Operations research tasks - list 5

1. The following simplex tableau are given:
A

1	$-x_{1}$	$-x_{2}$	$-x_{3}$	
5	-1	-2	-3	z
2	1	3	-2	u_{1}
0	2	5	-1	u_{2}
1	3	4	0	u_{3}

B| 1 | | | | | | $-u_{1}$ | $-x_{2}$ | $-x_{3}$ | |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 3 | 2 | -5 | 0 | z | | | | | |
| | 8 | -2 | 2 | 4 | | | | | |
| x_{1} | | | | | | | | | |
| 3 | 3 | 1 | 1 | u_{2} | | | | | |
| 15 | 5 | 3 | 5 | u_{3} | | | | | |

C	1	$-x_{1}$	$-u_{2}$	$-x_{3}$	
	-5	2	1	4	z
	3	1	-1	3	u_{1}
	-2	1	2	0	x_{2}
	1	0	1	-1	u_{3}

D

1	$-u_{3}$	$-u_{1}$	$-x_{3}$	
8	2	0	3	z
4	-2	-1	4	x_{2}
3	0	1	2	u_{2}
0	0	-2	1	x_{1}

E

1	$-u_{1}$	$-x_{2}$	$-u_{2}$	
8	2	0	1	z
	1	1	-2	1
	x_{1}			
	2	2	2	x_{3}
3	1	-1	3	u_{3}

F	1	$-x_{1}$	$-x_{2}$	$-x_{3}$	
	0	6	12	8	z
	-4	-2	-2	0	u_{1}
	1	1	2	2	u_{2}
	-8	-1	3	-4	u_{3}

(a) In tableau B, indicate the pivot according to the rules of phase II of the simplex algorithm, transform the tableau and present the next simplex tableau:

(b) In table F, indicate the pivot according to the rules of the dual simplex algorithm.
(c) Complete the following table:

Table: \longrightarrow	A	B	C	D	E	F
\downarrow	tak nie					
indicates that it is missing a feasible solution	$\square \quad \square$					
presents a basics feasible solution	$\square \quad \square$	$\square \quad \square$	$\square \square \square$	$\square \quad \square$	$\square \quad \square$	$\square \quad \square$
presents a basic solution which is originally degenerate	$\square \quad \square$					
presents a basic solution which is dually degenerate	$\square \quad \square$					
presents a basic optimal solution	$\square \quad \square$					
indicates that there is more optimal solutions	$\square \quad \square$	$\square \quad \square$	$\square \square \square$	$\square \quad \square$	$\square \quad \square$	$\square \quad \square$
indicates that there are no optimal solutions	$\square \quad \square$					
indicates that the set of optimal solutions is unbounded	$\square \quad \square$					
In case the tableau presents an optimal solution, provide:	$\times \times \times \times$					
the optimal solutions of the primal problem $x^{*}=$						
the optimal solutions of the dual problem $y^{*}=$						

2. Solve task 4 from list 1 using the dual simplex method.
3. Let A be a matrix of type $m \times n, c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$. Check whether the following linear programming tasks are mutually dual:
(a)

$$
\begin{array}{rr}
\operatorname{maximize} & c^{\top} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

(b)

$$
\begin{array}{rc}
\text { minimize } & b^{\top} y \\
\text { subject to } & A^{\top} y \geq c \tag{D1}\\
& y \geq 0
\end{array}
$$

i

$$
\begin{array}{rr}
\operatorname{maximize} & c^{\top} x \\
\text { subject to } & A x=b \tag{P2}\\
& x \geq 0
\end{array}
$$

i

$$
\begin{array}{rr}
\text { minimize } & b^{\top} y \\
\text { subject to } & A^{\top} y \geq c \tag{D2}
\end{array}
$$

(c)

$$
\begin{array}{rr}
\text { maximize } & c_{1}^{\top} x_{1}+c_{2}^{\top} x_{2} \\
\text { with respect to } & \left(x_{1}, x_{2}\right) \in \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \\
\text { subject to } & A_{11} x_{1}+A_{12} x_{2}=b_{1} \tag{P3}\\
& A_{21} x_{1}+A_{22} x_{2} \leq b_{2} \\
& x_{1} \geq 0
\end{array}
$$

i

$$
\begin{array}{rr}
\text { minimize } & b_{1}^{\top} y_{1}+b_{2}^{\top} y_{2} \\
\text { with respect to } & \left(y_{1}, y_{2}\right) \in \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}} \\
\text { subject to } & A_{11}^{\top} y_{1}+A_{21}^{\top} y_{2} \geq c_{1} \tag{D3}\\
& A_{12}^{\top} y_{2}+A_{22}^{\top} y_{2}=c_{2} \\
& y_{2}>0
\end{array}
$$

where the block matrix

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

is of type $\left(m_{1}+m_{2}\right) \times\left(n_{1}+n_{2}\right)$, the vectors $c_{1} \in \mathbb{R}^{n_{1}}, c_{2} \in \mathbb{R}^{n_{2}}, b_{1} \in \mathbb{R}^{m_{1}}, b_{2} \in \mathbb{R}^{m_{2}}$
4. Using the complementarity theorem for the primary problem (??) and the dual problem (??), show that the following theorem holds:
Theorem. Let x and y be feasible solutions for the primary problem (??) and the dual problem (??). Then x and y are optimal solutions if and only if

$$
x^{\top}\left(c-A^{\top} y\right)=0
$$

5. Given a linear programming problem

$$
\begin{array}{rr}
\text { minimize } & 3 x_{1}+x_{2}+9 x_{3}+x_{4} \\
\text { subject to } & x_{1}+2 x_{3}+x_{4}=4 \\
& x_{2}+x_{3}-x_{4}=2 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

It is known that $x^{*}=(0,6,0,4)$ is a solution to this problem. Determine a solution to the dual problem using the complementarity theorem given in the task 4.
6. Using the duality theorems, reduce the linear programming problem to determining a solution of a certain system of linear inequalities.

