FEL3210 Multivariable Feedback Control

Lecture 7: Controller Synthesis and Design [Ch. 9]

Elling W. Jacobsen, Automatic Control Lab, KTH
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Lecture 6: Analysis of RS and RP

General control configuration (with given controller K):

A

UA ya

\r
_— LV  ———

@ NS <« Ninternally stable

NP < |Noofloo<1 & NS

@RS & u(Nyy)<1, A=Ay & NS

@ RP & u(N) <1, A=diag(Aunc,Dp) & NS
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Today’s program: Controller synthesis

General control problem (no uncertainty):

w Z
=' P ”
U (2
K e
z=F(P,K)w
Controller synthesis
min || Fllm

— m = 2: Hy-optimal control
— m = oco: H-optimal control

Solution based on model of open-loop P(s)
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Today’s program: Controller synthesis

General control problem with uncertainty:

A
|-

. J p b

K
z=F(P,K,A)w

@ RS w full block uncertainty: H.-optimal control incorporating
transfer-function from ua to ya in an extended F(P, K)

@ RS w structured uncertainty & RP: u-synthesis

min max pgp(N)
K w
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Todays program

@ Defining N(s) = F(P(s), K(s)) to reflect desired closed-loop
properties

@ (Parametrization of all stabilizing controllers) (next time)
@ Ho-optimal control

@ Ho.-optimal control

@ u-synthesis

@ The robust stabilization problem
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The Control Objective

d

+

) Yy
e=Sr—Sd+ Tn
ool u=KS(r—d-n)

@ disturbance attenuation and setpoint tracking; make S "small”
@ noise attenuation; make T "small”

@ reducing input usage; make KS "small”

@ RS with full block input/output uncertainty; make T;/ T "small”

r % K u e
N [

Controller design: make trade-offs between conflicting objectives
— synthesis: formulate and solve optimization problem
— loop-shaping: “manually” shape open loop-gain
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Deriving P(s) - signal based approach

@ Minimize weighted control error e and control input u in presence
of setpoint r and disturbance d

W — r 7 Wpe
- \d/ "’ - \Wuu
@ In open-loop (and n = 0)

zy = Wpe= Wp(r —d — Gu) = Wp(wy — w2 — Gu); 2= Wyu

v=e=r—-d-Gu=w; —ws — Gu
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Thus,

P(s)=| o0 0 W,(s)l
/

We(s)l —We(s)l —WpG(s)
( -1 —G(s) )

@ state-space realization of P(s) is the basis for 1, and Ho,
synthesis
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Deriving P(s) - shaping transfer-functions

Consider shaping closed-loop transfer-functions, e.g., Sand T
(w?)l, = Fero=(w7)
@ Choose signals w and z such that
5 (W1 S> W
WoT
We have e = Sr and e — r = Tr. Thus, choose

w=ri 2= (e )

@ From this we then derive

( Wi(s)l —Wi(s) G(S))

min
K

m

0 Wa(s)G(s)
1 —G(s)
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P(s) - closed-loop shaping approach

| B
1 r 1 x
u:ri s i ;
i | :
: o T -
| L=
i -+ |
i i v
H &
I
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Solving the optimization problem

Standard algorithms for solving #,- and #..-optimal control problems
are based on a state-space realization of the generalized plant P(s)

A B B
P={Ci D1 Di
Co Dy Do
with input [w 1] and output [z v]T

@ Solution of optimal problem generally involves solving two
Algebraic Riccati Equations (ARE)

ATX + XA+ XRX+Q=0

@ A number of assumptions on P usually need to be fulfilled to solve
the optimization problem (algorithm dependent)
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Some Typical Requirements on P

(A1) (A, By, C,) stabilizable and detectable
e required for existence of stabilizing K

(A2) Dy and Doq have full rank
@ ensures proper K

(A3) <A_IWI Bz) has full column rank for all w
Cy Di»

(A4) (A —Jwl By > has full row rank for all w
Co Do

@ ensures poles on imaginary axis detectable and controllable,
respectively, in closed-loop
@ avoid cancelation of poles and zeros on imaginary axis

