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FEL3210 Multivariable Feedback Control

Lecture 7: Controller Synthesis and Design [Ch. 9]

Elling W. Jacobsen, Automatic Control Lab, KTH
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Lecture 6: Analysis of RS and RP
General control configuration (with given controller K ):

NS ⇔ N internally stable

NP ⇔ ‖N22‖∞ < 1 & NS

RS ⇔ µ(N11) < 1, ∆ = ∆unc & NS

RP ⇔ µ(N) < 1, ∆ = diag(∆unc ,∆p) & NS

Lecture 7: Controller Synthesis and Design () FEL3210 MIMO Control 2 / 1



university-logo

Today’s program: Controller synthesis

General control problem (no uncertainty):

z = F (P,K )w

Controller synthesis
min

K
‖F‖m

– m = 2: H2-optimal control
– m =∞: H∞-optimal control

Solution based on model of open-loop P(s)
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Today’s program: Controller synthesis

General control problem with uncertainty:

z = F (P,K ,∆)w

RS w full block uncertainty: H∞-optimal control incorporating
transfer-function from u∆ to y∆ in an extended F (P,K )

RS w structured uncertainty & RP: µ-synthesis

min
K

max
ω

µRP(N)
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Todays program

Defining N(s) = F(P(s),K (s)) to reflect desired closed-loop
properties
(Parametrization of all stabilizing controllers) (next time)
H2-optimal control
H∞-optimal control
µ-synthesis
The robust stabilization problem
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The Control Objective

e = Sr − Sd + Tn

u = KS(r − d − n)

disturbance attenuation and setpoint tracking; make S ”small”
noise attenuation; make T ”small”
reducing input usage; make KS ”small”
RS with full block input/output uncertainty; make TI/T ”small”

Controller design: make trade-offs between conflicting objectives
– synthesis: formulate and solve optimization problem
– loop-shaping: “manually” shape open loop-gain
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Deriving P(s) - signal based approach

Minimize weighted control error e and control input u in presence
of setpoint r and disturbance d

w =

(
r
d

)
, z =

(
WPe
Wuu

)
In open-loop (and n = 0)

z1 = WPe = WP(r − d −Gu) = WP(w1 − w2 −Gu) ; z2 = Wuu

v = e = r − d −Gu = w1 − w2 −Gu
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Thus,

P(s) =

WP(s)I −WP(s)I −WPG(s)
0 0 Wu(s)I
I −I −G(s)


state-space realization of P(s) is the basis for H2 and H∞
synthesis
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Deriving P(s) - shaping transfer-functions

Consider shaping closed-loop transfer-functions, e.g., S and T

min
K

∥∥∥∥(WPS
WT T

)∥∥∥∥
m
⇒ F (P,K ) =

(
WPS
WT T

)
Choose signals w and z such that

z =

(
W1S
W2T

)
w

We have e = Sr and e − r = Tr . Thus, choose

w = r ; z =

(
W1e

W2(e − r)

)
From this we then derive

P(s) =

−W1(s)I −W1(s)G(s)
0 W2(s)G(s)
−I −G(s)


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P(s) - closed-loop shaping approach
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Solving the optimization problem

Standard algorithms for solving H2- and H∞-optimal control problems
are based on a state-space realization of the generalized plant P(s)

P =

 A B1 B2
C1 D11 D12
C2 D21 D22


with input [w u]T and output [z v ]T

Solution of optimal problem generally involves solving two
Algebraic Riccati Equations (ARE)

AT X + XA + XRX + Q = 0

A number of assumptions on P usually need to be fulfilled to solve
the optimization problem (algorithm dependent)
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Some Typical Requirements on P

(A1) (A,B2,C2) stabilizable and detectable
required for existence of stabilizing K

(A2) D12 and D21 have full rank
ensures proper K

(A3)
(

A− jωI B2
C1 D12

)
has full column rank for all ω

(A4)
(

A− jωI B1
C2 D21

)
has full row rank for all ω

ensures poles on imaginary axis detectable and controllable,
respectively, in closed-loop
avoid cancelation of poles and zeros on imaginary axis

(A5) D11 = 0 and D22 = 0
mainly to ensure strictly proper transfer-functions (required with H2)
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H2-optimal control

min
K
‖F (P,K )‖2 = min

K

√
1

2π

∫ ∞
−∞

tr [F (jω)F (jω)H ]dω

Interpretations of H2-norm:
signal: output covariance for white noise input

‖F‖22 = lim
t→∞

E{z(t)T z(t)} , E{w(t)T w(τ)} = δ(t − τ)I

– follows from Parsevals theorem

E{ lim
T→∞

1
2T

∫ T

−T
z(t)T z(t)dt} =

1
2π

∫ ∞
−∞

tr [F (jω)F (jω)H ]dω = ‖F‖2
2

system: sum of “area” of all singular values of F

‖F‖2 =

√
1

2π

∫ ∞
−∞

σ2
i (F (jω))dω
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– minimizing output covariance for white noise input is similar to
LQG!

