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PREFACE

This volume is the habilitation dissertation of the author written at the
Faculty of Mathematics, Computer Science and Econometrics of the University
of Zielona Góra.
The aim of this work is to present, in self-contained form, results concern-

ing fundamental and the most important questions related to linear stochastic
Volterra equations of convolution type. The paper is devoted to study the exis-
tence and some kind of regularity of solutions to stochastic Volterra equations
in Hilbert space and the space of tempered distributions, as well.
In recent years the theory of Volterra equations, particularly fractional ones,

has undergone a big development. This is an emerging area of research with
interesting mathematical questions and various important applications. The
increasing interest in these equations comes from their applications to problems
from physics and engeenering, particularly from viscoelasticity, heat conduction
in materials with memory or electrodynamics with memory.
The paper is divided into four chapters. The first two of them have an intro-

ductory character and provide deterministic and stochastic tools needed to study
existence of solutions to the equations considered and their regularity. Chap-
ter 1 is devoted to stochastic Volterra equations in a separable Hilbert space. In
Chapter 4 stochastic linear evolution equations in the space of distributions are
studied.
The work is based on some earlier papers of the author, however part of

results is not yet published.
I wish to express my sincere gratitude to prof. Jerzy Zabczyk for introducing

me into the world of stochastic Volterra equations and inspiring mathematical
discussions. I am particularly grateful to prof. Carlos Lizama for fruitful joint
research, exclusively through internet connection, which results is a big part
of this monograph.

Zielona Góra, June 2007 Anna Karczewska
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INTRODUCTION

The main results in brief

In the paper, two general problems concerning linear stochastic evolution
equations of convolution type are studied: existence of strong solutions to such
stochastic Volterra equations in a Hilbert space and regularity of solutions to
two classes of stochastic Volterra equations in spaces of distributions.
First, we consider Volterra equations in a separable Hilbert space H of the

form

(0.1) X(t) = X(0) +
∫ t
0
a(t− τ)AX(τ) dτ +

∫ t
0
Ψ(τ) dW (τ), t ≥ 0,

where X(0) ∈ H , a ∈ L1loc(R+) is a scalar kernel function and A is a closed
linear unbounded operator with the dense domainD(A) equipped with the graph
norm. In (0.1), Ψ(t), t ≥ 0 is an appropriate stochastic process and W (t), t ≥ 0
is a cylindrical Wiener process; both processes are defined on a stochastic basis
(Ω,F , (Ft)t≥0, P ).
Equation (0.1) arises, in the deterministic case, in a variety of applications as

model problems, see e.g. [70], [5] and references therein. Well-known techniques
like localization, perturbation and coordinate transformation allow to transfer
results for such problems to integro-differential equations. In these applications,
the operator A typically is a differential operator acting in spatial variables,
like the Laplacian, the Stokes operator, or the elasticity operator. The kernel
function a(t) should be thought as a kernel like a(t) = e−ηttβ−1/Γ(β); η ≥ 0,
β ∈ (0, 2). The stochastic approach to integral equations has been recently used
due to the fact that the level of accuracy for a given model not always seems to
be significantly changed with increasing model complexity.
Our main results concerning (0.1), rely essentially on techniques using a

strongly continuous family of operators S(t), t ≥ 0, defined on the space H and
7
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called the resolvent. Hence, in what follows, we assume that the deterministic
version of equation (0.1) is well-posed, that is, admits a resolvent S(t), t ≥ 0.
The stochastic Volterra equations of the form (0.1) have been treated by

many authors, see e.g. [14]–[17] or [72], [73]. In the first three papers stochastic
Volterra equations are studied in connection with viscoelasticity and heat con-
duction in materials with memory. The paper due to Clément and Da Prato [14]
is particularly significant because the authors have extended the well-known
semigroup approach, applied to stochastic differential equations, to a subclass
of the equation (0.1). In the next papers, weak and mild solutions to the equa-
tion (0.1) have been studied and some results like regularity of solutions or large
deviations of equations have been given. The resolvent approach to stochastic
Volterra equations, introduced in [14], enables us to obtain new results in an el-
egant way, analogously like in semigroup case. In resolvent case, new difficulties
appear because the family S(t), t ≥ 0, in general do not create a semigroup.
Our main results concerning the equations (0.1) in the space H are the

existence theorems of strong solutions to some classes of such equations. We
provide existence of strong solutions to (0.1) under different conditions on the
kernel function. In some cases, we arrive at stochastic versions of fractional
Volterra equations with corresponding α-times resolvent families Sα(t), t ≥ 0.
The key role in our proofs is played by convergence of resolvent or α-times
resolvent families corresponding to deterministic versions of Volterra equations.
These convergence theorems are resolvent analogies of the well-known Hille–
Yosida theorem in semigroup case. Our convergence results generalize theorems
due to Clément and Nohel [18] obtained for contraction semigroups. Having such
resolvent analogies of the Hille–Yosida theorem, we proved that the stochastic
convolutions arising in Volterra equations (0.1) are strong solutions to (0.1).
In the remaining part of the paper we study two classes of equations of

convolution type: the equation

(0.2) X(t, θ) = X0(θ) +
∫ t
0
b(t− τ)AX(τ, θ) dτ +WΓ(t, θ), t ≥ 0, θ ∈ R

d,

and the integro-differential stochastic equation with infinite delay

(0.3) X(t, θ) =
∫ t
−∞
b(t− s)[∆X(s, θ) + ẆΓ(s, θ)]ds, t ≥ 0, θ ∈ T d,

where T d is a d-dimensional torus. The kernel function b is integrable on R+ and
the class of operators A contains the Laplace operator and its fractional powers.
In both equations (0.2) and (0.3), WΓ denotes a spatially homogeneous Wiener
process, which takes values in the space of tempered distributions S′(Rd), d ≥ 1.
Equations (0.2) and (0.3) are generalizations of stochastic heat and wave

equations studied by many authors. Particularly, regularity problems of these



Introduction 9

equations have attracted many authors. For an exhaustive bibliography we refer
to [57].
In the paper, we consider existence of the solutions to (0.2) and (0.3) in the

space S′(Rd) and next we derive conditions under which the solutions to (0.2)
and (0.3) take values in function spaces.
In the case of equation (0.2), the results have been obtained by using the

resolvent operators corresponding to Volterra equations. The regularity results
have been expressed in terms of the spectral measure µ and the covariance ker-
nel Γ of the Wiener process WΓ. Moreover, we give necessary and sufficient
conditions for the existence of a limit measure to the equation (0.2).
In the case of the equation (0.3), we study a particular case of weak solu-

tions under the basis of an explicit representation of the solution to (0.3). The
regularity results have been expressed in terms of the Fourier coefficients of the
space covariance Γ of the process WΓ.

A guided tour through the paper

Chapter 1 has a preliminary character. Its goal is to introduce the reader to
the theory of deterministic Volterra equations in Banach space and to provide
facts used in the paper. Section 1.1 gives notations used in the paper and Sec-
tion 1.2 gives basic definitions connected with resolvent operators. Sections 1.3
and 1.4 contain definitions and facts concerning kernel functions, particularly
regular ones for parabolic Volterra equations. Some ideas are illustrated by ex-
amples. Section 1.5 provides new results due to Karczewska and Lizama [51],
that is, the approximation theorems, Theorems 1.19 and 1.20, not yet published.
These results are resolvent analogies of the Hille–Yosida theorem in semigroup
case and play the same role like the Hille–Yosida theorem does. These results
concerning convergence of resolvents for the deterministic version of the equa-
tion (0.1) in Banach space play the key role for existence theorems for strong
solutions and they are used in Chapter 3.
Chapter 2 contains concepts and results from the infinite dimensional sto-

chastic analysis recalled from well-known monographs [19], [23] and [38]. Among
others, we recall an infinite dimensional versions of the Fubini theorem and the
Itô formula. Additionally, we recall a construction, published in [46], of stochas-
tic integral with respect to cylindrical Wiener process. The construction bases
on the Ichikawa idea for the stochastic integral with respect to classical infinite
dimensional Wiener process and it is an alternative to the construction given
in [23].
Chapter 3 contains the main results for stochastic Volterra equations in

Hilbert space. In Section 3.1 we introduce the definitions of solutions to the
equation (0.1) and formulate auxiliary results being a framework for the main
theorems. In Section 3.2 we prove existence of strong solutions for two classes
of equation (0.1). Basing on convergence of resolvents obtained in Chapter 1,
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we can formulate Lemma 3.15 and Theorem 3.16 giving sufficient conditions un-
der which stochastic convolution corresponding to (0.1) is strong solution to the
equation (0.1). Section 3.3 deals with the so-called fractional Volterra equations.
First, we prove using other tools than in Section 1.5, approximation results, that
is, Theorems 3.20 and 3.21, for α-times resolvents corresponding to the frac-
tional equations. Next, we prove the existence of strong solutions to fractional
equations. These results are formulated in Lemma 3.29 and Theorem 3.30. In
Section 3.4 we give several examples illustrating the class of equations fulfilling
conditions of theorems providing existence of strong solutions.
In Chapter 4 we study regularity of two classes of stochastic Volterra equa-

tions in the space of tempered distributions. Section 4.1 has an introductory
character. It contais notions and facts concerning generalized and classical ho-
mogeneous Gaussian random fields needed in the sequel. In Section 4.2 we
introduce the stochastic integral in the space of distributions. Then we formu-
late Theorem 4.4 which characterizes the stochastic convolution corresponding
to (0.2). The main regularity results obtained in Section 4.2 are collected in
Theorems 4.6–4.8. These theorems give sufficient conditions under which solu-
tions to the equation (0.2) are function-valued and even continuous with respect
to the space variable. These conditions are given in terms of the covariance ker-
nel Γ of the Wiener process WΓ and the spectral measure of WΓ, as well. The
results obtained in this section are illustrated by several examples. Section 4.3 is
a natural continuation of the previous one. In this section we give necessary and
sufficient conditions for the existence of a limit measure to the equation (0.2)
and then we describe all limit measures to (0.2). The main results of this section,
that is Lemmas 4.13, 4.14 and Theorems 4.15, 4.16, are in a sense analogous to
those formulated in [24, Chapter 6], obtained for semigroup case.
Section 4.4 is devoted to regularity of solutions to the equation (0.3). Here we

study a particular case of weak solutions basing on an explicit representation of
the solution to (0.3). We find the expression for the solution in terms of the kernel
b and next we reduce the questions of regularity of solutions to problems arising
in harmonic analysis. Our main results of this section, that is Theorem 4.21
and Proposition 4.22, provide necessary and sufficient conditions under which
solutions to (0.3) are function-valued. These conditions are given in terms of the
Fourier coefficients of the covariance Γ of the Wiener process WΓ. Additionally,
Section 4.4 contains some corollaries which are consequences of the main results.

Bibliographical notes

Sections 1.1–1.4 contain introductory material which in a similar form can
be found in the mongraph [70]. Section 1.5 originates from [50] and [51], the
latter not yet published.
Sections 2.1, 2.2 and 2.4 contain classical results recalled from [19], [42], [23]

and [38]. Section 2.3 originates from [46].
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The results of Section 3.1 come from [48]. Section 3.2 originates from [50]
and [51]. The content of Sections 3.3 and 3.4 can be found in [52].
Section 4.1 contains material coming from [34], [36], [2] and [66]. The results

of Section 4.2 come from [54]. Section 4.3 originates from [47]. The results of
Section 4.4 can be found in [49].





CHAPTER 1

DETERMINISTIC VOLTERRA EQUATIONS

This chapter contains notations and concepts concerning Volterra equations
used throughout the monograph and collects some results necessary to make
the work self-contained. The notations are standard and follow the book by
Prüss [70].
Section 1.1 has a preliminary character. In Section 1.2 we recall the definition

of the resolvent family to the deterministic Volterra equation and the concept
of well-posedness connected with the resolvent. Kernel functions, particularly
k-regular ones, are recalled in Sections 1.3 and 1.4. The above mentioned defini-
tions and results are described and commented in detail in Prüss’ monograph [70]
and appropriate references therein.
Section 1.5 originates from [51]. Theorems 1.19 and 1.20, yet non-published,

are deterministic approximation theorems which play a key role for existence of
strong solutions to stochastic Volterra equations. These approximation theorems
are resolvent analogies to Hille–Yosida’s theorem for semigroup and play the same
role as that theorem.

1.1. Notations and preliminaries

Let B be a complex Banach space with the norm | · |. We consider in B the
Volterra equation of the form

(1.1) u(t) =
∫ t
0
a(t− τ)Au(τ) dτ + f(t).

In (1.1), a ∈ L1loc(R+;R) is a non-zero scalar kernel; for abbreviation we will write
a ∈ L1loc(R+). A is a closed unbounded linear operator in B with a dense domain
D(A) and f is a continuous B-valued function. In the sequel we assume that the
domain D(A) is equipped with the graph norm | · |A of A, i.e. |x|A := |x|+ |Ax|
for x ∈ D(A). Then (D(A), | · |A) is a Banach space because A is closed (see
e.g. [27]) and it is continuously and densely embedded into (B, | · |).

13
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By σ(A) and �(A) we shall denote spectrum and resolvent set of the opera-
tor A, respectively.
The equation (1.1) includes a big class of equations and is an abstract version

of several deterministic problems, see e.g. [70]. For example, if a(t) = 1 and f is
a function of C1-class, the equation (1.1) is equivalent to the Cauchy problem

u̇(t) = Au(t) + ḟ(t) with u(0) = f(0).

Analogously, in the case a(t) = t and f of C2-class, the equation (1.1) is equiv-
alent to

ü(t) = Au(t) + f̈(t) with initial conditions u(0) = f(0) and u̇(0) = ḟ(0).

Several other examples of problems which lead to Volterra equation (1.1) can be
found in [70, Section 5].
In the first three chapters of the monograph we shall use the abbreviation

(g � h)(t) =
∫ t
0
g(t− τ)h(τ) dτ, t ≥ 0,

for the convolution of two functions g and h.
In the paper we write a(t) for the kernel function a. The notation a(t) will

mean the function and not the value of the function a at t. Such notation will
allow to distinguish the function a(t) and the article a.
If a function v ∈ L1loc(R+;B) is of exponential growth, i.e.

