March 2024

Operations research tasks - list 2

1. Let A_i be a matrix of type $m \times n_i$, i = 1, ..., m, and B_i –a matrix of type $n_i \times p$, i = 1, ..., m. Show that

$$\begin{bmatrix} A_1 & \cdots & A_m \end{bmatrix} \begin{bmatrix} B_1 \\ \vdots \\ B_m \end{bmatrix} = \sum_{i=1}^m A_i B_i,$$

that is, the rule for block matrix multiplication is the same as the rule for 'ordinary' matrix multiplication.

- 2. Let A be a matrix of type $m \times n$, $x = (x_1, ..., x_n)^{\top}$ and $y = (y_1, ..., y_m)^{\top}$. Show that Ax is a linear combination of the columns of matrix A with coefficients $x_1, ..., x_n$ and $y^{\top}A$ is a linear combination of the columns of matrix A with coefficients $y_1, ..., y_m$.
- 3. Let A be a matrix of type $m \times n$. Show that $Ae_j = A_j$ i $e_i^{\top} A = A^i$, where e_k denotes the kth unit vector of the Euclidean space of the appropriate dimension, A_j denotes the *j*-th column of A and A^i denotes the *i*th row of A.
- 4. Let A be a matrix of type $m \times n$. Show that $A^{\top}A$ is non-negative definite and that it is positive definite if and only if A is of full column rank.
- 5. Given a homogeneous system of m linear equations with n unknowns Ax = 0.
 - (a) Show that the solution set of this system is a linear subspace.
 - (b) Suppose that the first m columns of the matrix A are linearly independent. Let us denote the submatrix formed from these columns with the symbol A_B , and the matrix formed with the remaining n m columns with the symbol A_N . Present the form of any solution of this system.
 - (c) What is the basis and dimension of the linear subspace in question?
- 6. Given a consistent system of m linear equations Ax = b.
 - (a) Explain why, without loss of generality, it may be assumed that matrix A has full row row, i.e. that r(A) = m.
 - (b) Show that the solution set of this system is an affine subspace, i.e.

if x, y are solutions of the system Ax = b and $\lambda \in \mathbb{R}$, then $(1 - \lambda)x + \lambda y$ is also a solution of this system.

- (c) Present the form of any solution of this system.
- 7. Solve the following systems of equations using Gaussian elimination:

8. Let $c_1 \in \mathbb{R}^{n_1}$, $c_2 \in \mathbb{R}^{n_2}$, $b_1 \in \mathbb{R}^{m_1}$, $b_2 \in \mathbb{R}^{m_2}$ and A_{11} , A_{12} , A_{21} , A_{22} be matrices of appropriate types> Consider the following linear programming problem:

maximiza
with respect to
$$(x_1, x_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$$

subject to $A_{11}x_1 + A_{12}x_2 = b_1$
 $A_{21}x_1 + A_{22}x_2 \leq b_2$
 $x_1 > 0.$

Present this task in classic and standard form.

- 9. Represent the following tasks as linear programming problem:
 - (a) (linear feasibility problem)

determine the solution to the system of linear inequalities $a_i^{\mathsf{T}} x \leq b_i, i = 1, ..., m$, gdzie $a_i = (a_{i1}, ..., a_{in})^{\mathsf{T}} \in \mathbb{R}^n, i = 1, ..., m, x = (x_1, ..., x_n)^{\mathsf{T}} \in \mathbb{R}^n$.

(b) (non-differentiable minimization problem)

minimize $f(x) = \max\{ a_i^{\mathsf{T}} x - b_i, i = 1, ..., m \},$ with respect to $x \in \mathbb{R}^n$.

Hint: introduce an auxiliary variable u and note that $f(x) \leq u$ if and only if $f_i(x) := a_i^{\mathsf{T}} x - b_i \leq u, i = 1, ..., m$.

(c)

minimize
$$f(x) = \sum_{i=1}^{m} |a_i^{\mathsf{T}} x - b_1|$$
,
with respect to $x \in \mathbb{R}^n$.