa, 6(Ao) = 5(A))y(G), where ~ is the condition number
— diagonal A, in general yields full Ag

@ thus, be careful about moving uncertainty in MIMO systems, in
particular for ill-conditioned systems.
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Reducing conservatism with H., and structured A

@ with a structured A the condition 5(M) < 1 Vw is only sufficient
@ reduce conservatism by introducing scaling

SAME UNCERTAINTY

NEW M: DM D~}

where D = diag{d;l;} with d; a scalar and /; an identity matrix of
the same dimension as the block A; so that

DA=AD = A=DAD'
@ Then
RS & anilr;5(D(w)M(jw)D*1(w)) <1, Yw
S

where D is the set of all matrices D such that DA = AD



-
The structured singular value p

@ recall generalized Nyquist criterion for MA-structure: we seek the
smallest structured A such that det(/ — MA) =0

@ the structured singular value (M) is defined as

1 def

w(M)™ mAin{ﬁ(A)\ det(/— MA) =0 for structured A}

— defined for constant complex matrices, i.e., at given frequency

— u(M) depends on M and structure of A, hence often written
pa(M)
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The structured singular value p

For complex A

M) = MA
n(M) A’ggg%p( )

@ with full A
u(M) = 5(M)

Follows since p(MA) < 5(MA) < 5(M)&(A) and we can choose
A = v to get p(MA) = (M)

@ with repeated diagonal A = 6/

u(M) = p(M)
follows since there are no degrees of freedom in the optimization
problem
@ in general

p(M) < u(M) < 5(M)
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Example: RS with diagonal input uncertainty

Example 8.9: decentralized Pl-control of distillation process

1 (878 14 7s+1 (-0.0015 0
G(S)_Ts+1<—108.2 —1.4>' K(s) = —5 ( 0 —0.075)

Input uncertainty with diagonal A; and w;(s) = ~°j+°~

0wl e

Magnitude

Frequency
RS < puwT)<1Vw < u(T))<1/|w|Vw
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Computing u

@ the structured singular value p in general not directly computable
@ pu-computations based on various upper and lower bounds
@ commonly used upper bound

< mins -1
w(M) < min 5(DMD™")

with D as defined above
— convex optimization problem

— equality applies when A has 3 or fewer blocks. For more blocks
usually found to be a tight bound.
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Robust Performance

: (2)=n(2)
UA YA zZ w

- N L= z=F(N,A)w

— assume proper scaling so that performance objective is

max |||| ||’|2 <1 Vw & [[FIN,A)|e <1, VA
2

— corresponds to robust stability condition for MAp-structure with
M = F(N, A) and A, a full complex perturbation!
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RP cast as RS problem with structured A-block

RP <«

[F(A)lloe < 1,V[|Alloe << 1

)

Ap

_

N

i

Tl Ap =1
is RS,
T A el
I Ap o<1
is RS,

VA s
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i}
A
A 0
0 Ap .
iSRS, V| A[e<1
N
i}
. A 0
RP & u(N)<1w1thA_[<O Ap)]

@ The robust performance problem can be formulated as a robust
stability problem with structured (block-diagonal) perturbation
matrix A = need p
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Summary
A
UA Ua
L » N 4
@ NS <« Nstable
e NP < ||N22||oo <1 & NS
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Example

8.11.3: Decoupling control of distillation column.

T 878 -864\] 07,
G(s)_7ss+1[<108.2 109.6)}’ K(s)=5G (s

s+02 W _8/2+0.05
05s+1' °7 s

o
Frequency

Homework: perform similar analysis for heat-exchanger from lecture 3
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