Operations research tasks - list 2

1. Let A_{i} be a matrix of type $m \times n_{i}, i=1, \ldots, m$, and B_{i}-a matrix of type $n_{i} \times p, i=1, \ldots, m$. Show that

$$
\left[\begin{array}{lll}
A_{1} & \cdots & A_{m}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{m}
\end{array}\right]=\sum_{i=1}^{m} A_{i} B_{i}
$$

that is, the rule for block matrix multiplication is the same as the rule for 'ordinary' matrix multiplication.
2. Let A be a matrix of type $m \times n, x=\left(x_{1}, \ldots, x_{n}\right)^{\top}$ and $y=\left(y_{1}, \ldots y_{m}\right)^{\top}$. Show that $A x$ is a linear combination of the columns of matrix A with coefficients x_{1}, \ldots, x_{n} and $y^{\top} A$ is a linear combination of the columns of matrix A with coefficients y_{1}, \ldots, y_{m}.
3. Let A be a matrix of type $m \times n$. Show that $A e_{j}=A_{j}$ i $e_{i}^{\top} A=A^{i}$, where e_{k} denotes the k th unit vector of the Euclidean space of the appropriate dimension, A_{j} denotes the j-th column of A and A^{i} denotes the i th row of A.
4. Let A be a matrix of type $m \times n$. Show that $A^{\top} A$ is non-negative definite and that it is positive definite if and only if A is of full column rank.
5. Given a homogeneous system of m linear equations with n unknowns $A x=0$.
(a) Show that the solution set of this system is a linear subspace.
(b) Suppose that the first m columns of the matrix A are linearly independent. Let us denote the submatrix formed from these columns with the symbol A_{B}, and the matrix formed with the remaining $n-m$ columns with the symbol A_{N}. Present the form of any solution of this system.
(c) What is the basis and dimension of the linear subspace in question?
6. Given a consistent system of m linear equations $A x=b$.
(a) Explain why, without loss of generality, it may be assumed that matrix A has full row row, i.e. that $\mathrm{r}(A)=m$.
(b) Show that the solution set of this system is an affine subspace, i.e

$$
\text { if } x, y \text { are solutions of the system } A x=b \text { and } \lambda \in \mathbb{R},
$$ then $(1-\lambda) x+\lambda y$ is also a solution of this system.

(c) Present the form of any solution of this system.
7. Solve the following systems of equations using Gaussian elimination:
$x_{1}+x_{2}-x_{3}=2$
$x_{1}+x_{2}-x_{3}=2$
$x_{1}+x_{2}-x_{3}=2$
(a) $-2 x_{1}+x_{2}+x_{3}=3$,
(b) $-2 x_{1}+x_{2}+x_{3}=3$,
(c) $-2 x_{1}+x_{2}+x_{3}=3$,
$x_{1}+x_{2}+x_{3}=6$
$3 x_{1}-2 x_{3}=-1$
$3 x_{1}-2 x_{3}=1$

$$
\begin{align*}
2 x_{1}+x_{2}-x_{3}+x_{4} & =1 \\
x_{1}+3 x_{2}-3 x_{3} & =1 \tag{f}\\
x_{1}+x_{2}+x_{3}-x_{4} & =1
\end{align*}
$$

(d)
(e) $x_{1}+x_{2}+x_{3}+3 x_{4}=2$,
$3 x_{1}+5 x_{2}-x_{3}+x_{4}=3$

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =1 \\
3 x_{1}-x_{2}+3 x_{3} & =2 \\
x_{1}+x_{2}+x_{3} & =0 \\
x_{1}-x_{2}+x_{3} & =1
\end{aligned}
$$

8. Let $c_{1} \in \mathbb{R}^{n_{1}}, c_{2} \in \mathbb{R}^{n_{2}}, b_{1} \in \mathbb{R}^{m_{1}}, b_{2} \in \mathbb{R}^{m_{2}}$ and $A_{11}, A_{12}, A_{21}, A_{22}$ be matrices of appropriate types> Consider the following linear programming problem:

$$
\begin{array}{rr}
\text { maximiza } & c_{1}^{\top} x_{1}+c_{2}^{\top} x_{2} \\
\text { with respect to } & \left(x_{1}, x_{2}\right) \in \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \\
\text { subject to } & A_{11} x_{1}+A_{12} x_{2}=b_{1} \\
& A_{21} x_{1}+A_{22} x_{2} \leq b_{2} \\
& x_{1} \geq 0
\end{array}
$$

Present this task in classic and standard form.
9. Represent the following tasks as linear programming problem:
(a) (linear feasibility problem)
determine the solution to the system of linear inequalities $a_{i}^{\top} x \leq b_{i}, i=1, \ldots, m$, gdzie $a_{i}=\left(a_{i 1}, \ldots, a_{\text {in }}\right)^{\top} \in \mathbb{R}^{n}, i=1, \ldots, m, x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{R}^{n}$.
(b) (non-differentiable minimization problem)

$$
\begin{gathered}
\operatorname{minimize} f(x)=\max \left\{a_{i}^{\top} x-b_{i}, i=1, \ldots, m\right\}, \\
\text { with respect to } x \in \mathbb{R}^{n}
\end{gathered}
$$

Hint: introduce an auxiliary variable u and note that $f(x) \leq u$ if and only if $f_{i}(x):=a_{i}^{\top} x-b_{i} \leq$ $u, i=1, \ldots, m$.
(c)
minimize $f(x)=\sum_{i=1}^{m}\left|a_{i}^{\top} x-b_{1}\right|$, with respect to $x \in \mathbb{R}^{n}$.

