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FEL3210 Multivariable Feedback Control

Lecture 8: Youla parametrization, LMIs, Model Reduction and
Summary [Ch. 11-12]

Elling W. Jacobsen, Automatic Control Lab, KTH

Lecture 8: Youla, LMIs, Model Reduction and Summary ()FEL3210 MIMO Control 1 / 1



university-logo

Todays program

Optimal control problems

min
K
‖N(K ,P)‖m, m = 2,∞

Youla parametrization: search over all stabilizing K (s)⇒ search
over all stable transfer-functions Q(s)

– the model matching problem

Linear Matrix Inequalities: translate optimization problem into
low-complexity convex problem

Model reduction: optimization problem typically yields high-order
K (s)→ reduce order of controller while maintaining essential
properties

Learning outcome?
Information about exam.

Lecture 8: Youla, LMIs, Model Reduction and Summary ()FEL3210 MIMO Control 2 / 1



university-logo

Paramterization of all stabilizing controllers
Internal Model Control (IMC) structure

[

Assume G stable. Then closed-loop internally stable iff

K (I + GK )−1 = Q (I + GK )−1 = I −GQ
(I + KG)−1 = I −QG G(I + KG)−1 = G(I −QG)

all stable⇔ Q stable
The error feedback controller K = Q(I −GQ)−1

Thus, a parametrization of all stabilizing controllers is

K = Q(I −GQ)−1

where Q(s) is any stable transfer-function matrix
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Example: H∞ Model Matching Problem

For stable G, find controller such that

‖wPS‖∞ < 1

From IMC
S = I −GQ

Introduce P1 = wP , P2 = wPG, P3 = I, γ = 1. Then

‖wPS‖∞ < 1 ⇔ ‖P1(s)− P2(s)Q(s)P3(s)‖∞ < γ

Known as the model matching problem
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Parametrization for unstable plants

Left coprime factorization

G(s) = M−1(s)N(s)

such that M,N proper, stable and satisfy Bezout identity

NX + MY = I

Parametrization of all stabilizing controllers

K (s) = (Y (s)−Q(s)N(s))−1(X (s) + Q(s)M(s))

where Q(s) is any stable transfer-matrix
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Todays program

Optimal control problems
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Linear Matrix Inequalities

Linear Matrix Inequality (LMI)

F0 + F1x1 + F2x2 + . . .Fmxm > 0

where
– x = [x1 . . . xm] is a real vector
– Fi , i = 0,m are symmetric real matrices

An LMI imposes a convex constraint on x

feasibility problem: find some x that satisfies LMI
optimization problem: minimize cT x subject to LMI

Old problem, efficient solvers now available
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Remark: LMIs often written on matrix form also for x

F0 + Σn
i=1GiXiHi > 0

where Gi ,Hi are given matrices and we seek Xi
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Example 1: Linear stability problem

LTI system
ẋ = Ax(t)

Lyapunov function V (x) = xT Px > 0 with V̇ (x) < 0 iff

P = PT > 0, AT P + PA < 0

Corresponds to an LMI feasibility problem (just stack the two
inequalities into one big matrix)
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Example 2: Linear robust stability problem

Polytopic LTV system

ẋ = A(t)x(t) , A(t) ∈ {A1, . . . ,AL}

Lyapunov function exist iff

P = PT > 0 , AT
i P + PAi < 0, i = 1, . . .L

LMI feasibility problem
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Optimization problems: H∞-norm

Consider LTI system

ẋ = Ax(t) + Bw(t)
z(t) = Cx(t) + Dw(t)

The H∞ norm of Gzw is equivalent to solving

min γ s.t .

AT P + PA PB CT

BT P −γI DT

C D −γI

 < 0, P > 0

i.e., minimization subject to LMI.

Computing upper bound on structured singular value µ via
minD σ̄(D−1ND) is another example that can be cast as an
optimization problem with LMI constraint.
Solutions to Algebraic Riccati equations, e.g., in H2/H∞-optimal
control, can be obtained via LMI feasibility problem.
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LMIs in control - the Essence

Many problems in optimal and robust control can be cast as LMI
problems⇒ convex optimization problems for which efficient
algorithms exist (e.g., interior point methods)

Matlab: LMI toolbox, and LMI Lab in Robust Control toolbox.