∫∞
0 e

−ωt|v(t)|dt <
∞ for some ω ∈ R, we can define the Laplace transform of the function v

v̂(λ) =
∫ ∞
0
e−λtv(t) dt, Reλ ≥ ω.

In the whole paper we shall denote by v̂ the Laplace transform of the function v.
In the whole paper the operator norm will be denoted by || · ||.

1.2. Resolvents and well-posedness

The concept of the resolvent is very important for the theory of linear Volterra
equations. The so-called resolvent approach to the Volterra equation (1.1) has
been introduced many years ago, probably by Friedman and Shinbrot [31]; re-
cently the approach has been presented in detail in the great monograph by
Prüss [70]. The resolvent approach is a generalization of the semigroup approach.
By S(t), t ≥ 0, we shall denote the family of resolvent operators correspond-

ing to the Volterra equation (1.1) and defined as follows.

Definition 1.1 (see e.g. [70]). A family (S(t))t≥0 of bounded linear opera-
tors in the space B is called resolvent for (1.1) if the following conditions are
satisfied:

(a) S(t) is strongly continuous on R+ and S(0) = I;
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(b) S(t) commutes with the operator A, that is, S(t)(D(A)) ⊂ D(A) and
AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0;

(c) the following resolvent equation holds

(1.2) S(t)x = x+
∫ t
0
a(t− τ)AS(τ)xdτ

for all x ∈ D(A), t ≥ 0.

We shall assume that the equation (1.1) is well-posed in the sense that (1.1)
admits the resolvent S(t), t ≥ 0. (Precise definition of well-posedness is given
in [70]). That defintion is a direct extension of well-posedness of Cauchy prob-
lems. The lack of well-posedness of (1.1) leads to distribution resolvents, see
e.g. [22].

Proposition 1.2 ([70, Proposition 1.1]). The equation (1.1) is well-posed if
and only if (1.1) admits a resolvent S(t). If this is the case then, in addition,
the range R(a � S(t)) ⊂ D(A) for all t ≥ 0 and

(1.3) S(t)x = x+A
∫ t
0
a(t− τ)S(τ)xdτ for all x ∈ H, t ≥ 0.

Comment. Let us emphasize that the resolvent S(t), t ≥ 0, is determined
by the operator A and the function a(t). Moreover, as a consequence of the
strong continuity of S(t) we have for any T > 0

(1.4) sup
t≤T
||S(t)|| <∞.

Suppose S(t) is the resolvent for (1.1) and let −µ ∈ σ(A) be an eigenvalue
of A with eigenvector x �= 0. Then
(1.5) S(t)x = s(t;µ)x, t ≥ 0,
where s(t;µ) is the solution of the one-dimensional Volterra equation

(1.6) s(t;µ) + µ
∫ t
0
a(t− τ)s(τ ;µ)dτ = 1, t ≥ 0.

ByW 1,ploc (R+;B) we denote the Sobolev space of order (1, p) of Bochner locally
p-integrable functions acting from R+ into the space B, see e.g. [27].

Definition 1.3. A resolvent S(t), for the equation (1.1), is called diffe-
rentiable if S( · )x ∈ W 1,1loc (R+;B) for any x ∈ D(A) and there exists a function
ϕ ∈ L1loc(R+) such that |Ṡ(t)x| ≤ ϕ(t)|x|A a.e. on R+, for every x ∈ D(A).
Similarly, if S(t) is differentiable then

(1.7) Ṡ(t)x = µr(t;µ)x, t ≥ 0,



16 Anna Karczewska

where r(t;µ) is the solution of the one-dimensional equation

(1.8) r(t;µ) + µ
∫ t
0
a(t− τ)r(τ ;µ) dτ = a(t), t ≥ 0.

In some special cases the functions s(t;µ) and r(t;µ) may be found explicitely.
For example, for a(t) = 1, we have s(t;µ) = r(t;µ) = e−µt, t ≥ 0, µ ∈ C. For
a(t) = t, we obtain s(t;µ) = cos(

√
µt), r(t;µ) = sin(

√
µt)/
√
µ, t ≥ 0, µ ∈ C.

Definition 1.4. Suppose S(t), t ≥ 0, is a resolvent for (1.1). S(t) is called
exponentially bounded if there are constants M ≥ 1 and ω ∈ R such that

||S(t)|| ≤M eωt, for all t ≥ 0.

(M,ω) is called a type of S(t).

Let us note that in contrary to the case of semigroups, not every resolvent
needs to be exponentially bounded even if the kernel function a(t) belongs to
L1(R+). The Volterra equation version of the Hille–Yosida theorem (see e.g. [70,
Theorem 1.3]) provides the class of equations that admit exponentially bounded
resolvents. An important class of kernels providing such class of resolvents are
a(t) = tα−1/Γ(α), α ∈ (0, 2). For details, counterexamples and comments we
refer to [26].

1.3. Kernel functions

Two classes of kernel functions defined below play a prominent role in the
theory of Volterra equations.

Definition 1.5. A C∞-function a: (0,∞) → R is called completely mono-
tonic if (−1)na(n)(t) ≥ 0 for all t > 0, n ∈ N.

Definition 1.6. We say that function a ∈ L1(0, T ) is completely positive on
[0, T ] if for any µ ≥ 0, the solutions of the convolution equations (1.6) and (1.8)
satisfy s(t;µ) ≥ 0 and r(t;µ) ≥ 0 on [0, T ], respectively.
We recall that if a ∈ L1loc(R+) is completely positive, then s(t;µ), the so-

lution to (1.6), is nonnegative and nonincreasing for any t ≥ 0, µ ≥ 0. In the
consequence, one has 0 ≤ s(t;µ) ≤ 1. This is a special case of the result due
to [29].
Kernels with this property have been introduced by Clément and Nohel [18].

We note that the class of completely positive kernels appears quite naturally in
applications, particularly in the theory of viscoelasticity. Several properties and
examples of such kernels appear in [70, Section 4.2].
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Examples. (a) Let a(t) = tα−1/Γ(α), α > 0, where Γ is the gamma func-
tion. For α ∈ (0, 1], function a(t) is completely monotonic and completely posi-
tive.
(b) Another example of completely positive function is a(t) = e−t, t ≥ 0. An

easy computation shows that then s(t;µ) = (1+µ)−1[1+µ e−(1+µ)t], for t, µ > 0.

1.4. Parabolic equations and regular kernels

This section is devoted to the so-called parabolic Volterra equations defined
by Prüss [69].
Let B be a complex Banach space and∑

(ω, θ) := {λ ∈ C : | arg(λ− ω)| < θ}.
Definition 1.7 ([70, Definition 2.1]). A resolvent S(t) for (1.1) is called

analytic, if the function S( · ):R+ → L(B) admits analytic extension to a sector∑
(0, θ0) for some 0 < θ0 < π/2. An analytic resolvent S(t) is said to be of
analyticity type (ω0, θ0) if for each θ < θ0 and ω > ω0 there isM =M(ω, θ) such
that

(1.9) ||S(z)|| ≤M eωRez, z ∈
∑
(0, θ0).

Corollary 1.8 ([70, Corollary 2.1]). Suppose S(t) is an analytic resolvent
for (1.1) of analyticity type (ω0, θ0). Then for each ω > ω0 and θ < θ0 there is
M =M(ω, θ) such that

(1.10) ||S(n)(t)|| ≤M n! eωt(1+α)(αt)−n, t > 0, n ∈ N,

where α = sin θ.

Analytic resolvents, the analog of analytic semigroups for Volterra equations,
have been introduced by Da Prato and Iannelli [21]. Analogously like in the
theory of analytic semigroups, a characterization of analytic resolvents in terms of
the spectrum of the operator A and the Laplace transform of the kernel function
a(t) is possible.

Theorem 1.9 ([70, Theorem 2.1]). Let A be a closed unbounded operator in
B with dense domain D(A) and let a ∈ L1loc(R+) satisfy

∫ t
0 |a(t)| e−ωat dt < ∞

for some ωa ∈ R. Then (1.1) admits an analytic resolvent S(t) of analyticity
type (ω0, θ0) if and only if the following conditions hold:

(a) â(λ) admits meromorphic extension to
∑
(ω0, θ0 + π/2);

(b) â(λ) �= 0, and 1/â(λ) ∈ �(A) for all λ ∈∑(ω0, θ0 + π/2);
(c) For each ω > ω0 and θ < θ0 there is a constant C = C(ω, θ) such that
H(λ) := (1/â(λ)−A)−1/(λ â(λ)) satisfies estimate

(1.11) ||H(λ)|| ≤ C/|λ− ω| for all λ ∈
∑
(ω, θ + π/2).
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Typical examples of the kernel functions a(t) and the operator A fulfilling
conditions of Theorem 1.9 are the following.

Examples. (a) Let kernels be a(t) = tβ−1/Γ(β), t > 0, where β ∈ (0, 2) and
Γ denotes the gamma function. The pair (tβ−1/Γ(β), A) generates a bounded
analytic resolvent if and only if �(A) ⊃∑(0, βπ/2) and ||µ(µ −A)−1|| ≤ M for
all µ ∈∑(0, βπ/2).
(b) An important class of kernels a(t) which satisfy the above conditions is

the class of completely monotonic kernels. By [70, Corollary 2.4] if additionally
a ∈ C(0,∞) ∩ L1(0, 1) and A generates an analytic semigroup T (t) such that
||T (t)|| ≤M on Σ(0, θ) then (1.1) admits an analytic resolvent S(t) of type (0, θ).

Parabolic Volterra equations appear in a context of Volterra equations ad-
miting analytical resolvents.

Definition 1.10. Equation (1.1) is called parabolic, if the following condi-
tions hold:

(a) â(λ) �= 0, 1/â(λ) ∈ �(A) for all Reλ > 0.
(b) There is a constant M ≥ 1 such that H(λ) = (I − â(λ)A)−1/λ satisfies
||H(λ)|| ≤M/|λ| for all Reλ > 0.

From the resolvent point of view, the concept of parabolicity is between the
bounded and the analytic resolvents: if (1.1) admits an analytic resolvent S(t)
then (1.1) is parabolic. On the other hand, if the equation (1.1) is parabolic and
the kernel function a(t) has some properties, like convexity, then the resolvent
corresponding to (1.1) has, roughly speaking, similar properties like analytic
resolvent.

Definition 1.11. Let a ∈ L1loc(R+) be of subexponential growth and sup-
pose â(λ) �= 0 for all Reλ > 0. The function a(t) is called sectorial with angle
θ > 0 (or merely θ-sectorial) if | arg â(λ)| ≤ θ for all Reλ > 0.

The standard situation leading to parabolic equations is provided by sectorial
kernels and some closed linear densely defined operators A.
The following criteria provide parabolic equations.

Proposition 1.12 ([70, Proposition 3.1]). Let a ∈ L1loc(R+) be θ-sectorial
for some θ < π, suppose A is closed linear densely defined, such that �(A) ⊃∑
(0, θ), and ||(µ−A)−1|| ≤M/|µ| for all µ ∈∑(0, θ). Then (1.1) is parabolic.
The particular case is when A is the generator of a bounded analytic C0-

semigroup and the function a(t) is π/2-sectorial. Because a(t) is π/2-sectorial
if and only if a(t) is of positive type, we obtain the following class of parabolic
equations.
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Corollary 1.13 ([70, Corollary 3.1]). Let a ∈ L1loc(R+) be of subexponential
growth and of positive type, and let A generate a bounded analytical C0-semigroup
in B. Then (1.1) is parabolic.

In the sequel we will need some regular kernels.

Definition 1.14. Let a∈L1loc(R+) be of subexponential growth and k∈ N.
The function a(t) is called k-regular if there is a constant c > 0 such that
|λn a(n)(λ)| ≤ c|â(λ)| for all Reλ > 0, 0 ≤ n ≤ k.

Comment. Any k-regular kernel a(t), k ≥ 1 has the property that â(λ) has
no zeros in the open right halfplane.

We would like to emphasize that convolutions of k-regular kernels are again k-
regular what follows from the product rule of convolutions. The integration and
differentiation preserve k-regularity, as well. Unfortunately, sums and differences
of k-regular kernels need not be k-regular. We may check it taking a(t) = 1 and
b(t) = t2. However, if a(t) and b(t) are k-regular and | arg â(λ)− arg b̂(λ)| ≤ θ ≤
π, Reλ > 0 then a(t) + b(t) is k-regular.
If a(t) is real-valued and 1-regular then a(t) is sectorial. The converse of this

is not true. As the counterexample we can take a(t) = 1 for t ∈ [0, 1], a(t) = 0
for t > 1.

Proposition 1.15 ([70, Proposition 3.2]). Suppose a ∈ L1loc(R+) is such
that â(λ) admits analytic extension to

∑
(0, ϕ), where ϕ > π/2, and there is

θ ∈ (0,∞) such that | arg â(λ)| ≤ θ for all λ ∈ ∑(0, ϕ). Then a(t) is k-regular
for every k ∈ N.

So, nonnegative and nonicreasing kernels are in general not 1-regular but if
the kernel is also convex, then it is 1-regular.

Definition 1.16. Let a ∈ L1loc(R+) and k ≥ 2. The function a(t) is called
k-monotone if a ∈ Ck−2(0,∞), (−1)n a(n)(t) ≥ 0 for all t > 0, 0 ≤ n ≤ k−2, and
(−1)k−2 a(k−2)(t) is nonincreasing and convex.
By definition, a 2-monotone kernel a(t) is nonnegative, nonicreasing and

convex, and a(t) is completely monotonic if and only if a(t) is k-monotone for
all k ≥ 2.
Proposition 1.17 ([70, Proposition 3.3]). Suppose a ∈ L1loc(R+) is (k+1)-

monotone, k ≥ 1. Then a(t) is k-regular and of positive type.
Now, we recall the main theorem on resolvents for parabolic Volterra equa-

tions.

