Operations research tasks – list **3**

- 1. Check whether the following subsets are convex:
 - (a) polyhedral set (cross-section of finitely many half-spaces),
 - (b) set of possible solutions to a linear programming problem,
 - (c) a set of optimal solutions to a linear programming problem,
 - (d) a set of basic possible solutions to a linear programming problem in standard form,
 - (e) set of solutions to a system of linear equations,
 - (f) budget set,
 - (g) set of all possible share portfolios on the Warsaw Stock Exchange,
 - (h) the ball $B(y, r) = \{x \in \mathbb{R}^n : ||x y|| \le r\},\$
 - (i) the sublevel $S(f, \alpha) = \{x \in \mathbb{R}^n : f(x) \le \alpha\}$ of a convex function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$,
 - (j) the superlevel $S^+(f, \alpha) = \{x \in \mathbb{R}^n : f(x) \ge \alpha\}$ of a concave function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$.
- 2. Give examples of other convex sets occurring in economic problems.
- 3. Determine the vertices of:
 - (a) the standard simplex $\Delta_n = \{x \in \mathbb{R}^n : x \ge 0, e^\top x = 1\},\$
 - (b) set of solutions to the system of linear equations:
 - 1. the has a unique solution,
 - 2. that has more solutions.
- 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function and $g : \mathbb{R} \to \mathbb{R}$ be a nondecreasing convex function. Show that the function $g \circ f$ is convex.
- 5. Let $h : \mathbb{R}^m \to \mathbb{R}$ be a convex function and A be a matrix of type $m \times n$. Show that the function $f : \mathbb{R}^n \to \mathbb{R}$, f(x) = h(Ax) is convex.
- 6. Let $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$ be a convex functions and $f = \max_i f_i$. Show that the function f is convex.
- 7. Show that the following functions are convex:
 - (a) a linear function $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = c^\top x$, gdzie $c \in \mathbb{R}^n$,
 - (b) the exponential function $f : \mathbb{R} \to \mathbb{R}, f(x) = 2^x$,
 - (c) the power function $f : \mathbb{R}_+ \to \mathbb{R}, f(x) = x^{\alpha}$ for $\alpha \ge 1$,
 - (d) arbitrary norm ||x|| in \mathbb{R}^n ,
 - (e) a function that is the square of any norm in \mathbb{R}^n , i.e. the function $f: \mathbb{R}^n \to \mathbb{R}, f(x) = ||x||^2$. Hint: use the task 4.
- 8. The following utility functions are given $f : \mathbb{R}^2_+ \to \mathbb{R}$:
 - (a) $f(x_1, x_2) = 2x_1 + 3x_2$,
 - (b) $f(x_1, x_2) = \min\{x_1, x_2\},\$
 - (c) $f(x_1, x_2) = \sqrt{x_1 x_2}$.

Draw contour lines for these functions. Are the superlevels of these functions convex sets? Are these functions concave? **Hint**: In example (c), determine the matrix of second-order partial derivatives and check its definiteness.

- 9. Find the relationship between income tax and income in accordance with the applicable Personal Income Tax Act. Is it a convex function. Explain why it is beneficial to tax spouses jointly. Is it also beneficial if one of the spouses receives income from abroad?
- 10. Give examples of other convex functions and concave functions occurring in economic or technical problems.