See EL3300 Convex Optimization with Engineering Applications
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Todays program
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The LTI Model Reduction Problem

Given minimal state-space model (A,B,C,D)

ẋ = Ax(t) + Bu(t) x ∈ Rn,u ∈ Rm

y(t) = Cx(t) + Du(t) y ∈ Rl

or, as input-output model

Y (s) =
[
C(sI − A)−1B + D

]︸ ︷︷ ︸
G(s)

U(s)

model reduction: we seek a model

ẋr = Ar x̂(t) + Br u(t) xr ∈ Rk ,u ∈ Rm

y(t) = Cr xr (t) + Dr u(t) y ∈ Rl

Ga(s) = Cr (sI − Ar )−1Br + Dr

with k < n, such that the predicted input-output behavior is close in
some sense, e.g., ‖G −Ga‖∞ is small
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Why Model Reduction?

Reduced computational complexity

– time for dynamic simulation is approximately proportional to n3 (if A
dense)

– in particular, important for real time applications, e.g., controllers

Controller synthesis methods typically yield controllers that have order at
least equal to model order, usually significantly higher. Thus, to obtain
low order controller

– reduce model order prior to control design, or
– reduce controller order after design

A multitude of model reduction methods. Here we will consider those most
commonly employed in linear control theory.
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Truncation and Residualization

Divide state vector x into two vectors x1 and x2 of dimension k and n − k ,
respectively

ẋ1 = A11x1(t) + A12x2(t) + B1u(t)
ẋ2 = A21x1(t) + A22x2(t) + B2u(t)

y(t) = C1x1(t) + C2x2(t) + Du(t)

We aim at removing the state vector x2, i.e., obtain a k th order model from an
nth order model

Truncation: let x2 = 0, i.e., remove x2 from state-space model

Residualization: let ẋ2 = 0, i.e., x2 becomes an algebraic variable
which depends on x1 and u
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Truncation

With x2 = 0 we get

(Ar ,Br ,Cr ,Dr ) = (A11,B1,C1,D)

Simply removing a number of states makes little sense in general

Consider first transforming (A,B,C,D) into Jordan form and arrange the
states so that x2 correspond to the fastest modes

If the Jordan form is diagonal (distinct eigenvalues λi ) then

G(s) =
n∑

i=1

cibT
i

s − λi

Removing the n − k fastest modes then yields the model error

G(s)−Ga(s) =
n∑

i=k+1

cibT
i

s − λi
⇒ ‖G −Ga‖∞ ≤

n∑
i=k+1

σ̄(cibT
i )

|Re(λi )|

note: must assume stable G(s)
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Truncation cont’d

The H∞ error bound
n∑

i=k+1

σ̄(cibT
i )

|Re(λi )|

depends not only on eigenvalues of fast modes, but also on the residues
cibT

i , i.e., the effect of inputs u on x2 and effect of x2 on outputs y

At ω =∞
Ga(i∞) = G(i∞) = D

Thus, no error at infinite frequency
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Residualization

With ẋ2 = 0 we get (assume A22 invertible)

x2(t) = −A−1
22 A21x1(t)− A−1

22 B2u(t)

and elimination of x2 from partitioned model then yields

ẋ1(t) = (A11 − A12A−1
22 A21)x1(t) + (B1 − A12A−1

22 B2)u(t)

y(t) = (C1 − C2A−1
22 A21)x1(t) + (D − C2A−1

22 B2)u(t)

Thus, the reduced model (Ar ,Br ,Cr ,Dr ) =

(A11 − A12A−1
22 A21,B1 − A12A−1

22 B2,C1 − C2A−1
22 A21,D − C2A−1

22 B2)

Corresponds to a singular perturbation method if A transformed to
Jordan form first

At zero frequency
Ga(0) = G(0)

follows from the fact that ẋ2 ≡ 0 at steady-state
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Comments on Truncation and Residualization

Truncation gives best approximation at high frequencies

Residualization gives best approximation at low frequencies

The two methods are related through the bilinear transformation s → 1
s

Both methods can in principle give rise to arbitrarily large model
reduction errors since effect of states on input-output behavior not only
related to the speed of response

Should be combined with some method that ensures relatively small
overall effect of removed states on input-output behavior⇒ balancing
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The Controllability Gramian

The state space model (A,B,C,D) has an impulse response from u(t)
to x(t) given by

X (t) = eAtB

A quantification of the “size” of the impulse response is

P(t) =

∫ t

0
X (τ)X T (τ)dτ =

∫ t

0
eAτBBeAT τdτ

Define the Controllability Gramian P as

P = lim
t→∞

P(t)