Theorem 1.18 ([70, Theorem 3.1]). Let B be a Banach space, A a closed
linear operator in B with dense domain D(A), a ∈ L1loc(R+). Assume (1.1)
is parabolic, and a(t) is k-regular, for some k ≥ 1. Then there is a resolvent



20 Anna Karczewska

S ∈ Ck−1((0,∞);L(B)) for (1.1), and there is a constant M ≥ 1 such that
estimates

(1.12) ||tn S(n)(t)|| ≤M, for all t ≥ 0, n ≤ k − 1,
and

(1.13) ||tkS(k−1)(t)−skS(k−1)(s)|| ≤M |t−s|
[
1+ log

t

t− s
]
, 0 ≤ s < t <∞,

are valid.

1.5. Approximation theorems

In this paper the following results contained in [51] concerning convergence
of resolvents for the equation (1.1) in Banach space B will play the key role.
They extend some results of Clément and Nohel obtained in [18] for contraction
semigroups. Theorems 1.19, 1.20 and Proposition 1.21 are not yet published.

Theorem 1.19. Let A be the generator of a C0-semigroup in B and suppose
the kernel function a(t) is completely positive. Then (A, a) admits an exponen-
tially bounded resolvent S(t). Moreover, there exist bounded operators An such
that (An, a) admit resolvent families Sn(t) satisfying ||Sn(t)|| ≤Mew0t (M ≥ 1,
w0 ≥ 0) for all t ≥ 0, n ∈ N, and

(1.14) Sn(t)x→ S(t)x as n→∞
for all x ∈ B, t ≥ 0. Additionally, the convergence is uniform in t on every
compact subset of R+.

Proof. The first assertion follows directly from [68, Theorem 5] (see also [70,
Theorem 4.2]). Since A generates a C0-semigroup T (t), t ≥ 0, the resolvent set
ρ(A) of A contains the ray [w,∞) and

||R(λ,A)k|| ≤ M

(λ− w)k for λ > w, k ∈ N,

where R(λ,A) = (λI −A)−1, λ ∈ ρ(A).
Define

(1.15) An := nAR(n,A) = n2R(n,A)− nI, n > w
the Yosida approximation of A. Then

||etAn || = e−nt||en2R(n,A)t||

≤ e−nt
∞∑
k=0

n2ktk

k!
||R(n,A)k|| ≤Me(−n+n2/(n−w))t =Menwt/(n−w).

Hence, for n > 2w we obtain

(1.16) ||eAnt|| ≤Me2wt.
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Taking into account the above estimate and the complete positivity of the kernel
function a(t), we can follow the same steps as in [68, Theorem 5] to obtain that
there exist constants M1 > 0 and w1 ∈ R (independent of n, due to (1.16)) such
that

||[Hn(λ)](k)|| ≤ M1
λ− w1 for λ > w1,

where Hn(λ) := (λ − λâ(λ)An)−1. Here and in the sequel the hat indicates the
Laplace transform. Hence, the generation theorem for resolvent families implies
that for each n ∈ N, the pair (An, a) admits resolvent family Sn(t) such that

(1.17) ||Sn(t)|| ≤M1ew1t for all n ∈ N.

In particular, the Laplace transform Ŝn(λ) exists and satisfies

Ŝn(λ) = Hn(λ) =
∫ ∞
0
e−λtSn(t) dt, λ > w1.

Now recall from semigroup theory that for all µ sufficiently large we have

R(µ,An) =
∫ ∞
0
e−µteAnt dt

as well as,

R(µ,A) =
∫ ∞
0
e−µtT (t) dt.

Since â(λ)→ 0 as λ→∞, we deduce that for all λ sufficiently large, we have

Hn(λ) =
1
λâ(λ)

R

(
1
â(λ)
, An

)
=
1
λâ(λ)

∫ ∞
0
e(−1/â(λ))teAnt dt,

and

H(λ) =
1
λâ(λ)

R

(
1
â(λ)
, A

)
=
1
λâ(λ)

∫ ∞
0
e(−1/â(λ))tT (t) dt.

Hence, from the identity

Hn(λ)−H(λ) = 1
λâ(λ)

[
R

(
1
â(λ)
, An

)
−R
(
1
â(λ)
, A

)]
and the fact that R(µ,An)→ R(µ,A) as n→ ∞ for all µ sufficiently large (see
e.g. [65, Lemma 7.3], we obtain that

(1.18) Hn(λ)→ H(λ) as n→∞.
Finally, due to (1.17) and (1.18) we can use the Trotter–Kato theorem for resol-
vent families of operators (cf. [58, Theorem 2.1]) and the conclusion follows. �

Let us recall, e.g. from [28], that a family C(t), t ≥ 0, of linear bounded
operators on H is called cosine family if C(t+ s)+ C(t− s) = 2C(t)C(s) for every
t, s ≥ 0, t > s.
Theorem 1.19 may be reformulated in the following version.
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Theorem 1.20. Let A generate a cosine family T (t) in B such that ||T (t)||
≤ Meωt for t > 0 holds, and suppose the kernel function a(t) is completely
positive. Then (A, a) admits an exponentially bounded resolvent S(t). Moreover,
there exist bounded operators An such that (An, a) admit resolvent families Sn(t)
satisfying ||Sn(t)|| ≤ M̃ew0t (M̃ ≥ 1, w0 ≥ 0) for all t ≥ 0, n ∈ N and

Sn(t)x→ S(t)x as n→∞
for all x ∈ B, t ≥ 0. Additionally, the convergence is uniform in t on every
compact subset of R+.

Remarks. (a) By [70, Theorem 4.3] or [68, Theorem 6] Theorem 1.20 holds
also in two other cases:

(a1) a(t) is a creep function with the function a1(t) log-convex;
(a2) a = c � c with some completely positive c ∈ L1loc(R+).

(Let us recall the definition [70, Definition 4.4]: A function a:R+ �→ R is called
a creep function if a(t) is nonnegative, nondecreasing, and concave. A creep
function a(t) has a standard form

a(t) = a0 + a∞t+
∫ t
0
a1(τ) dτ, t > 0,

where a0 = a(0+) ≥ 0, a∞ = limt→∞ a(t)/t = inft>0 a(t)/t ≥ 0, and a1(t) =
ȧ(t)− a∞ is nonnegative, nonincreasing, limt→∞ a1(t) = 0.)
(b) Other examples of the convergence (1.14) for the resolvents are given, e.g.

in [18] and [30]. In the first paper, the operator A generates a linear continuous
contraction semigroup. In the second one, A belongs to some subclass of sectorial
operators and the kernel a(t) is an absolutely continuous function fulfilling some
technical assumptions.

Comment. The above theorem gives a partial answer to the following open
problem for a resolvent family S(t) generated by a pair (A, a): do exist bounded
linear operators An generating resolvent families Sn(t) such that Sn(t)x →
S(t)x? Note that in case a(t) ≡ 1 the answer is yes, namely An are provided by
the Hille–Yosida approximation of A and Sn(t) = etAn .

The following result will be used in the sequel.

Proposition 1.21. Let A, An and Sn(t) be given as in Theorem 1.19 or
Theorem 1.20. Then the operators Sn(t) commute with the operator A, for every
n sufficiently large and t ≥ 0.
Proof. For each n sufficiently large the bounded operators An admit a resol-

vent family Sn(t), so by the complex inversion formula for the Laplace transform
we have

Sn(t) =
1
2πi

∫
Γn
eλtHn(λ) dλ
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where Γn is a simple closed rectifiable curve surrounding the spectrum of An in
the positive sense.
On the other hand, Hn(λ) := (λ − λâ(λ)An) where An := nA(n− A)−1, so

each An commutes with A on D(A) and then each Hn(λ) commutes with A, on
D(A), too.
Finally, because A is closed and all the following integrals are convergent

(exist), for all n sufficiently large and x ∈ D(A) we have

ASn(t)x =A
∫
Γn
eλtHn(λ)xdλ

=
∫
Γn
eλtAHn(λ)xdλ =

∫
Γn
eλtHn(λ)Axdλ = Sn(t)Ax. �





CHAPTER 2

PROBABILISTIC BACKGROUND

In this chapter we recall from [19], [42], [23] and [38] basic and important
concepts and results of the infinite dimensional stochastic analysis needed in the
sequel. In particular, we present construction of stochastic integral with respect
to a cylindrical Wiener process, published in [46].

2.1. Notations and conventions

Assume that (Ω,F , P ) is a probability space equipped with an increasing
family of σ-fields (Ft), t ∈ I, where I = [0, T ] or I = [0,∞), called filtration.
We shall denote by Ft+ the intersection of all σ-fields Fs, s > t. We say that
filtration is normal if F0 contains all sets B ∈ F with measure P (B) = 0 and if
Ft = Ft+ for any t ∈ I, that is, the filtration is right continuous.
In the paper we assume that filtration (Ft)t∈I is normal. This assumption

enables to choose modifications of considered stochastic processes with required
measurable properties.
Let H and U be two separable Hilbert spaces. In the whole paper we write

explicitely indexes indicating the appropriate space in norms | · |( · ) and inner
products 〈 · , · 〉( · ).
Definition 2.1. The H-valued process X(t), t ∈ I, is adapted to the family

(Ft)t∈I , if for arbitrary t ∈ I the random variable X(t) is Ft-measurable.
Definition 2.2. The H-valued process X(t), t ∈ [0, T ], is progressively mea-

surable if for every t ∈ [0, T ] the mapping [0, t] × Ω → H , (s, w) �→ X(s, w) is
B([0, t])×Ft-measurable.
We will use the following well-known result, see e.g. [23].

Proposition 2.3 ([23, Proposition 3.5]). Let X(t), t ∈ [0, T ], be a stochas-
tically continuous and adapted process with values in H. Then X has a progres-
sively measurable modification.

25
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By P∞ we denote a σ-field of subsets of [0,∞) × Ω defined as follows: P∞
is the σ-field generated by sets of the form: (s, t] × F , where 0 ≤ s ≤ t < ∞,
F ∈ Fs and {0}×F , when F ∈ F0. The restriction of the σ-field P∞ to [0, T ]×Ω
will be denoted by PT .
Definition 2.4. An arbitrary measurable mapping from ([0,∞) × Ω,P∞)

or ([0, T ]× Ω,PT ) into (H ;B(H)) is called a predictable process.
Comment. A predictable process is an adapted one.

Proposition 2.5 ([23, Proposition 3.6]). Assume that X(t), t ∈ [0, T ], is
an adapted and stochastically continuous process. Then the process X has a pre-
dictable version on [0, T ].

By L(U,H), L(U) we denote spaces of linear bounded operators from U into
H and in U , respectively. As previously, the operator norm is denoted by || · ||.
An important role will be played by the space of Hilbert–Schmidt operators.

Let us recall the following definition.

Definition 2.6 ([4] or [23]). Assume that {ek} ⊂ U and {fj} ⊂ H are
orthonormal bases of U and H , respectively. A linear bounded operator T :U →
H is called Hilbert–Schmidt operator if

∑∞
k=1 |Tek|2H <∞.

Because ∞∑
k=1

|Tek|2H =
∞∑
k=1

∞∑
j=1

(Tek, fj)2H =
∞∑
j=1

|T ∗fj |2U ,

where T ∗ denotes the operator adjoint to T , then the definition of Hilbert-
Schmidt operator and the number ||T ||HS =

(∑∞
k=1 |Tek|2H

)1/2
do not depend

on the basis {ek}, k ∈ N. Moreover ||T ||HS = ||T ∗||HS .
Additionally, L2(U,H) — the set of all Hilbert–Schmidt operators from U

into H , endowed with the norm || · ||HS defined above, is a separable Hilbert
space.

2.2. Classical infinite dimensional Wiener process

Here we recall from [19] and [42] the definition of Wiener process with values
in a real separable Hilbert space U and the stochastic integral with respect to
this process.

Definition 2.7. Let Q:U → U be a linear symmetric non-negative nuclear
operator (TrQ < ∞). A square integrable U -valued stochastic process W (t),
t ≥ 0, defined on a probability space (Ω,F , (Ft)t≥0, P ), where Ft denote σ-fields
such that Ft ⊂ Fs ⊂ F for t < s, is called classical or genuine Wiener process
with covariance operator Q if:

(a) W (0) = 0,
(b) EW (t) = 0, Cov[W (t)−W (s)] = (t− s)Q for all s, t ≥ 0,
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(c) W has independent increments, that is W (s4) −W (s3) and W (s2) −
W (s1) are independent whenever 0 ≤ s1 ≤ s2 ≤ s3 ≤ s4,

(d) W has continuous trajectories,
(e) W is adapted with respect to the filtration (Ft)t≥0.

If we choose Ft to be the σ-field generated by {W (s) : 0 ≤ s ≤ t}, then
W (t)−W (s) is independent of Fs for all t > s from condition (c) of the above
definition. Then E{W (t)−W (s)|Fs} = E{W (t) −W (s)} = 0 by condition (b).
Hence, E{W (t)|Fs} =W (s) w.p.1 and {W (t),Ft} is a martingale on [0,∞).
We remark that an alternative definition is to replace condition (d) of Defi-

nition 2.7 by assuming that W (t) is Gaussian for all t ≥ 0, see [19] for details.
In the light of the above, Wiener process is Gaussian and has the following

expansion (see e.g. [19, Lemma 5.23]). Let {ei} ⊂ U be an orthonormal set of
eigenvectors of Q with corresponding eigenvalues ζi (so TrQ =

∑∞
i=1 ζi), then

W (t) =
∞∑
i=1

βi(t)ei,

where βi are mutually independent real Wiener processes with E(β2i (t)) = ζit.