(A5) Dyy =0and Do, =0
e mainly to ensure strictly proper transfer-functions (required with 5)
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‘Ho-optimal control

min |F(P, K)> = min \/;T /_Z tr[F (joo) F ()] o

Interpretations of Ho-norm:
@ signal: output covariance for white noise input

IFI3 = Jim E{z()Tz(t)}, E{w(t)"w(r)} =d(t—7)l
—00
— follows from Parsevals theorem

E{ li 7 Wtdt—1 OotF'F'”d—F2
{erooﬁ JZ() z(t) }—5/00 r[F(jw)F(jw)"]dw = [|Fll3

@ system: sum of “area” of all singular values of F

IFlle = \/ g A GUDILE
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— minimizing output covariance for white noise input is similar to
LQG!

— Ho-optimal control problems can be solved explicitly from two
algebraic Riccati equations

— Separation principle: solution can be written on the form
optimal state feedback + optimal state estimator
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LQG - a special case of H,-optimal control

@ The LQG problem
X = Ax + Bu + wy

y=Cx+w,

e { (2 i} = (5 9)aen

@ the LQG-controller solves

with

T—o0

;
Ko = argmin E{ lim l/ x"Qx + u"Ru dt}
K T 0

withQ=Q" >0and R=R7T >0
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LQG - a special case of H,-optimal control

@ LQG cast as an H,-optimal control problem

L, (Q7% 0\ (x\ (wg wiz oo N
0o R'V/2)\u)" W), 0o V2

with E{w(t)Tw(r)} = §(t — 1)/

Then,
— F(P,K)w : ||F||§:E{ lim _/ }

The corresponding generalized plant is

A W/ o B
p_ Q2 0 0 0
|l o 0 0 R/?

C o V2 o
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LQG cast as Hp-optimization problem

general control configuration for LQG as #H,-optimal control problem

1} fu_,l P
{ ' o Wa— R% L }
w : ! z
E at a1 1 i
! » B [0— (sl —A) 1 Q2 !
: i :
H = L’%‘ & =+ﬁ+ | )
! L .
B | v s e S e S S e s |
K
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The Solution

@ Optimal state feedback
u(t) = —R'BTXX(t)
where X = X' > 0 solves the ARE
ATX+ XA-XBR'BTX+Q=0
@ combined with optimal state estimator
X = AX(t) + Bu(t) + YCTV~'(y — CX)
where Y = YT > 0 solves the ARE
YAT + AY — YCTV-ICY + W =0

@ The general H,-optimal controller can be separated into optimal
state feedback combined with an optimal state estimator, each
involving solution of an ARE
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H.-optimal control

m,gn IF(P, K)o = mKin mgx& (F(P,K)(jw))

Interpretations of H..-norm:
@ signal: "worst-case” amplification from input to output
”FHoo: max ”Z(t)HZ
w(t)#0 [[w(t)]l2

"worst-case” input is sinusoid with fixed frequency
@ system: peak of maximum singular value

|Fllco = maxa(F)

— Ho-optimal problem can in general not be solved explicitly
— but, can determine a controller that yields || F||. < ~ for a fixed ~,
if such a controller exist
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the H.-optimal controller
Consider state-space realization of generalized plant
A B B
P={Cy D1 Di
Co D2y Do
o Assume (A1)-(A5) above, and (A6) D1z = (0 /)7, Doy = (0 1),

(A7) D],Ci =0, B;DJ, = 0 (A8) (A, By) stabilizable, (A, Cy)
detectable



@ Then, there exist a controller K(s) such that ||F(P, K)o < 7 if
and only if the algebraic Riccati equations

AT Xy + XooA+ CI Cy + Xoo(v2ByB] — B:BJ )Xo =0

AYoo + Yoo AT + ByB] + Yoo (v 2C] Cy — C] C5) Yoo =0
has solutions X, > 0 and Y., > 0 such that Vi
Re\; [A +(y%BB] — B,B] )xo@] <0,Re\ [A +Ye(y2CTC —C] cg)] <0

p(Xoo Yoo) <77

— if such a solution exist then there exist a set of controllers K that
satisfies ||F(P, K)|lco < v
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@ one specific controller, having the same number of states as P(s),
can be written on the form state estimator + state feedback

