Operations research tasks – list 5

1. The following simplex tableau are given:

Ī	1	$-x_1$	$-x_2$	$-x_3$			1	$ -u_1 $	$-x_2$	$-x_{3}$		Ī.	1	$-x_1$	$-u_2$	$-x_3$	
A	5	-1	-2	-3	z		3	2	-5	0	z		-5	2	1	4	z
	2	1	3	-2	u_1	B	8	-2	2	4	x_1	C	3	1	-1	3	u_1
	0	2	5	-1	u_2		3	3	1	1	u_2		-2	1	2	0	x_2
	1	3	4	0	u_3		15	5	3	5	u_3		1 0	0	1	-1	u_3
-																	
D	1	$-u_3$	$-u_1$	$-x_{3}$			1	$-u_1$	$-x_2$	$-u_2$			1	$-x_1$	$-x_2$	$-x_3$	
	8	2	0	3	z		8	2	0	1	z	ſ	0	6	12	8	z
	4	-2	-1	4	x_2		1	1	-2	1	x_1	F	-4	-2	-2	0	u_1
	3	0	1	2	u_2			2	2	2	x_3	Π	1	1	2	2	u_2
	0	0	-2	1	x_1] [3	1	-1	3	u_3		-8	-1	3	-4	u_3

(a) In tableau B, indicate the pivot according to the rules of phase II of the simplex algorithm, transform the tableau and present the next simplex tableau:

$B^{+}:$			

- (b) In table F, indicate the pivot according to the rules of the dual simplex algorithm.
- (c) Complete the following table:

Table: \longrightarrow		A		В		C		D		E		F	
\downarrow	tak	nie	tak	nie	tak	nie	tak	nie	tak	nie	tak	nie	
indicates that it is missing a feasible solution													
presents a basics feasible solution													
presents a basic solution which is originally degenerate													
presents a basic solution which is dually degenerate													
presents a basic optimal solution													
indicates that there is more optimal solutions													
indicates that there are no optimal solutions													
indicates that the set of optimal solutions is unbounded													
In case the tableau presents an optimal solution, provide:	××	××	××	××	××	××	××	××	××	××	××	××	
the optimal solutions of the primal problem $x^* =$													
the optimal solutions of the dual problem $y^* =$													

2. Solve task 4 from list 1 using the dual simplex method.

- 3. Let A be a matrix of type $m \times n$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. Check whether the following linear programming tasks are mutually dual:
 - (a)

i

$$\begin{array}{ll} \text{maximize} & c^{\top}x\\ \text{subject to} & Ax \leq b\\ & x \geq 0. \end{array} \tag{P1}$$

$$\begin{array}{ll} \text{minimize} & b^{\top}y\\ \text{subject to} & A^{\top}y \ge c\\ & y \ge 0. \end{array} \tag{D1}$$

(b) maximize
$$c^{\top}x$$

subject to $Ax = b$ (P2)

i

$$\begin{array}{c}
x \ge 0.\\\\
\text{minimize} \quad b^{\top}y\\\\
\text{subject to} \quad A^{\top}y \ge c
\end{array}$$
(D2)

(c)
maximize
$$c_1^{\top} x_1 + c_2^{\top} x_2$$

with respect to $(x_1, x_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$
subject to $A_{11}x_1 + A_{12}x_2 = b_1$
 $A_{21}x_1 + A_{22}x_2 \leq b_2$
 $x_1 \geq 0$
i
(P3)

$$\begin{array}{ll} \text{minimize} & b_1^\top y_1 + b_2^\top y_2\\ \text{with respect to} & (y_1, y_2) \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}\\ \text{subject to} & A_{11}^\top y_1 + A_{21}^\top y_2 \ge c_1\\ & A_{12}^\top y_2 + A_{22}^\top y_2 = c_2\\ & & y_2 \ge 0, \end{array}$$
(D3)

where the block matrix

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

is of type $(m_1 + m_2) \times (n_1 + n_2)$, the vectors $c_1 \in \mathbb{R}^{n_1}, c_2 \in \mathbb{R}^{n_2}, b_1 \in \mathbb{R}^{m_1}, b_2 \in \mathbb{R}^{m_2}$

4. Using the complementarity theorem for the primary problem (??) and the dual problem (??), show that the following theorem holds:

Theorem. Let x and y be feasible solutions for the primary problem (??) and the dual problem (??). Then x and y are optimal solutions if and only if

$$x^{\top}(c - A^{\top}y) = 0$$

5. Given a linear programming problem

minimize
$$3x_1 + x_2 + 9x_3 + x_4$$

subject to $x_1 + 2x_3 + x_4 = 4,$
 $x_2 + x_3 - x_4 = 2,$
 $x_1, x_2, x_3, x_4 \ge 0.$

It is known that $x^* = (0, 6, 0, 4)$ is a solution to this problem. Determine a solution to the dual problem using the complementarity theorem given in the task 4.

6. Using the duality theorems, reduce the linear programming problem to determining a solution of a certain system of linear inequalities.