Remark. IfW (t) is a Wiener process in U with covariance operator Q, then
E|W (t)−W (s)|2nU ≤ (2n−1)!(t−s)n(TrQ)n, where the equality holds for n = 1.
The above type of structure of Wiener process will be used in the definition

of the stochastic integral.
For any Hilbert space H we denote by M(H) the space of all stochastic

processes g: [0, T ]× Ω→ L(U,H) such that

E

(∫ T
0
‖g(t)‖2L(U,H) dt

)
<∞

and for all u ∈ U , (g(t)u), t ∈ [0, T ] is an H-valued and Ft-adapted stochastic
process.
For each t ∈ [0, T ], the stochastic integral ∫ t0 g(s) dW (s) ∈ H is defined for

all g ∈M(H) by
∫ t
0
g(s) dW (s) = lim

m→∞

m∑
i=1

∫ t
0
g(s)ei dβi(s)

in L2(Ω;H).
We shall show that the series in the above formula is convergent. Let

W (m)(t) =
∑m
i=1 eiβi(t). Then, the integral∫ t

0
g(s) dW (m)(s) =

m∑
i=1

∫ t
0
g(s)ei dβi(s)
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is well defined for g ∈M(H) and additionally∫ t
0
g(s) dW (m)(s) m→∞−−−−→

∫ t
0
g(s) dW (s)

in L2(Ω;H).
This convergence comes from the fact that the sequence

ym =
∫ t
0
g(s) dW (m)(s), m ∈ N

is Cauchy sequence in the space of square integrable random variables. Using
properties of stochastic integrals with respect to βi(s), for any m,n ∈ N, m < n,
we have:

(2.1) E(|yn − ym|2H) =
n∑

i=m+1

ζiE

∫ t
0
(g(s)ei, g(s)ei)H ds

≤
( n∑
i=m+1

ζi

)
E

∫ t
0
‖g(s)‖2L(U,H) ds

m,n→∞−−−−−→ 0.

Hence, there exists a limit of the sequence (ym) which defines the stochastic
integral

∫ t
0 g(s) dW (s).

The stochastic integral defined above has the following properties (see [42]).

Proposition 2.8. Let g ∈M(H). Then

(a) E

(∫ T
0
g(t)dW (t)

)
= 0;

(b) E

∣∣∣∣
∫ T
0
g(t)dW (t)

∣∣∣∣
2

H

=
∫ T
0

E (Tr(g(t)Qg∗(t))) dt

=
∫ T
0

E (Tr(g∗(t)g(t)Q)) dt ≤ TrQ
∫ T
0

E |g(t)|2H dt;

(c) E

[
sup
t∈[0,T ]

∣∣∣∣
∫ t
0
g(s) dW (s)

∣∣∣∣
2

H

]
≤ 4E

∣∣∣∣
∫ T
0
g(s) dW (s)

∣∣∣∣
2

H

≤ 4TrQ
∫ T
0

E |g(s)|2H ds;

(d) E

[
sup
t∈[0,T ]

∣∣∣∣
∫ t
0
g(s) dW (s)

∣∣∣∣
H

]
≤ 3E

[∫ T
0
Tr(g(s)Qg∗(s)) ds

]1/2
.

(Since | ∫ t0 g(s) dW (s)|2H is a submartinagale, (c) follows from Doob’s inequal-
ity. Property (d) is also a consequence of a general inequality for martingales.)
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2.3. Stochastic integral
with respect to cylindrical Wiener process

The construction of the stochastic integral in Section 2.2 required that Q
was a nuclear operator. In some cases, this assumption seems to be artificial.
For instance, all processes stationary with respect to space variable, have non-
nuclear covariance operator. So, we shall extend the definition of the stochastic
integral to the case of general bounded self-adjoint, non-negative operator Q on
Hilbert space U . In this section we provide a construction, published in [46],
of stochastic integral with respect to an infinite dimensional cylindrical Wiener
process alternative to that given in [23]. The construction is based on the sto-
chastic integrals with respect to real-valued Wiener processes. The advantage of
using of such a construction is that we can use basic results and arguments of
the finite dimensional case. To avoid trivial complications we shall assume that
Q is strictly positive, that is: Q is non-negative and Qx �= 0 for x �= 0.
Let us introduce the subspace U0 of the space U defined by U0 = Q1/2(U)

with the norm
|u|U0 = |Q−1/2u|U , u ∈ U0.

Assume that U1 is an arbitrary Hilbert space such that U is continuously
embedded into U1 and the embedding of U0 into U1 is a Hilbert–Schmidt oper-
ator.
In particular, when Q = I, then U0 = U and the embedding of U into U1

is Hilbert–Schmidt operator. When Q is a nuclear operator, that is, TrQ <∞,
then U0 = Q1/2(U) and we can take U1 = U . Because in this caseQ1/2 is Hilbert–
Schmidt operator then the embedding U0 ⊂ U is Hilbert–Schmidt operator.
We denote by L02 = L2(U0, H) the space of Hilbert–Schmidt operators acting

from U0 into H .
Let us consider the norm of the operator ψ ∈ L02:

‖ψ‖2L02 =
∞∑
h,k=1

(ψgh, fk)2H =
∞∑
h,k=1

λh(ψeh, fk)2H = ‖ψQ1/2‖2HS = Tr(ψQψ∗),

where gj =
√
λjej , and {λj}, {ej} are eigenvalues and eigenfunctions of the

operator Q; {gj}, {ej} and {fj} are orthonormal bases of spaces U0, U and H ,
respectively.
The space L02 is a separable Hilbert space with the norm ‖ψ‖2L02 = Tr(ψQψ

∗).
Particular cases:

(1) If Q = I then U0 = U and the space L02 becomes L2(U,H).
(2) When Q is a nuclear operator then L(U,H) ⊂ L2(U0, H). Assume that
K ∈ L(U,H) and let us consider the operator ψ = K|U0 , that is the
restriction of operatorK to the space U0. BecauseQ is nuclear operator,
then Q1/2 is Hilbert–Schmidt operator. So, the embedding J of the
space U0 into U is Hilbert–Schmidt operator. We have to compute the
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norm ‖ψ‖L02 of the operator ψ:U0 → H . We obtain ‖ψ‖2L02 ≡ ‖KJ‖
2
L02
=

TrKJ(KJ)∗, where J :U0 → U .
Because J is Hilbert–Schmidt operator and K is linear bounded op-
erator then, basing on the theory of Hilbert–Schmidt operators (e.g.
[35, Chapter I]), KJ is Hilbert–Schmidt operator, too. Next, (KJ)∗

is Hilbert–Schmidt operator. In consequence, KJ(KJ)∗ is nuclear op-
erator, so TrKJ(KJ)∗ < ∞. Hence, ψ = K|U0 is Hilbert–Schmidt
operator on the space U0, that is K ∈ L2(U0, H).

Although Propositions 2.9 and 2.10 introduced below are known (see e.g.
Proposition 4.11 in the monograph [23]), because of their importance we formu-
late them again. In both propositions, {gj} denotes an orthonormal basis in U0
and {βj} is a family of independent standard real-valued Wiener processes.

Proposition 2.9. The formula

(2.2) Wc(t) =
∞∑
j=1

gjβj(t),

for t ≥ 0, defines Wiener process in U1 with the covariance operator Q1 such
that TrQ1 <∞.

Proof. This comes from the fact that the series (2.2) is convergent in space
L2(Ω,F , P ;U1). We have

E

(∣∣∣∣
n∑
j=1

gjβj(t)−
m∑
j=1

gjβj(t)

∣∣∣∣
2

U1

)
= E
(∣∣∣∣

n∑
j=m+1

gjβj(t)

∣∣∣∣
2

U1

)

=E
( n∑
j=m+1

gjβj(t),
n∑

k=m+1

gkβk(t)
)
U1

= E
n∑

j=m+1

(gjβj(t), gjβj(t))U1

=E
( n∑
j=m+1

(gj , gj)U1β
2
j (t)
)
= t

n∑
j=m+1

|gj|2U1 ,

for n ≥ m ≥ 1. From the assumption, the embedding J :U0 → U1 is Hilbert–
Schmidt operator, then for the basis {gj}, complete and orthonormal in U0, we
have

∑∞
j=1 |Jgj|2U1<∞. Because Jgj=gj for any gj ∈U0, then

∑∞
j=1 |gj |2U1<∞

which means
∑n
j=m+1 |gj|2U1 → 0 when m,n→∞.

Conditions (a)–(c) and (e) of the Definition 2.7 of Wiener process are obvi-
ously satisfied. The process defined by (2.2) is Gaussian because βj(t), j ∈ N,
are independent Gaussian processes. By Kolmogorov test theorem (see e.g. [23,
Theorem 3.3]), trajectories of the process Wc(t) are continuous (condition (d) of
the definition of Wiener process) because Wc(t) is Gaussian.
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Let Q1:U1 → U1 denote the covariance operator of the processWc(t) defined
by (2.2). From the definition of covariance, for a, b ∈ U1 we have:

(Q1a, b)U1 =E(a,Wc(t))U1 (b,Wc(t))U1 = E
( ∞∑
j=1

(a, gj)U1 (b, gj)U1β
2
j (t)
)

= t
∞∑
j=1

(a, gj)U1 (b, gj)U1 = t
( ∞∑
j=1

gj(a, gj)U1 , b
)
U1

.

Hence Q1a = t
∑∞
j=1 gj(a, gj)U1 .

Because the covariance operatorQ1 is non-negative, then (by Proposition C.3
in [23]) Q1 is a nuclear operator if and only if

∑∞
j=1(Q1hj , hj)U1 < ∞, where

{hj} is an orthonormal basis in U1.
From the above considerations

∞∑
j=1

(Q1hj , hj)U1 ≤ t
∞∑
j=1

|gj |2U1

and then
∞∑
j=1

(Q1hj , hj)U1 ≡ TrQ1 <∞. �

Proposition 2.10. For any a ∈ U the process

(2.3) (a,Wc(t))U =
∞∑
j=1

(a, gj)Uβj(t)

is real-valued Wiener process and

E(a,Wc(s))U (b,Wc(t))U = (s ∧ t)(Qa, b)U for a, b ∈ U.

Additionally, ImQ1/21 = U0 and |u|U0 = |Q−1/21 u|U1 .

Proof. We shall prove that the series (2.3) defining the process (a,Wc(t))U
is convergent in the space L2(Ω;R).
Let us notice that the series (2.3) is the sum of independent random variables

with zero mean. Then the series does converge in L2(Ω;R) if and only if the
following series

∑∞
j=1 E((a, gj)Uβj(t))

2 converges.
Because J is Hilbert–Schmidt operator, we obtain

∞∑
j=1

E((a, gj)2Uβ
2
j (t)) =

∞∑
j=1

(a, gj)2U ≤ |a|2U
∞∑
j=1

|gj |2U ≤ C|a|2U
∞∑
j=1

|Jgj|2U1 <∞.



32 Anna Karczewska

Hence, the series (2.3) does converge. Moreover, when t ≥ s ≥ 0, we have
E((a,Wc(t))U (b,Wc(s))U )

=E((a,Wc(t)−Wc(s))U (b,Wc(s))U ) + E((a,Wc(s))U (b,Wc(s))U )

=E((a,Wc(s))U (b,Wc(s))U ) = E
([ ∞∑
j=1

(a, gj)Uβj(s)
][ ∞∑
k=1

(b, gk)Uβk(s)
])
.

Let us introduce

Sa :=
∞∑
j=1

(a, gj)Uβj(t), S
b :=

∞∑
k=1

(b, gk)Uβk(t), for a, b ∈ U.

Next, let SaN and S
b
N denote the partial sums of the series S

a and Sb, respectively.
From the above considerations the series Sa and Sb are convergent in L2(Ω;R).
Hence E(SaSb) = limN→∞E(SaNS

b
N ). In fact,

E|SaNSbN − SaSb|
=E|SaNSbN − SanSb + SbSan − SbSa| ≤ E|SaN ||SbN − Sb|+ E|Sb||SaN − Sa|
≤ (E|SaN |2)1/2(E|SbN − Sb|2)1/2 + (E|Sb|2)1/2(E|SaN − Sa|2)1/2 N→∞−−−−→ 0

because SaN converges to S
a and SbN converges to S

b in quadratic mean. Addi-
tionally,

E(SaNS
b
N ) = t

N∑
j=1

(a, gj)U (b, gj)U

and, when N →∞,

E(SaSb) = t
∞∑
j=1

(a, gj)U (b, gj)U .

Let us notice that

(Q1a, b)U1 =E(a,Wc(1))U1(b,Wc(1))U1 =
∞∑
j=1

(a, gj)U1(b, gj)U1

=
∞∑
j=1

(a, Jgj)U1(b, Jgj)U1 =
∞∑
j=1

(J∗a, gj)U0(J
∗b, gj)U0

=
(
J∗a,

∞∑
j=1

(J∗b, gj)gj

)
U0

= (J∗a, J∗b)U0 = (JJ
∗a, b)U1 .

That gives Q1 = JJ∗. In particular

(2.4) |Q1/21 a|2U1 = (JJ∗a, a)U1 = |J∗a|2U0 , a ∈ U1.
Having (2.4), we can use theorems on images of linear operators, e.g. [23,

Appendix B.2, Proposition B.1(ii)].
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By that proposition ImQ1/21 = Im J . But for any j ∈ N, and gj ∈ U0,
Jgj = gj, that is ImJ = U0. Then ImQ

1/2
1 = U0.

Moreover, the operator G = Q−1/21 J is a bounded operator from U0 on U1.
From (2.4) the adjoint operator G∗ = J∗Q−1/21 is an isometry, so G is isometry,
too. Thus

|Q−1/21 u|U1 = |Q−1/21 Ju|U1 = |u|U0 . �

In the case when Q is nuclear operator, Q1/2 is Hilbert-Schmidt operator.
Taking U1 = U , the process Wc(t), t ≥ 0, defined by (2.2) is the classical Wiener
process introduced in Definition 2.7.