X = AR + Biy 2B XooX + Bot + ZooLoo (C2% — )

~

u= Fy X
with

Foo=-BIXs: Lio=-YuCl: Zo=(-7"2YXx)""

@ In order to determine the H,-optimal controller, iterate on ~ until
minimum ~ for which a solution exists is found (-iterations).
Convex problem.
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Robustness

@ Ho-optimal control have no guaranteed robustness margins
@ in H.-optimal control possible to include RS conditions with
full-block uncertainty, e.g., | W, Tj||.c < 1 for full block input

uncertainty

@ to address RS with structured uncertainty and RP: employ
u-synthesis

Ap

T Ap o<1
A is RS,

YA ezt

m&n max u(N(P, K))

Lecture 7: Controller Synthesis and Design () FEL3210 MIMO Control 23/1



|
p-synthesis - ming max,, u(N)
@ no direct solution available

@ employ DK-iterations based on minimizing upper bound
< mins -1
u(N) < mina(DND™)

1. K step: with fixed scaling D, solve H.-optimal control problem
min || DN(K)D~" |

2. D step: with fixed controller K, determine scaling D that minimizes
scaled Ho.-norm
min ||[DN(K)D™"|
DeD
if not converged, go to 1.
— both steps convex, but no guarantee on convexity for combined
problem

— controller for each step contains the number of states of P(s) plus
twice the number of states in D(s)
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Robust Stabilization

Alternative to explicitly address robustness in synthesis:

1. design for performance

2. robustify design, i.e., modify controller to improve robustness (RS)
Note: addresses robust stability only.
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(Left) Coprime Factorization

Consider normalized coprime factorization of G(s)
G(s) = M~'(s)N(s) s.t. M(s)MT(—s)+ N(s)NT(—s) = I

with M(s) and N(s) stable and coprime

— essentially M(s) contains RHP poles of G(s) as zeros and N(s)
RHP zeros as zeros

— the idea in robust stabilization is to maximize robustness wrt
perturbations of the coprime factors M(s) and N(s)
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Uncertainty in Coprime Factors

Introduce uncertainty description

Gp(s) = (M(s) + Am(s)) " (N(s) + An(s))

— allows for perturbations of both poles and zeros across imaginary
axis using stable perturbations Ay(s) and An(s)
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Robust Stabilization

Determine controller K that robustly stabilizes G, with
(AN Bm)lleo <€
where ¢ is the stability margin

Gp may be written on P — A-form with A = (Ay  Ap) (full matrix!)
and

P = <}/(> (I-GK)"'M!

thus, robust stability if v = ||P|oc < 1
— the maximum stability margin can be explicitly computed from
1 _
€max = = (= (N M) ||%—I) /2
min

where || - ||y denotes the Hankel norm.
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— the corresponding #H.-optimal controller that yields
< Ymin

I[(5)) -]

can be directly computed by solving two algebraic Riccati
equations
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Glover-McFarlane Loopshaping

1. apply pre- and post-compensators to shape loop-gain

For instance, assume performance objective is | W, S|/ < 1 and
IWrT|s < 1. Then choose W; and W, to achieve

w<wg: o(Gs)> | Wl

w>wg: d(Gs)<1/|Wr|
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2. perform robust stabilization of shaped plant Gs(s) with K. If
emax > 0.25 then performance and robust stability usually not in
conflict. Otherwise, if performance strongly affected by
stabilization return to step 1 to modify loop-gain
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Example 9.3

Consider plant with

200 100

G)=Fos 177 9= o551

@ choose loop-gain |Gs| = |Gy|, i.€.,
Wy = |G "Gyl = 0.5
add integral action, phase advance and double the gain

W, _ S*2
s
gives oscillatory response
© maximum stability margin: use e.g., ncfsyn in Matlab to find
Ymin = 2.34, Or €max = 0.43
© choose v = 1.1v,, and compute corresponding robustifying
controller K.
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Example 9.3: effect of robustification

Wb

Frequency [rad/s]
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0
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Next Time

@ Parametrization of all stabilizing controllers

@ LMI formulation of Hy — /H~o-optimal control problems
@ Model reduction (brief introduction)

@ Control structure design (brief introduction)

@ Course summary
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