Sample tasks for the exam / final colloquium in operations research

1. Given the set $C:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$, where A is an $m \times n$ matrix and $b \in \mathbb{R}^{m}$.
(a) yes \square no \square All elements of matrix A are positive, then $C \neq \emptyset$
(b) yes \square no \square The set $C \neq \emptyset$, then it is a polyhedral set
(c) yes \square no \square The set $C \neq \emptyset$, then it is a polyhedron
(d) yes \square no \square The set $C \neq \emptyset$, then it has at least one vertex
(e) yes \square no \square The set $C \neq \emptyset$ and it has at least one vertex, then C is a convex hull of its vertices
(f) yes \square no \square The set C is convex
(g) Justify your answer in point (f).
2. Given the following problem:

A sawmill employing 15 workers in one 8-hour shift produces floorboards and wainscoting boards with $90 \mathrm{~m}^{3}$ of wood and $1,200 \mathrm{kWh}$ of electricity at its disposal during this shift. The specific consumption of electricity and the required specific number of operating hours are given in the table below.

\downarrow Consumption per $1 \mathrm{~m}^{3}$ of wood \longrightarrow	for floorboards	for wainscoting boards
electricity (in kWh)	8	15
man hours (in h)	1,5	1

The profit from sawing $1 \mathrm{~m}^{3}$ of wood for floorboards is PLN 120, and for wainscoting boards - PLN 100. The task of the sawmill is to set the production profile in such a way as to achieve maximum profit.
(a) 4 Represent this problem as a classical linear programming problem

(b) 2 Give the form of the dual problem to problem (P).

(c) 3 Draw the set of possible solutions for the problem (P).

(d) 1 Solve problem (P) graphically, indicate the optimal solution on the graph
(e) 2 How many mł should be wiped onto the floorboards \square , and how much for wainscoting boards
\qquad to achieve maximum profit?
(f) 2 What is the maximum profit from sawmill production in one shift? PLN \qquad
(g) 1 Provide a brief form of the starting simplex tableau for this problem

(h) ± 1 Which phase of the simplex algorithm does this table correspond to? first \square second \square
(i) 1 In tableau (T1), indicate the main element according to the appropriate phase of the simplex algorithm and transform the tableau.

(j) ± 1 yes \square no \square Table (T2) shows the feasible solution to problem (P).
(k) 1 Give the basic solution of problem $(x, u)=(, \quad, \quad, \quad$, which is presented in tableau (T2).
(1) 1 Provide the basic solution to problem (D) $(y, v)=(, \quad, \quad)$, which is presented in tableau (T2).
(m) ± 1 yes \square no \square Tableau (T2) shows the optimal solution.
(n) ± 1 yes $\square \square$ no Tableau (T2) shows the dually feasible solution.
3. $\max 5$ Given a consistent integer linear programming problem

$$
\begin{array}{rrl}
\text { maksymalizować } & c^{\top} x & \\
\text { przy ograniczeniach } & A x & \leq b \\
& x & \geq 0 \tag{PC}\\
& x & \in \mathbf{Z}^{\gamma}
\end{array}
$$

where $c, x \in \mathbb{R}^{n}, A$ is an $m \times n$ matrix with positive elements and $b \in \mathbb{R}^{m}, b, c \geq 0$.
(a) ± 1 yes \square no \square Problem (PC) always has a feasible solution
(b) ± 1 yes \square no \square Problem (PC) always has an optimal solution
(c) ± 1 yes \square no \square Problem (PC) can be solved using the simplex method
(d) ± 1 yes \square no \square Problem (PC) can be solved by Gomory's cuts
(e) ± 1 yes \square no \square If the integer assumption is removed in the problem (PC), the optimal value of the objective function will decrease.
4. Given is a complete graph $G=(V, E)$, the vertices of which are located on the \mathbb{R}^{2} plane and have coordinates $(1,0),(0,1),(0,2),(3,4),(3,6),(5,1)$ and $(6,3)$. A weight function $c: E \rightarrow \mathbb{R}$ is defined on the set of edges E in the following way: $c(e)$ s equal to the Euclidean distance between the vertices connected by edge e, $e \in E$. Use the Kruskal method to determine the shortest spanning tree of this graph, marking the edges determined by this method one by one.