Definition 2.11. The process Wc(t), t ≥ 0, defined in (2.2), is called cylin-
drical Wiener process on U when TrQ =∞.
The stochastic integral with respect to cylindrical Wiener process is defined

as follows.
As we have already written above, the process Wc(t) defined by (2.2) is

a Wiener process in the space U1 with the covariance operator Q1 such that
TrQ1 < ∞. Then the stochastic integral

∫ t
0 g(s) dWc(s) ∈ H is well defined

in U1, where g(s) ∈ L(U1, H).
Let us notice that U1 is not uniquely determined. The space U1 can be an

arbitrary Hilbert space such that U is continuously embedded into U1 and the
embedding of U0 into U1 is a Hilbert–Schmidt operator. We would like to define
the stochastic integral with respect to cylindrical Wiener proces Wc(t) (given by
(2.2)) in such a way that the integral is well defined on the space U and does
not depend on the choice of the space U1.
We denote by N 2(0, T ;L02) the space of all stochastic processes

(2.5) Φ: [0, T ]× Ω→ L2(U0, H)
such that

(2.6) ||Φ||2T := E
(∫ T
0
||Φ(t)||2L2(U0,H) dt

)
<∞

and for all u ∈ U0, (Φ(t)u), t ∈ [0, T ], is an H-valued and Ft-adapted stochastic
process.
The stochastic integral

∫ t
0 Φ(s) dWc(s) ∈ H with respect to cylindrical Wie-

ner process, given by (2.2) for any process Φ ∈ N 2(0, T ;L02), can be defined as
the limit

(2.7)
∫ t
0
Φ(s) dWc(s) = lim

m→∞

m∑
j=1

∫ t
0
Φ(s)gj dβj(s)

in L2(Ω;H).
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Comment. Before we prove that the stochastic integral given by the for-
mula (2.7) is well defined, let us recall properties of the operator Q1. From
Proposition 2.9, cylindrical Wiener process Wc(t) given by (2.2) has the covari-
ance operator Q1:U1 → U1, which is a nuclear operator in the space U1, that
is TrQ1 < ∞. Next, basing on Proposition 2.10, Q1/21 :U1 → U0, ImQ1/21 = U0
and |u|U0 = |Q−1/21 u|U1 for u ∈ U0.
Moreover, from the above considerations and properties of the operator Q1

we may deduce that L(U1, H) ⊂ L2(U0, H). This means that each operator
Φ ∈ L(U1, H), that is linear and bounded from U1 into H , is Hilbert–Schmidt
operator acting from U0 into H , that is Φ ∈ L2(U0, H) when TrQ1 < ∞ in U1.
This means that conditions (2.5) and (2.6) for the family N 2(0, T ;L02) of inte-
grands are natural assumptions for the stochastic integral given by (2.7).

Now, we shall prove that the series from the right hand side of (2.7) is
convergent. Denote

W (m)c (t) :=
m∑
j=1

gjβj(t) and Zm :=
∫ t
0
Φ(s)W (m)c (s), t ∈ [0, T ].

Then, for n ≥ m ≥ 1, we have

E(|Zn − Zm|2H) = E
∣∣∣∣

n∑
j=m+1

∫ t
0
Φ(s)gj dβj(s)

∣∣∣∣
2

H

≤ E
n∑

j=m+1

∫ t
0
|Φ(s)gj |2H ds m,n→∞−−−−−→ 0,

because from the assumption (2.6)

E

∫ t
0

( ∞∑
j=1

|Φ(s)gj |2H
)
ds <∞.

Then, the sequence (Zm) is Cauchy sequence in the space of square-integrable
random variables. So, the stochastic integral with respect to cylindrical Wiener
process given by (2.7) is well defined.
As we have already mentioned, the space U1 is not uniquely determined.

Hence, the cylindrical Wiener proces Wc(t) defined by (2.2) is not uniquely
determined either.
Let us notice that the stochastic integral defined by (2.7) does not depend on

the choice of the space U1. Firstly, in the formula (2.7) there are not elements
of the space U1 but only {gj}-basis of U0. Additionally, in (2.7) there are not
eigenfunctions of the covariance operator Q1. Secondly, the class N 2(0, T ;L02)
of integrands does not depend on the choice of the space U1 because (by Propo-
sition 2.10) the spaces Q1/21 (U1) are identical for any spaces U1:

Q
1/2
1 :U1 → U0 and ImQ1/21 = U0.
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2.3.1. Properties of the stochastic integral. In this subsection we recall
from [23] some properties of stochastic integral used in the paper.

Proposition 2.12. Assume that Φ ∈ N 2(0, T ;L20). Then the stochastic
integral Φ •W (t) := ∫ t0 Φ(s) dW (s) is a continuous square integrable martingale
and its quadratic variation is of the form

〈〈Φ •W (t)〉〉 =
∫ t
0
QΦ(s) ds,

where QΦ(s) = (Φ(s)Q1/2)(Φ(s)Q1/2)∗ for s, t ∈ [0, T ].

Proposition 2.13. If Φ ∈ N 2(0, T ;L20), then
E(Φ •W (t)) = 0 and E|Φ •W (t)|2H <∞ for t ∈ [0, T ].

Proposition 2.14. Assume that Φ1,Φ2 ∈ N 2(0, T ;L20). Then the correla-
tion operators

V (s, t) := Cor(Φ1 •W (s),Φ2 •W (t)),
for s, t ∈ [0, T ] are given by the formula

V (s, t) = E

∫ s∧t
0
(Φ2(r)Q1/2)(Φ1(r)Q1/2)∗ dr.

Corollary 2.15. From the definition of the correlation operator we have

E(Φ1 •W (s),Φ2 •W (t))H = E

∫ s∧t
0
Tr[(Φ2(r)Q1/2)(Φ1(r)Q1/2)∗] dr.

2.4. The stochastic Fubini theorem and the Itô formula

The below theorems are recalled directly from the book by Da Prato and
Zabczyk [23].
Assume that (Ω,F , (Ft)t≥0, P ) is a probability space, ΩT := [0, T ]× Ω and

recall that PT is the σ-field defined in Section 2.1, that is PT is the σ-field
generated by sets of the form: (s, t] × F , where 0 ≤ s ≤ t ≤ T , F ∈ Fs and
{0} × F , when F ∈ F0.
Let (E, E) be a measurable space and let

(2.8) Φ: (t, ω, x)→ Φ(t, ω, x) be a measurable mapping
from (ΩT × E,PT × B(E)) into (L02,B(L02)),

where B(E) and B(L02) denote Borel σ-fields on E and L02, respectively. Thus,
in particular, for arbitrary x ∈ E, Φ( · , · , x) is a predictable L02-valued process.
Let in addition µ be a finite positive measure on (E, E).



36 Anna Karczewska

Theorem 2.16 (The stochastic Fubini theorem). Assume (2.8) and that∫
E

||Φ( · , · , x)||T µ(dx) <∞.

Then P -a.s.∫
E

[ ∫ T
0
Φ(t, x) dW (t)

]
µ(dx) =

∫ T
0

[ ∫
E

Φ(t, x)µ(dx)
]
dW (t).

Assume that Φ is an L02-valued process stochastically integrable in [0, T ], φ
is an H-valued predictable process Bochner integrable on [0, T ], P -a.s. and X(0)
is an F0-measurable H-valued random variable. Then the following process

X(t) = X(0) +
∫ t
0
φ(s) ds+

∫ t
0
Φ(s) dW (s), t ∈ [0, T ],

is well defined.
Assume that a function F : [0, T ]×H → R1 and its partial derivatives Ft, Fx,

Fxx, are uniformly continuous on bounded subsets of [0, T ]×H .
Theorem 2.17 (The Itô formula). Under the above conditions

F (t,X(t)) =F (0, X(0)) +
∫ t
0
〈Fx(s,X(s)),Φ(s) dW (s)〉H

+
∫ t
0
{Ft(s,X(s)) + 〈Fx(s,X(s)), φ(s)〉H

+
1
2
Tr [Fxx(s,X(s))(Φ(s)Q1/2)(Φ(s)Q1/2)∗]} ds

holds P -a.s. for all t ∈ [0, T ].



CHAPTER 3

STOCHASTIC VOLTERRA EQUATIONS
IN HILBERT SPACE

The aim of this chapter is to study some fundamental questions related to
the linear convolution type stochastic Volterra equations of the form

(3.1) X(t) = X(0) +
∫ t
0
a(t− τ)AX(τ) dτ +

∫ t
0
Ψ(τ) dW (τ), t ≥ 0,

in a separable Hilbert space H . Particularly, we provide sufficient conditions for
the existence of strong solutions to some classes of the equation (3.1), which is
a stochastic version of the equation (1.1).
Let (Ω,F , (Ft)t≥0, P ) be a probability space. In (3.1), the kernel function

a(t) and the operator A are the same as previously, X(0) is an H-valued F0-
measurable random variable, W is a cylindrical Wiener process on a separable
Hilbert space U and Ψ is an appropriate process defined below.
This chapter is organized as follows. In Section 3.1 we give definitions of so-

lutions to (3.1) and some introductory results concerning stochastic convolution
arising in (3.1). Additionally, we show that under some conditions a weak solu-
tion to (3.1) is a mild solution and vice versa. These results have been recalled
from [48].
Section 3.2 deals with strong solution to (3.1). We formulate sufficient con-

ditions for a stochastic convolution to be a strong solution to (3.1). The above
results come from the paper [51], not yet published.
In Section 3.3, based on [52], we study particular class of equations (3.1),

that is, so-called fractional Volterra equations. We decided to consider that
class of equations separately because of specific problems appearing during the
study of such equations. First, we formulate the deterministic results which play
the key role for stochastic results. We study in detail α-times resolvent families
corresponding to fractional Volterra equations. Next, we consider mild, weak
and strong solutions to those equations.
In the whole chapter we shall use the following:

37
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Volterra Assumptions (abbr. (VA)).

(a) A:D(A) ⊂ H → H , is a closed linear operator with the dense domain
D(A) equipped with the graph norm | · |D(A);

(b) a ∈ L1loc(R+) is a scalar kernel;
(c) S(t), t ≥ 0, are resolvent operators for the Volterra equation (1.1) de-
termined by the operator A and the function a(t), t ≥ 0.

The domain D(A) is equipped with the graph norm defined as follows:
|h|D(A) := (|h|2H + |Ah|2H)1/2 for h ∈ D(A), where | · |H denotes a norm in H .
Because H is a separable Hilbert space and A is a closed operator, the space
(D(A), | · |D(A)) is a separable Hilbert space, too.
W (t), t ≥ 0, is a cylindrical Wiener process on U with the covariance opera-

tor Q and TrQ =∞.
By L02 := L2(U0, H), as previously, we denote the set of all Hilbert–Schmidt

operators acting from U0 into H , where U0 = Q1/2(U).
For shortening, we introduce:

Probability Assumptions (abbr. (PA)).

(a) X(0) is an H-valued, F0-measurable random variable;
(b) Ψ belongs to the space N 2(0, T ;L02), where the finite interval [0, T ] is
fixed.

3.1. Notions of solutions to stochastic Volterra equations

In this section we introduce the definitions of solutions to the stochastic
Volterra equation (3.1) and then formulate some results, not yet published, set-
ting a framework for further research.

Definition 3.1. Assume that conditions (VA) and (PA) hold. An H-valued
predictable process X(t), t ∈ [0, T ], is said to be a strong solution to (3.1), if X
has a version such that P (X(t) ∈ D(A)) = 1 for almost all t ∈ [0, T ]; for any
t ∈ [0, T ]

(3.2)
∫ t
0
|a(t− τ)AX(τ)|H dτ <∞, P -a.s.

and for any t ∈ [0, T ] the equation (3.1) holds P -a.s.
Comment. Because the integral

∫ t
0 Ψ(τ) dW (τ) is a continuous H-valued

process then the above definition yields continuity of the strong solution.

Let A∗ denotes the adjoint of the operator A, with dense domain D(A∗) ⊂ H
and the graph norm | · |D(A∗) defined as follows: |h|D(A∗) := (|h|2H + |A∗h|2H)1/2,
for h ∈ D(A∗). The space (D(A∗), | · |D(A∗)) is a separable Hilbert space.
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Definition 3.2. Let conditions (VA) and (PA) hold. An H-valued pre-
dictable process X(t), t ∈ [0, T ], is said to be a weak solution to (3.1), if
P (
∫ t
0 |a(t− τ)X(τ)|H dτ <∞) = 1 and if for all ξ ∈ D(A∗) and all t ∈ [0, T ] the

following equation holds

〈X(t), ξ〉H = 〈X(0), ξ〉H +
〈∫ t
0
a(t− τ)X(τ) dτ,A∗ξ

〉
H

+
〈∫ t
0
Ψ(τ) dW (τ), ξ

〉
H

, P -a.s.

Definition 3.3. Assume that (VA) are satisfied andX(0) is anH-valuedF0-
measurable random variable. An H-valued predictable process X(t), t ∈ [0, T ],
is said to be a mild solution to the stochastic Volterra equation (3.1), if

(3.3) E

(∫ t
0
||S(t− τ)Ψ(τ)||2L02 dτ

)
<∞ for t ≤ T

and, for arbitrary t ∈ [0, T ],

(3.4) X(t) = S(t)X(0) +
∫ t
0
S(t− τ)Ψ(τ) dW (τ), P -a.s.

We will show that in some cases weak solution to the equation (3.1) coincides
with mild solution to (3.1) (see, Subsection 3.1.2). In consequence, having results
for the convolution

(3.5) WΨ(t) :=
∫ t
0
S(t− τ)Ψ(τ) dW (τ), t ∈ [0, T ],

where S(t) and Ψ are the same as in (3.4), we will obtain results for weak solution
to (3.1), too.

3.1.1. Introductory results. In this section we collect some properties of
the stochastic convolution of the form

(3.6) WB(t) :=
∫ t
0
S(t− τ)B dW (τ)

in the case when B ∈ L(U,H) and W is a cylindrical Wiener process.
Lemma 3.4. Assume that the operators S(t), t ≥ 0, and B are as above,

S∗(t), B∗ are their adjoints, and

(3.7)
∫ T
0
||S(τ)B||2L02 dτ =

∫ T
0
Tr[S(τ)BQB∗S∗(τ)] dτ <∞.

Then we have:

(a) the process WB is Gaussian, mean-square continuous on [0, T ] and then
has a predictable version;
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(b)

(3.8) CovWB(t) =
∫ t
0
[S(τ)BQB∗S∗(τ)] dτ, t ∈ [0, T ];

(c) trajectories of the process WB are P -a.s. square integrable on [0, T ].

Proof. (a) Gaussianity of the process WB follows from the definition and
properties of stochastic integral. Let us fix 0 ≤ t < t+ h ≤ T . Then

WB(t+ h)−WB(t) =
∫ t
0
[S(t+ h− τ) − S(t− τ)]B dW (τ)

+
∫ t+h
t

S(t+ h− τ)B dW (τ).