– H2-optimal control problems can be solved explicitly from two
algebraic Riccati equations

– Separation principle: solution can be written on the form
optimal state feedback + optimal state estimator
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LQG - a special case of H2-optimal control

The LQG problem
ẋ = Ax + Bu + wd

y = Cx + wn

with

E
{(

wd (t)
wn(t)

)(
wd (τ)T wn(τ)T

)}
=

(
W 0
0 V

)
δ(t − τ)

the LQG-controller solves

KLQG = arg min
K

E

{
lim

T→∞

1
T

∫ T

0
xT Qx + uT Ru dt

}

with Q = QT ≥ 0 and R = RT ≥ 0
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LQG - a special case of H2-optimal control

LQG cast as an H2-optimal control problem

z =

(
Q1/2 0

0 R1/2

)(
x
u

)
;

(
wd
wn

)
=

(
W 1/2 0

0 V 1/2

)
w

with E{w(t)T w(τ)} = δ(t − τ)I

Then,

z = F (P,K )w ; ‖F‖22 = E

{
lim

T→∞

1
T

∫ T

0
z(t)T z(t)dt

}
The corresponding generalized plant is

P =


A W 1/2 0 B

Q1/2 0 0 0
0 0 0 R1/2

C 0 V 1/2 0


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LQG cast as H2-optimization problem

general control configuration for LQG as H2-optimal control problem
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The Solution

Optimal state feedback

u(t) = −R−1BT Xx̂(t)

where X = X T ≥ 0 solves the ARE

AT X + XA− XBR−1BT X + Q = 0

combined with optimal state estimator

˙̂x = Ax̂(t) + Bu(t) + YCT V−1(y − Cx̂)

where Y = Y T ≥ 0 solves the ARE

YAT + AY − YCT V−1CY + W = 0

The general H2-optimal controller can be separated into optimal
state feedback combined with an optimal state estimator, each
involving solution of an ARE
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H∞-optimal control

min
K
‖F (P,K )‖∞ = min

K
max
ω

σ̄ (F (P,K )(jω))

Interpretations of H∞-norm:
signal: ”worst-case” amplification from input to output

‖F‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

”worst-case” input is sinusoid with fixed frequency
system: peak of maximum singular value

‖F‖∞ = max
ω

σ̄(F )

– H∞-optimal problem can in general not be solved explicitly
– but, can determine a controller that yields ‖F‖∞ < γ for a fixed γ,

if such a controller exist
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the H∞-optimal controller

Consider state-space realization of generalized plant

P =

 A B1 B2
C1 D11 D12
C2 D21 D22


Assume (A1)-(A5) above, and (A6) D12 =

(
0 I

)T , D21 =
(
0 I

)
,

(A7) DT
12C1 = 0, B1DT

21 = 0 (A8) (A,B1) stabilizable, (A,C1)
detectable
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Then, there exist a controller K (s) such that ‖F (P,K )‖∞ < γ if
and only if the algebraic Riccati equations

AT X∞ + X∞A + CT
1 C1 + X∞(γ−2B1BT

1 − B2BT
2 )X∞ = 0

AY∞ + Y∞AT + B1BT
1 + Y∞(γ−2CT

1 C1 − CT
2 C2)Y∞ = 0

has solutions X∞ ≥ 0 and Y∞ ≥ 0 such that ∀i

Reλi

[
A + (γ−2B1BT

1 − B2BT
2 )X∞

]
< 0,Reλi

[
A + Y∞(γ−2CT

1 C1 − CT
2 C2)

]
< 0

ρ (X∞Y∞) < γ2

– if such a solution exist then there exist a set of controllers K that
satisfies ‖F (P,K )‖∞ < γ
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one specific controller, having the same number of states as P(s),
can be written on the form state estimator + state feedback