The controllability gramian can be computed from the Lyapunov equation

AP + PAT + BBT = 0

P is a quantitative measure for controllability of the different states.
Essentially, measures the effect of the inputs on the different states
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The Observability Gramian

The state space model (A,B,C,D) with input u(t) = 0 and initial state
x(0) = x∗ has the output

y(t) = CeAtx∗

The energy of the output∫ t

0
yT (τ)y(τ)dτ = xT∗

∫ t

0
eAT τCT CeAτdτ︸ ︷︷ ︸

Q(t)

x∗

Define the Observability Gramian Q as

Q = lim
t→∞

∫ t

0
eAT τCT CeAτdτ

The observability gramian can be computed from the Lyapunov equation

AT Q + QA + CT C = 0

Q is a quantitative measure for observability of the different states.
Essentially, measures the effect of states on outputs
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Balanced Realizations

We seek a similarity transformation of the states xb(t) = Tx(t) so that
the transformed state space model

ẋb = TAT−1xb(t) + TBu(t)

y(t) = CT−1xb(t) + Du(t)

has controllability and observability gramians

P = Q = diag(σ1, . . . , σn); σi =
√
λi (PQ)

where the Hankel singular values σ1 > σ2 > . . . > σn

Each state xbi in the balanced realization is as observable as it is
controllable, and σi is a measure of how controllable/observable it is

A state with a relatively small σi has a relatively small effect on the
input-output behavior and can hence be removed without significantly
affecting the predicted input-output behavior
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Balanced Truncation and Residualization

Consider the balanced realization (A,B,C,D) of G(s) with partitioning

A =

(
A11 A12
A21 A22

)
, B =

(
B1
B2

)
, C =

(
C1 C2

)
P = Q =

(
Σ1 0
0 Σ2

)
where Σ1 = diag(σ1, . . . , σk ) and Σ2 = diag(σk+1, . . . , σn)

A balanced truncation or residualization retaining the k states
corresponding to Σ1 will both have model reduction error

‖G −Gk
a‖∞ ≤ 2

n∑
i=k+1

σi

“twice the sum of the tail”

May in principle include frequency dependent weighting to emphasize
certain frequency ranges, However, this introduces extra states and it is
furthermore usually non-trivial to choose weigths that give the desired
result
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Optimal Hankel Norm Approximation

The Hankel norm of a transfer-matrix E(s)

‖E(s)‖H = σ1 =
√
ρ(PQ)

i.e., equals the maximum Hankel singular value of E(s)

Optimal Hankel norm approximations seeks to minimize ‖G −Gk
a‖H for a

given order k of the reduced order model

For stable square G(s) the optimal Hankel norm k th order approximation
can be directly computed and has Hankel norm error

‖G −Gk
a‖H = σk+1

The optimal Hankel norm is independent of the D-matrix of Gk
a The

minimum∞-norm of the error is

min
D
‖G −Gk

a‖∞ ≤
n∑

i=k+1

σi

i.e., “sum of the tails” only
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Unstable models

Balanced truncation and residualization and optimal Hankel norm
approximations applies to stable G(s) only. Two “tricks” to deal with unstable
models

1 Separate out unstable part before performing model reduction of stable
part

G(s) = Gu(s) + Gs(s) ⇒ Ga(s) = Gu(s) + Gsa(s)

2 Consider coprime factorization of G(s)

G(s) = M−1(s)N(s)

with M(s) and N(s) stable. Apply model reduction to [M(s) N(s)] and
use

Ga(s) = M−1
a (s)Na(s)
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Model Reduction in Matlab

modreal: truncation or residualization
slowfast: slow/fast mode decomposition
balreal: balanced realization
hankelmr: optimal Hankel norm approximation
stabproj: decompose into stable and antistable parts
ncfmr: balanced model truncation for normalized coprime factors

Homework 8: test it out yourself! (no hand in).
– use e.g., rss(n) to generate a random stable state-space model

with n states.
– compare step and frequency responses of different reduced

models
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Model Reduction Course

EL3500 Introduction to Model Order Reduction
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Learning Outcomes

?
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Learning Outcomes
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The Final Moment

Exam:
Covers Lectures and Ch. 1-9 (+ Ch. 11-12 tutorial) in Skogestad
and Postlethwaite
1-day take home exam, open book.

allowed aids: course book(s), lecture slides, matlab, calculator
not allowed: old exams, exercises, solutions

available between March 29 - April 15
send an email to jacobsen@kth.se with the date at which you
want to take it (give at least 2 days notice)
All exercises must be approved prior to taking out exam
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