Let us note that the above integrals are stochastically independent. Using the ex-
tension of the process W (mentioned in Section 3.1) and properties of stochastic
integral with respect to real Wiener processes (see e.g. [42]), we have

E |WB(t+ h)−WB(t)|2H =
∞∑
k=1

λk

∫ t
0
|[S(t+ h− τ) − S(t− τ)]Bek|2H dτ

+
∞∑
k=1

λk

∫ t+h
t

|S(t+ h− τ)Bek|2H dτ := I1(t, h) + I2(t, h).

Then, invoking (1.4), the strong continuity of S(t) and the Lebesgue dominated
convergence theorem, we can pass in I1(t, h) with h → 0 under the sum and
integral signs. Hence, we obtain I1(t, h)→ 0 as h→ 0.
Observe that

I2(t, h) =
∫ t+h
t

||S(t+ h− τ)BQ1/2||2HS dτ,

where || · ||HS denotes the norm of Hilbert–Schmidt operator. By the condition
(3.7) we have ∫ T

0
||S(t)BQ1/2||2HS dt <∞,

what implies that limh→0 I2(t, h) = 0.
The proof for the case 0 ≤ t−h < t ≤ T is similar. Existence of a predictable

version is a consequence of the continuity and Proposition 2.5.
(b) The shape of the covariance (3.8) follows from theory of stochastic inte-

gral, see e.g. [23].
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(c) From the definition (3.6) and assumption (3.7) we have the following
estimate

E

∫ T
0
|WB(τ)|2H dτ =

∫ T
0

E |WB(τ)|2H dτ

=
∫ T
0

E

∣∣∣∣
∫ τ
0
S(τ − r)B dW (r)

∣∣∣∣
2

H

dτ =
∫ T
0

∫ τ
0
||S(r)B||2L02 dr dτ <∞.

Hence, the function WB( · ) may be regarded like random variable with values
in the space L2(0, T ;H). �

Now, we formulate an auxiliary result which will be used in the next section.

Lemma 3.5. Let Volterra assumptions hold with the function a ∈ W 1,1(R+).
Assume that X is a weak solution to (3.1) in the case when Ψ(t) = B, where
B ∈ L(U,H) and trajectories of X are integrable P -a.s. on [0, T ]. Then, for any
function ξ ∈ C1([0, t];D(A∗)), t ∈ [0, T ], the following formula holds

(3.9) 〈X(t), ξ(t)〉H = 〈X(0), ξ(0)〉H
+
∫ t
0
〈(ȧ � X)(τ) + a(0)X(τ), A∗ξ(τ)〉H dτ

+
∫ t
0
〈ξ(τ), BdW (τ)〉H +

∫ t
0
〈X(τ), ξ̇(τ)〉Hdτ,

where dots above a and ξ mean time derivatives and � means the convolution.

Proof. First, we consider functions of the form ξ(τ) := ξ0ϕ(τ), τ ∈ [0, T ],
where ξ0 ∈ D(A∗) and ϕ ∈ C1[0, T ]. For simplicity we omit index H in the inner
product. Let us denote Fξ0(t) := 〈X(t), ξ0〉, t ∈ [0, T ].
Using Itô’s formula to the process Fξ0(t)ϕ(t), we have

(3.10) d[Fξ0 (t)ϕ(t)] = ϕ(t)dFξ0 (t) + ϕ̇(t)Fξ0(t) dt, t ∈ [0, T ].

Because X is weak solution to (3.1), we have

(3.11) dFξ0(t) =
〈∫ t
0
ȧ(t− τ)X(τ) dτ + a(0)X(t), A∗ξ0

〉
dt+ 〈BdW (t), ξ0〉

= 〈(ȧ � X)(t) + a(0)X(t), A∗ξ0〉 dt+ 〈BdW (t), ξ0〉.

From (3.10) and (3.11), we obtain

Fξ0(t)ϕ(t) =Fξ0(0)ϕ(0) +
∫ t
0
ϕ(s)〈(ȧ � X)(s) + a(0)X(s), A∗ξ0〉 ds

+
∫ t
0
〈ϕ(s)B dW (s), ξ0〉+

∫ t
0
ϕ̇(s)〈X(s), ξ0〉 ds
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= 〈X(0), ξ(0)〉H +
∫ t
0
〈(ȧ � X)(s) + a(0)X(s), A∗ξ(s)〉 ds

+
∫ t
0
〈B dW (s), ξ(s)〉 +

∫ t
0
〈X(s), ξ̇(s)〉 ds.

Hence, we proved the formula (3.9) for functions ξ of the form ξ(s) = ξ0ϕ(s),
s ∈ [0, T ]. Because such functions form a dense subspace in C1([0, T ];D(A∗)),
the proof is completed. �

3.1.2. Results in general case. In this subsection we consider weak and
mild solutions to the equation (3.1).
First we study the stochastic convolution defined by (3.5), that is

WΨ(t) :=
∫ t
0
S(t− τ)Ψ(τ) dW (τ), t ∈ [0, T ].

Proposition 3.6. Assume that S(t), t ≥ 0, are (as earlier) the resolvent
operators corresponding to the Volterra equation (1.1). Then, for arbitrary pro-
cess Ψ ∈ N 2(0, T ;L02), the process WΨ(t), t ≥ 0, given by (3.5) has a predictable
version.

Proof. Because proof of Proposition 3.6 is analogous to some schemes in the
theory of stochastic integrals (see e.g. [59, Chapter 4]) we provide only an outline
of the proof.
First, let us notice that the process S(t− τ)Ψ(τ), where τ ∈ [0, t], belongs to

N 2(0, T ;L02), because Ψ ∈ N 2(0, T ;L02). Then we may use the apparently well-
known estimate (see e.g. Proposition 4.16 in [23]): for arbitrary a > 0, b > 0 and
t ∈ [0, T ]

(3.12) P (|WΨ(t)|H > a) ≤ b
a2
+ P
(∫ t
0
||S(t− τ)Ψ(τ)||2L02dτ > b

)
.

Because the resolvent operators S(t), t ≥ 0, are uniformly bounded on compact
itervals (see [70]), there exists a constant C > 0 such that ||S(t)|| ≤ C for
t ∈ [0, T ]. So, we have ||S(t− τ)Ψ(τ)||2

L02
≤ C2||Ψ(τ)||2

L02
, τ ∈ [0, T ].

Then the estimate (3.12) may be rewritten as

(3.13) P (|WΨ(t)|H > a) ≤ b
a2
+ P
(∫ t
0
||Ψ(τ)||2L02dτ >

b

C2

)
.

Let us consider predictability of the process WΨ in two steps. In the first
step we assume that Ψ is an elementary process understood in the sense given
in Section 4.2 in [23]. In this case the process WΨ has a predictable version by
Proposition 2.5.
In the second step Ψ is an arbitrary process belonging to N 2(0, T ;L02). Since

elementary processes form a dense set in the space N 2(0, T ;L02), there exists
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a sequence (Ψn) of elementary processes such that for arbitrary c > 0

(3.14) P

(∫ T
0
||Ψ(τ)−Ψn(τ)||2L02 dτ > c

)
n→∞−−−−→ 0.

By the previous part of the proof the sequence WΨn of convolutions

WΨn (t) :=
∫ t
0
S(t− τ)Ψn(τ) dW (τ)

converges in probability. Hence, it has a subsequence converging almost surely.
This implies the predictability of the convolution WΨ(t), t ∈ [0, T ]. �

Proposition 3.7. Assume that Ψ ∈ N 2(0, T ;L02). Then the process WΨ(t),
t ∈ [0, T ], defined by (3.5) has square integrable trajectories.
Proof. We have to prove that E

∫ T
0 |WΨ(t)|2H dt <∞. From Fubini’s theorem

and properties of stochastic integral

E

∫ T
0

∣∣∣∣
∫ t
0
S(t− τ)Ψ(τ) dW (τ)

∣∣∣∣
2

H

dt =
∫ T
0

[
E

∣∣∣∣
∫ t
0
S(t− τ)Ψ(τ) dW (τ)

∣∣∣∣
2

H

]
dt

=
∫ T
0

∫ t
0
||S(t− τ)Ψ(τ)||2L02 dτ dt ≤M

∫ T
0

∫ t
0
||Ψ(τ)||2L02 dτ dt <∞

(from boundness of operators S(t) and, because Ψ(τ) are Hilbert–Schmidt). �

Proposition 3.8. Assume that a ∈ BV (R+), (VA) are satisfied and, ad-
ditionally S ∈ C1(0,∞;L(H)). Let X be a predictable process with integrable
trajectories. Assume that X has a version such that P (X(t) ∈ D(A)) = 1 for
almost all t ∈ [0, T ] and (3.3) holds. If for any t ∈ [0, T ] and ξ ∈ D(A∗)

(3.15) 〈X(t), ξ〉H = 〈X(0), ξ〉H +
∫ t
0
〈a(t− τ)X(τ), A∗ξ〉H dτ

+
∫ t
0
〈ξ,Ψ(τ) dW (τ)〉H , P -a.s.,

then

(3.16) X(t) = S(t)X(0) +
∫ t
0
S(t− τ)Ψ(τ) dW (τ), t ∈ [0, T ].

Proof. For simplicity we omit index H in the inner product. Since a ∈
BV (R+), we see, analogously like in Lemma 3.5, that if (3.15) is satisfied, then

(3.17) 〈X(t), ξ(t)〉 = 〈X(0), ξ(0)〉+
∫ t
0
〈(ȧ � X)(τ) + a(0)X(τ), A∗ξ(τ)〉 dτ

+
∫ t
0
〈Ψ(τ) dW (τ), ξ(τ)〉 +

∫ t
0
〈X(τ), ξ̇(τ)〉 dτ, P -a.s.

holds for any ξ ∈ C1([0, t], D(A∗)) for any t ∈ [0, T ].
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Now, let us take ξ(τ) := S∗(t− τ)ζ with ζ ∈ D(A∗), τ ∈ [0, t]. The equation
(3.17) may be written like

〈X(t), S∗(0)ζ〉 = 〈X(0), S∗(t)ζ〉+
∫ t
0
〈(ȧ �X)(τ)+ a(0)X(τ), A∗S∗(t− τ)ζ〉 dτ

+
∫ t
0
〈Ψ(τ) dW (τ), S∗(t− τ)ζ〉 +

∫ t
0
〈X(τ), (S∗(t− τ)ζ)′〉 dτ,

where derivative ( · )′ in the last term is taken over τ .
Next, using S∗(0) = I, we rewrite

(3.18) 〈X(t), ζ〉 = 〈S(t)X(0), ζ〉

+
∫ t
0

〈
S(t− τ)A

[ ∫ τ
0
ȧ(τ − σ)X(σ) dσ + a(0)X(τ)

]
, ζ

〉
dτ

+
∫ t
0
〈S(t− τ)Ψ(τ) dW (τ), ζ〉 +

∫ t
0
〈Ṡ(t− τ)X(τ), ζ〉 dτ.

To prove (3.16) it is enough to show that the sum of the first integral and the
third one in the equation (3.18) gives zero.
Because S ∈ C1(0,∞;L(H)) we can use properties of resolvent operators

and the derivative Ṡ(t− τ) with respect to τ . Then

I3 :=
〈∫ t
0
Ṡ(t− τ)X(τ) dτ, ζ

〉
=
〈
−
∫ t
0
Ṡ(τ)X(t− τ) dτ, ζ

〉

=
〈
−
∫ t
0

[ ∫ τ
0
a(τ − s)AS(s) ds

]′
X(t− τ) dτ, ζ

〉

=
〈(∫ t

0

[∫ τ
0
ȧ(τ − s)AS(s) ds

]
X(t− τ) dτ

∫ t
0
a(0)AS(τ)X(t− τ) dτ

)
, ζ

〉
= 〈(−[A(ȧ � S)(τ) � X ](t)− a(0)A(S � X)(t)), ζ〉.

Note that a ∈ BV (R+) and hence the convolution (a � S)(τ) has sense (see [70,
Section 1.6] or [3]). Since∫ t

0
〈a(0)AS(t− τ)X(τ), ζ〉 dτ =

∫ t
0
〈a(0)AS(τ)X(t− τ), ζ〉 dτ

and

I1 :=
∫ t
0

〈
S(t− τ)A

[ ∫ τ
0
ȧ(τ − σ)X(σ) dσ

]
, ζ

〉
dτ

=
∫ t
0
〈AS(t− τ)(ȧ � X)(τ), ζ〉 dτ

= 〈A(S � (ȧ � X)(τ))(t), ζ〉 = 〈A((S � ȧ)(τ) � X)(t), ζ〉
for any ζ ∈ D(A∗), so I1 = −I3.
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This means that (3.16) holds for any ζ ∈ D(A∗). Since D(A∗) is dense in H∗,
then (3.16) holds. �
Remark. If (3.1) is parabolic and the kernel a(t) is 3-monotone, understood

in the sense defined by Prüss [70, Section 3], then S ∈ C1(0,∞;L(H)), and
a ∈ BV (R+), respectively.
Comment. Proposition 3.8 shows that under particular conditions a weak

solution to (3.1) is a mild solution to the equation (3.1).

Proposition 3.9. Let Volterra assumptions be satisfied. If Ψ∈N 2(0,T ;L02),
then the stochastic convolution WΨ fulfills the equation (3.15).

Proof. Let us notice that the process WΨ has integrable trajectories. From
the defintion of convolution (3.5), using Dirichlet’s formula and stochastic Fu-
bini’s theorem, for any ξ ∈ D(A∗) we have

∫ t
0
〈a(t− τ)WΨ(τ), A∗ξ〉H dτ

≡
∫ t
0

〈
a(t− τ)

∫ τ
0
S(τ − σ)Ψ(σ) dW (σ), A∗ξ〉H dτ

=
∫ t
0

〈[∫ t
σ

a(t− τ)S(τ − σ) dτ
]
Ψ(σ) dW (σ), A∗ξ

〉
H

=
∫ t
0

〈
A

[ ∫ t−σ
0
a(t− σ − z)S(z) dz

]
Ψ(σ) dW (σ), ξ

〉
H

.