˙̂x = Ax̂ + B1γ
−2BT

1 X∞x̂ + B2u + Z∞L∞(C2x̂ − y)

u = F∞x̂
with

F∞ = −BT
2 X∞ ; L∞ = −Y∞CT

2 ; Z∞ = (I − γ−2Y∞X∞)−1

In order to determine the H∞-optimal controller, iterate on γ until
minimum γ for which a solution exists is found (γ-iterations).
Convex problem.
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Robustness
H2-optimal control have no guaranteed robustness margins
in H∞-optimal control possible to include RS conditions with
full-block uncertainty, e.g., ‖WITI‖∞ < 1 for full block input
uncertainty
to address RS with structured uncertainty and RP: employ
µ-synthesis

min
K

max
ω

µ(N(P,K ))
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µ-synthesis - minK maxω µ(N)

no direct solution available
employ DK-iterations based on minimizing upper bound

µ(N) ≤ min
D∈D

σ̄(DND−1)

1. K step: with fixed scaling D, solve H∞-optimal control problem

min
K
‖DN(K )D−1‖∞

2. D step: with fixed controller K , determine scaling D that minimizes
scaled H∞-norm

min
D∈D
‖DN(K )D−1‖∞

if not converged, go to 1.
– both steps convex, but no guarantee on convexity for combined

problem
– controller for each step contains the number of states of P(s) plus

twice the number of states in D(s)
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Robust Stabilization

Alternative to explicitly address robustness in synthesis:
1. design for performance
2. robustify design, i.e., modify controller to improve robustness (RS)

Note: addresses robust stability only.
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(Left) Coprime Factorization

Consider normalized coprime factorization of G(s)

G(s) = M−1(s)N(s) s.t. M(s)MT (−s) + N(s)NT (−s) = I

with M(s) and N(s) stable and coprime
– essentially M(s) contains RHP poles of G(s) as zeros and N(s)

RHP zeros as zeros
– the idea in robust stabilization is to maximize robustness wrt

perturbations of the coprime factors M(s) and N(s)
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Uncertainty in Coprime Factors

Introduce uncertainty description

Gp(s) = (M(s) + ∆M(s))−1(N(s) + ∆N(s))

– allows for perturbations of both poles and zeros across imaginary
axis using stable perturbations ∆M(s) and ∆N(s)
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Robust Stabilization

Determine controller K that robustly stabilizes Gp with

‖
(
∆N ∆M

)
‖∞ ≤ ε

where ε is the stability margin

GP may be written on P −∆-form with ∆ =
(
∆N ∆M

)
(full matrix!)

and

P =

(
K
I

)
(I −GK )−1M−1

thus, robust stability if γ = ‖P‖∞ ≤ 1
ε

– the maximum stability margin can be explicitly computed from

εmax =
1
γmin

= (1− ‖
(
N M

)
‖2H)−1/2

where ‖ · ‖H denotes the Hankel norm.
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– the corresponding H∞-optimal controller that yields∥∥∥∥[(K
I

)]
(I −GK )−1M−1

∥∥∥∥
∞
≤ γmin

can be directly computed by solving two algebraic Riccati
equations
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Glover-McFarlane Loopshaping

1. apply pre- and post-compensators to shape loop-gain

Gs(s) = W2(s)G(s)W1(s)

For instance, assume performance objective is ‖WpS‖∞ < 1 and
‖WT T‖∞ < 1. Then choose W1 and W2 to achieve

ω < ωB : σ(Gs) > |WP |

ω > ωB : σ̄(Gs) < 1/|WT |
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2. perform robust stabilization of shaped plant Gs(s) with Ks. If
εmax > 0.25 then performance and robust stability usually not in
conflict. Otherwise, if performance strongly affected by
stabilization return to step 1 to modify loop-gain
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Example 9.3

Consider plant with

G(s) =
200

10s + 1
; Gd (s) =

100
10s + 1

1 choose loop-gain |Gs| = |Gd |, i.e.,

|W1| = |G−1Gd | ≈ 0.5

add integral action, phase advance and double the gain

W1 =
s + 2

s
gives oscillatory response

2 maximum stability margin: use e.g., ncfsyn in Matlab to find
γmin = 2.34, or εmax = 0.43

3 choose γ = 1.1γmin and compute corresponding robustifying
controller Ks.
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Example 9.3: effect of robustification
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Next Time

Parametrization of all stabilizing controllers
LMI formulation of H2 − /H∞-optimal control problems
Model reduction (brief introduction)
Control structure design (brief introduction)
Course summary
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