Next, using definition of convolution and the resolvent equation (1.3), as
A(a � S)(t− σ)x = (S(t− σ)− I)x, for x ∈ H , we can write
∫ t
0
〈a(t− τ)WΨ(τ), A∗ξ〉H dτ

=
〈∫ t
0
A[(a � S)(t− σ)]Ψ(σ) dW (σ), ξ

〉
H

=
〈∫ t
0
[S(t− σ)− I]Ψ(σ) dW (σ), ξ

〉
H

=
〈∫ t
0
S(t− σ)Ψ(σ) dW (σ), ξ

〉
H

−
〈∫ t
0
Ψ(σ) dW (σ), ξ

〉
H

.

Hence, we obtained the following equation

〈WΨ(t), ξ〉H =
∫ t
0
〈a(t− τ)WΨ(τ), A∗ξ〉Hdτ +

∫ t
0
〈ξ,Ψ(τ) dW (τ)〉H

for any ξ ∈ D(A∗). �
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Corollary 3.10. Let Volterra assumptions hold with a bounded operator A.
If Ψ belongs to N 2(0, T ;L02) then

(3.19) WΨ(t) =
∫ t
0
a(t− τ)AWΨ(τ) dτ +

∫ t
0
Ψ(τ) dW (τ), P -a.s.

Comment. The formula (3.19) says that the convolution WΨ is a strong
solution to (3.1) if the operator A is bounded.

The below theorem is a consequence of the results obtained up to now.

Theorem 3.11. Suppose that (VA) and (PA) hold. Then a strong solution
(if exists) is always a weak solution of (3.1). If, additionally, assumptions of
Proposition 3.8 are satisfied, a weak solution is a mild solution to the Volterra
equation (3.1). Conversely, under conditions of Proposition 3.9, a mild solution
X is also a weak solution to (3.1).

Now, we provide two estimates for stochastic convolution (3.5).

Theorem 3.12. If Ψ ∈ N 2(0, T ;L02) then the following estimate holds

(3.20) sup
t≤T

E (|WΨ(t)|H) ≤ CMT E

(∫ T
0
||Ψ(t)||2L02 dt

)1/2
,

where C is a constant and MT = supt≤T ||S(t)||.
Comment. The estimate (3.20) seems to be rather coarse. It comes directly

from the definition of stochastic integral. Since (3.20) reduces to the Davis
inequality for martingales if S( · ) = I, the constant C appears on the right hand
side. Unfortunately, we can not use more refined tools, for instance Itô formula
(see e.g. [76] for Tubaro’s estimate), because the process WΨ is not enough
regular.

The next result is a consequence of Theorem 3.12.

Theorem 3.13. Assume that Ψ ∈ N 2(0, T ;L02). Then
sup
t≤T

E (|WΨ(t)|H) ≤ C̃(T ) ||Ψ||N 2(0,T ;L02),

where a constant C̃(T ) depends on T .

Proof. From (3.5) and property of stochastic integral, writing out the Hil-
bert–Schmidt norm, we obtain

E (|WΨ(t)|H) =E

(∣∣∣∣
∫ t
0
S(t− τ)Ψ(τ) dW (τ)

∣∣∣∣
H

)

≤C E

(∫ t
0
||S(t− τ)Ψ(τ)||2L02 dτ

)1/2
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≤C E

(∫ t
0
||S(t− τ)||2 ||Ψ(τ)||2L02 dτ

)1/2

≤CMTE

(∫ t
0
||Ψ(τ)||2L02 dτ

)1/2

≤CMT
(

E

∫ t
0
||Ψ(τ)||2L02 dτ

)1/2
≤ C̃(T ) ||Ψ||N 2(0,T ;L02),

where MT is as above and C̃(T ) = CMT . �

3.2. Existence of strong solution

In this section W is a cylindrical Wiener process, that is, TrQ = ∞ and
the spaces U0, L02, N 2(0, T ;L02) are the same like previously (see definitions in
Chapter 2). The results from this section originate from [51] and are not yet
published.
Let us recall the stochastic convolution introduced in (3.5)

WΨ(t) :=
∫ t
0
S(t− τ)Ψ(τ) dW (τ),

where Ψ belongs to the space N 2(0, T ;L02). In consequence, because resolvent
operators S(t), t ≥ 0, are bounded, then S(t− · )Ψ( · ) ∈ N 2(0, T ;L02), too.
In the sequel, by AΦ(t), t ≥ 0, we will denote the composition of the operators

Φ(t) and A.
We will use the following well-known result, where the operator A is, as

previously, a closed linear operator with the dense domain D(A) equipped with
the graph norm | · |D(A) and Φ(t), t ∈ [0, T ] is an L2(U0, H)-predictable process.
Proposition 3.14 (see e.g. [23, Proposition 4.15]). If Φ(t)(U0) ⊂ D(A),

P -a.s. for all t ∈ [0, T ] and

P

(∫ T
0
||Φ(t)||2L02 dt <∞

)
= 1, P

(∫ T
0
||AΦ(t)||2L02 dt <∞

)
= 1,

then

P

(∫ T
0
Φ(t) dW (t) ∈ D(A)

)
= 1

and A
∫ T
0
Φ(t) dW (t) =

∫ T
0
AΦ(t) dW (t), P -a.s.

Let us recall assumptions of approximation theorems (Theorems 1.19 and
1.20) formulated for Hilbert space H :

(AS1) The operator A is the generator of a C0-semigroup in H and the kernel
function a(t) is completely positive.
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(AS2) A generates an exponentialy bounded cosine family in H and the func-
tion a(t) is completely positive (or fulfills one of two other cases listed
in Remark (a) on page 22).

Lemma 3.15. Let assumptions (VA) be satisfied. Suppose (AS1) or (AS2)
hold. If Ψ and AΨ belong to N 2(0, T ;L02) and in addition Ψ(t)(U0) ⊂ D(A),
P -a.s., then the following equality holds

(3.21) WΨ(t) =
∫ t
0
a(t− τ)AWΨ(τ) dτ +

∫ t
0
Ψ(τ) dW (τ), P -a.s.

Comment. Let us emphasize that assumptions concerning the operators
Ψ(t), t ≥ 0, particularly requirement that Ψ(t)(U0) ⊂ D(A), P -a.s., are the
same like in semigroup case, see e.g. [23, Proposition 6.4].

Proof. Because formula (3.19) holds for any bounded operator, then it holds
for the Yosida approximation An of the operator A, too, that is

WΨn (t) =
∫ t
0
a(t− τ)AnWΨn (τ) dτ +

∫ t
0
Ψ(τ) dW (τ),

where

WΨn (t) :=
∫ t
0
Sn(t− τ)Ψ(τ) dW (τ)

and

AnW
Ψ
n (t) = An

∫ t
0
Sn(t− τ)Ψ(τ) dW (τ).

Recall that by assumption Ψ ∈ N 2(0, T ;L02). Because the operators Sn(t)
are deterministic and bounded for any t ∈ [0, T ], n ∈ N, then the operators
Sn(t− · )Ψ( · ) belong to N 2(0, T ;L02), too. In consequence, the difference
(3.22) Φn(t− · ) := Sn(t− · )Ψ( · )− S(t− · )Ψ( · )
belongs to N 2(0, T ;L02) for any t ∈ [0, T ] and n ∈ N. This means that

(3.23) E

(∫ t
0
||Φn(t− τ)||2L02 dτ

)
<∞

for any t ∈ [0, T ].
Let us recall that the cylindrical Wiener process W (t), t ≥ 0, can be written

in the form

(3.24) W (t) =
∞∑
j=1

gj βj(t),

where {gj} is an orthonormal basis of U0 and βj(t) are independent real Wiener
processes. From (3.24) we have

(3.25)
∫ t
0
Φn(t− τ) dW (τ) =

∞∑
j=1

∫ t
0
Φn(t− τ) gj dβj(τ).
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From (3.23), we obtain

(3.26) E

[ ∫ t
0

( ∞∑
j=1

|Φn(t− τ) gj |2H
)
dτ

]
<∞

for any t ∈ [0, T ]. Next, from (3.25), properties of stochastic integral and (3.26)
we obtain for any t ∈ [0, T ],

E

∣∣∣∣
∫ t
0
Φn(t− τ) dW (τ)

∣∣∣∣
2

H

= E

∣∣∣∣
∞∑
j=1

∫ t
0
Φn(t− τ) gj dβj(τ)

∣∣∣∣
2

H

≤ E

[ ∞∑
j=1

∫ t
0
|Φn(t− τ) gj |2H dτ

]
≤ E

[ ∞∑
j=1

∫ T
0
|Φn(T − τ) gj |2H dτ

]
<∞.

By Theorem 1.19 or 1.20, the convergence (1.14) of resolvent families is
uniform in t on every compact subset of R+, particularly on the interval [0, T ].
Now, we use (1.14) in the Hilbert space H , so (1.14) holds for every x ∈ H .
Then, for any fixed j,

(3.27)
∫ T
0
|[Sn(T − τ) − S(T − τ)]Ψ(τ)gj |2H dτ → 0

for n→∞. Summing up our considerations, particularly using (3.26) and (3.27)
we can write

sup
t∈[0,T ]

E

∣∣∣∣
∫ t
0
Φn(t− τ) dW (τ)

∣∣∣∣
2

H

≡ sup
t∈[0,T ]

E

∣∣∣∣
∫ t
0
[Sn(t− τ)− S(t− τ)]Ψ(τ) dW (τ)

∣∣∣∣
2

H

≤ E

[ ∞∑
j=1

∫ T
0
|[Sn(T − τ)− S(T − τ)]Ψ(τ) gj |2H dτ

]
→ 0

as n→∞. Hence, by the Lebesgue dominated convergence theorem
(3.28) lim

n→∞ supt∈[0,T ]
E
∣∣WΨn (t)−WΨ(t)∣∣2H = 0.

By assumption, Ψ(t)(U0) ⊂ D(A), P -a.s. Because S(t)(D(A)) ⊂ D(A),
then S(t − τ)Ψ(τ)(U0) ⊂ D(A), P -a.s., for any τ ∈ [0, t], t ≥ 0. Hence, by
Proposition 3.14, P (WΨ(t) ∈ D(A)) = 1.
For any n ∈ N, t ≥ 0, we have

|AnWΨn (t)−AWΨ(t)|H ≤ Nn,1(t) +Nn,2(t),
where

Nn,1(t) := |AnWΨn (t)−AnWΨ(t)|H ,
Nn,2(t) := |AnWΨ(t)−AWΨ(t)|H = |(An −A)WΨ(t)|H .
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Then

(3.29) |AnWΨn (t)−AWΨ(t)|2H ≤ N2n,1(t) + 2Nn,1(t)Nn,2(t) +N2n,2(t)
< 3[N2n,1(t) +N

2
n,2(t)].

Let us study the term Nn,1(t). Note that the unbounded operator A gen-
erates a semigroup. Then we have for the Yosida approximation the following
properties:

(3.30) Anx = JnAx for any x ∈ D(A), sup
n
||Jn|| <∞

where Anx = nAR(n,A)x = AJnx for any x ∈ H , with Jn := nR(n,A), More-
over (see [27, Chapter II, Lemma 3.4]):

(3.31)
lim
n→∞Jnx = x for any x ∈ H,
lim
n→∞Anx = Ax for any x ∈ D(A).

By Proposition 1.21, ASn(t)x = Sn(t)Ax for every n sufficiently large and for
all x ∈ D(A). So, by Propositions 1.21 and 3.14 and the closedness of A we can
write

AnW
Ψ
n (t) ≡ An

∫ t
0
Sn(t− τ)Ψ(τ) dW (τ)

= Jn

∫ t
0
ASn(t− τ)Ψ(τ) dW (τ) = Jn

[ ∫ t
0
Sn(t− τ)AΨ(τ) dW (τ)

]
.

Analogously,

AnW
Ψ(t) = Jn

[ ∫ t
0
S(t− τ)AΨ(τ) dW (τ)

]
.

By (3.30) we have

Nn,1(t) =

∣∣∣∣Jn
∫ t
0
[Sn(t− τ) − S(t− τ)]AΨ(τ) dW (τ)

∣∣∣∣
H

≤
∣∣∣∣
∫ t
0
[Sn(t− τ) − S(t− τ)]AΨ(τ) dW (τ)

∣∣∣∣
H

.

Since from assumptions AΨ ∈ N 2(0, T ;L02), then the term apearing above,
[Sn(t−τ)−S(t−τ)]AΨ(τ) may be treated like the difference Φn defined by (3.22).
Hence, from (3.30) and (3.28), for the first term of the right hand side of

(3.29) we have

lim
n→∞ supt∈[0,T ]

E (N2n,1(t))→ 0.
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For the second term of (3.29), that is N2n,2(t), we can follow the same steps as
above for proving (3.28).

Nn,2(t) = |AnWΨ(t)−AWΨ(t)|H
≡
∣∣∣∣An
∫ t
0
S(t− τ)Ψ(τ) dW (τ) −A

∫ t
0
S(t− τ)Ψ(τ) dW (τ)

∣∣∣∣
H

=

∣∣∣∣
∫ t
0
[An −A]S(t− τ)Ψ(τ) dW (τ)

∣∣∣∣
H

.

From assumptions, Ψ, AΨ ∈ N 2(0, T ;L02). Because An, S(t), t ≥ 0 are
bounded, then AnS(t− · )Ψ( · ) ∈ N 2(0, T ;L02), too.
Analogously, AS(t− · )Ψ( · ) = S(t− · )AΨ( · ) ∈ N 2(0, T ;L02).
Let us note that the set of all Hilbert–Schmidt operators acting from one sep-

arable Hilbert space into another one, equipped with the operator norm defined
on page 26, is a separable Hilbert space. Particularly, sum of two Hilbert–
Schmidt operators is a Hilbert–Schmidt operator, see e.g. [4]. Therefore, we
can deduce that the operator (An − A) S(t − · )Ψ( · ) ∈ N 2(0, T ;L02), for any
t ∈ [0, T ]. Hence, the term [An−A]S(t−τ)Ψ(τ) may be treated like the difference
Φn defined by (3.22). So, for any t ∈ [0, T ], we obtain

E

(
N2n,2(t)

)
= E

(∫ t
0

[ ∞∑
j=1

∣∣∣∣[An −A]S(t− τ)Ψ(τ) gj
∣∣∣∣
2

H

]
dτ

)

≤ E

( ∞∑
j=1

∫ T
0

∣∣∣∣[An −A]S(t− τ)Ψ(τ) gj
∣∣∣∣
2

H

dτ

)
<∞.

By the convergence (3.31), for any fixed j,

∫ T
0
|[An −A]S(t− τ)Ψ(τ) gj |2H dτ → 0 for n→∞.

Summing up our considerations, we have

lim
n→∞ supt∈[0,T ]

E (N2n,2(t))→ 0.

So, we can deduce that

lim
n→∞ sup

t∈[0,T ]
E |AnWΨn (t)−AWΨ(t)|2H = 0,

and then (3.21) holds. �

These considerations give rise to the following result.
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Theorem 3.16. Suppose that assumptions of Lemma 3.15 hold. Then the
equation (3.1) has a strong solution. Precisely, the convolution WΨ defined by
(3.5) is the strong solution to (3.1).

Proof. Since Proposition 3.6 and Lemma 3.15 hold, we have to show only
the condition (3.2). Let us note that by Proposition 3.7, the convolution WΨ(t)
has integrable trajectories. Because the closed unbounded linear operator A
becomes bounded on (D(A), | · |D(A)), see e.g. [78], we obtain that AWΨ( · ) ∈
L1([0, T ];H), P -a.s. Next, properties of convolution provide integrability of the
function a(T − · )AWΨ( · ), what finishes the proof. �

3.3. Fractional Volterra equations

Assume, as previously, that H is a separable Hilbert space with a norm | · |H
and A is a closed linear operator with dense domain D(A) ⊂ H equipped with
the graph norm | · |D(A). The purpose of this section is to study the existence of
strong solutions for a class of stochastic Volterra equations of the form

(3.32) X(t) = X(0) +
∫ t
0
aα(t− τ)AX(τ) dτ +

∫ t
0
Ψ(τ) dW (τ), t ≥ 0,

where aα(t) := tα−1/Γ(α), α > 0, Γ(α) is the gamma function and W , Ψ are ap-
propriate stochastic processes. There are several situations that can be modeled
by stochastic Volterra equations, see e.g. [40, Section 3.4] and references therein.
A similar equation was studied in [12], too. Here we are interested in the study
of strong solutions when equation (3.32) is driven by a cylindrical Wiener pro-
cess W . We give sufficient conditions for stochastic convolution to be a strong
solution to (3.32).
The equation (3.32) is a stochastic version of the deterministic Volterra equa-

tion

(3.33) u(t) =
∫ t
0
aα(t− τ)Au(τ) dτ + f(t),

where f is an H-valued function.
In the case when aα(t) is a completely positive function, sufficient conditions

for existence of strong solutions for (3.32) may be obtained like in Section 3.2,
that is, using a method which involves the use of a resolvent family associated
to the deterministic version of equation (3.32).
However, there are two kinds of problems that arise when we study (3.32).

On the one hand, the kernels tα−1/Γ(α) are α-regular and (απ/2)-sectorial but
not completely positive functions for α > 1, so e.g. the results in [51] can not be
used directly for α > 1. On the other hand, for α ∈ (0, 1), we have a singularity
of the kernel in t = 0. This fact strongly suggests the use of α-times resolvent
families associated to equation (3.33). These new tools appeared in [5] as well as
their relationship with fractional derivatives. For convenience of the reader, we
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provide below the main results on α-times resolvent families to be used in this
paper.
Our second main ingredient to obtain strong solutions of (3.32) relies on

approximation of α-times resolvent families. This kind of result was very re-
cently formulated by Li and Zheng [60]. It enables us to prove a key result
on convergence of α-times resolvent families (see Theorem 3.20 below). Then
we can follow the methods employed in [51] to obtain existence of solutions —
particularly strong — for the stochastic equation (3.32).

3.3.1. Convergence of α-times resolvent families. In this section we
formulate the main deterministic results on convergence of resolvents.
By Sα(t), t ≥ 0, we denote the family of α-times resolvent families corre-

sponding to the Volterra equation (3.33), if it exists, and defined analogously
like resolvent family, see Definition 1.1.

Definition 3.17 (see [5]). A family (Sα(t))t≥0 of bounded linear operators
in a Banach space B is called α-times resolvent family for (3.33) if the following
conditions are satisfied:

(a) Sα(t) is strongly continuous on R+ and Sα(0) = I;
(b) Sα(t) commutes with the operator A, that is, Sα(t)(D(A)) ⊂ D(A) and
ASα(t)x = Sα(t)Ax for all x ∈ D(A) and t ≥ 0;

(c) the following resolvent equation holds

(3.34) Sα(t)x = x+
∫ t
0
aα(t− τ)ASα(τ)xdτ

for all x ∈ D(A), t ≥ 0.

Necessary and sufficient conditions for existence of the α-times resolvent
family have been studied in [5]. Observe that the α-times resolvent family cor-
responds to a C0-semigroup in case α = 1 and a cosine family in case α = 2. In
consequence, when 1 < α < 2 such resolvent families interpolate C0-semigroups
and cosine functions. In particular, for A = ∆, the integrodifferential equation
corresponding to such resolvent family interpolates the heat equation and the
wave equation, see [32] or [75].

Definition 3.18. An α-times resolvent family (Sα(t))t≥0 is called exponen-
tially bounded if there are constants M ≥ 1 and ω ≥ 0 such that
(3.35) ‖Sα(t)‖ ≤Meωt, t ≥ 0.

If there is the α-times resolvent family (Sα(t))t≥0 for A and satisfying (3.35),
we write A ∈ Cα(M,ω). Also, set

Cα(ω) :=
⋃
M≥1
Cα(M,ω) and Cα :=

⋃
ω≥0
Cα(ω).
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Remark. It was proved by Bazhlekova [5, Theorem 2.6] that if A ∈ Cα for
some α > 2, then A is bounded.

The following subordination principle is very important in the theory of α-
times resolvent families (see [5, Theorem 3.1]).

Theorem 3.19. Let 0 < α < β ≤ 2, γ = α/β, ω ≥ 0. If A ∈ Cβ(ω) then
A ∈ Cα(ω1/γ) and the following representation holds

(3.36) Sα(t)x =
∫ ∞
0
ϕt,γ(s)Sβ(s)xds, t > 0,

where ϕt,γ(s) := t−γΦγ(st−γ) and Φγ(z) is the Wright function defined as

(3.37) Φγ(z) :=
∞∑
n=0

(−z)n
n! Γ(−γn+ 1− γ) , 0 < γ < 1.

Remarks. (a) We recall that the Laplace transform of the Wright func-
tion corresponds to Eγ(−z) where Eγ denotes the Mittag–Leffler function. In
particular, Φγ(z) is a probability density function.
(b) Also we recall from [5, (2.9)] that the continuity in t ≥ 0 of the Mittag–

Leffler function together with the asymptotic behavior of it, imply that for ω ≥ 0
there exists a constant C > 0 such that

(3.38) Eα(ωtα) ≤ Ceω1/αt, t ≥ 0, α ∈ (0, 2).
As we have already written, in this paper the results concerning convergence

of α-times resolvent families in a Banach space B will play the key role. Using
a very recent result due to Li and Zheng [60] we are able to prove the following
theorem.

Theorem 3.20. Let A be the generator of a C0-semigroup (T (t))t≥0 in a Ba-
nach space B such that

(3.39) ‖T (t)‖ ≤Meωt, t ≥ 0.
Then, for each 0 < α < 1 we have A ∈ Cα(M,ω1/α). Moreover, there exist
bounded operators An and α-times resolvent families Sα,n(t) for An satisfying
||Sα,n(t)|| ≤MCe(2ω)1/αt, for all t ≥ 0, n ∈ N and

(3.40) Sα,n(t)x→ Sα(t)x as n→∞
for all x ∈ B, t ≥ 0. Moreover, the convergence is uniform in t on every compact
subset of R+.

Proof. Since A is the generator of a C0 semigroup satisfying (3.39), we have
A ∈ C1(ω). Hence, the first assertion follows directly from Theorem 3.19, that
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is, for each 0 < α < 1 there is an α-times resolvent family (Sα(t))t≥0 for A given
by

(3.41) Sα(t)x =
∫ ∞
0
ϕt,α(s)T (s)xds, t > 0.

Since A generates a C0-semigroup, the resolvent set ρ(A) of A contains the
ray [w,∞) and

||R(λ,A)k|| ≤ M

(λ− w)k for λ > w, k ∈ N.

Define

(3.42) An := nAR(n,A) = n2R(n,A)− nI, n > w,
the Yosida approximation of A. Then

||etAn || = e−nt||en2R(n,A)t|| ≤ e−nt
∞∑
k=0

n2ktk

k!
||R(n,A)k||

≤Me(−n+n2/(n−w))t =Menwt/(n−w).
Hence, for n > 2w we obtain

(3.43) ||eAnt|| ≤Me2wt.
Next, since each An is bounded, it follows also from Theorem 3.19 that for each
0 < α < 1 there exists an α-times resolvent family (Sα,n(t))t≥0 for An given as

(3.44) Sα,n(t) =
∫ ∞
0
ϕt,α(s)esAn ds, t > 0.

By (3.43) and Remark (a), page 54, it follows that

‖Sα,n(t)‖ ≤
∫ ∞
0
ϕt,α(s)‖esAn‖ ds ≤M

∫ ∞
0
ϕt,α(s)e2ωs ds

=M
∫ ∞
0
Φα(τ)e2ωt

ατ dτ =MEα(2ωtα), t ≥ 0.

This together with Remark (b), page 54 gives

(3.45) ‖Sα,n(t)‖ ≤MCe(2ω)1/αt, t ≥ 0.
Now, we recall the fact that R(λ,An)x → R(λ,A)x as n → ∞ for all λ

sufficiently large (see e.g. [65, Lemma 7.3]), so we can conclude from [60, Theo-
rem 4.2] that

(3.46) Sα,n(t)x→ Sα(t)x as n→∞
for all x ∈ B, uniformly for t on every compact subset of R+. �
An analogous result can be proved in the case when A is the generator of

a strongly continuous cosine family.
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Theorem 3.21. Let A be the generator of a C0-cosine family (T (t))t≥0 in
a Banach space B. Then, for each 0 < α < 2 we have A ∈ Cα(M,ω2/α). More-
over, there exist bounded operators An and α-times resolvent families Sα,n(t) for
An satisfying ||Sα,n(t)|| ≤MCe(2ω)1/αt, for all t ≥ 0, n ∈ N and

Sα,n(t)x→ Sα(t)x as n→∞
for all x ∈ B, t ≥ 0. Moreover, the convergence is uniform in t on every compact
subset of R+.

Let us note that formulae (3.41) and (3.44) still hold when A is the C0-cosine
family and 0 < α < 2.
In the following, we denote by Σθ(ω) the open sector with vertex ω ∈ R and

opening angle 2θ in the complex plane which is symmetric with respect to the
real positive axis, i.e.

Σθ(ω) := {λ ∈ C : | arg(λ− ω)| < θ}.
We recall from [5, Definition 2.13] that an α-times resolvent family Sα(t) is

called analytic if Sα(t) admits an analytic extension to a sector Σθ0 for some
θ0 ∈ (0, π/2]. An α-times analytic resolvent family is said to be of analyticity
type (θ0, ω0) if for each θ < θ0 and ω > ω0 there is M =M(θ, ω) such that

‖Sα(t)‖ ≤MeωRet, t ∈ Σθ.
The set of all operators A ∈ Cα generating α-times analytic resolvent families
Sα(t) of type (θ0, ω0) is denoted by Aα(θ0, ω0). In addition, denote
Aα(θ0) :=

⋃
{Aα(θ0, ω0);ω0 ∈ R+}, Aα :=

⋃
{Aα(θ0); θ0 ∈ (0, π/2]}.

For α = 1 we obtain the set of all generators of analytic semigroups.

Remark. We note that the spatial regularity condition R(Sα(t)) ⊂ D(A)
for all t > 0 is satisfied by α-times resolvent families whose generator A belongs
to the set Aα(θ0, ω0) where 0 < α < 2 (see [5, Proposition 2.15]). In particular,
setting ω0 = 0 we have that A ∈ Aα(θ0, 0) if and only if −A is a positive operator
with spectral angle less or equal to π − α(π/2 + θ). Note that such condition is
also equivalent to the following

(3.47) Σα(π/2+θ) ⊂ ρ(A) and ‖λ(λI −A)−1‖ ≤M, λ ∈ Σα(π/2+θ).

The above considerations give us the following remarkable corollary.

Corollary 3.22. Suppose A generates an analytic semigroup of angle π/2
and α ∈ (0, 1). Then A generates an α-times analytic resolvent family.
Proof. Since A generates an analytic semigroup of angle π/2 we have

‖λ(λI −A)−1‖ ≤M, λ ∈ Σπ−ε.
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Then the condition (3.47) (see also [5, Corollary 2.16]) implies

A ∈ Aα(min{(2− α)π/2α, π/2}, 0), α ∈ (0, 2),

that is A generates an α-times analytic resolvent family. �

In the sequel we will use the following assumptions concerning Volterra equa-
tions:

(A1) A is the generator of C0-semigroup in H and α ∈ (0, 1); or
(A2) A is the generator of a strongly continuous cosine family in H and

α ∈ (0, 2).
Observe that (A2) implies (A1) but not vice versa.

3.3.2. Strong solution. As previously H and U are separable Hilbert
spaces and W is a cylindrical Wiener process defined on a stochastic basis
(Ω,F , (F)t≥0, P ), with the positive symmetric covariance operator Q ∈ L(U),
TrQ =∞. The spaces U0, L02 = L2(U0, H) and N (0, T ;L02) are the same like in
previous sections.
For the reader’s convenience we formulate definitions of solutions to the equa-

tion (3.32). We define solutions to the equation (3.32) analogously like in Sec-
tion 3.1.

Definition 3.23. Assume that (PA) hold. An H-valued predictable process
X(t), t ∈ [0, T ], is said to be a strong solution to (3.32), if X has a version such
that P (X(t) ∈ D(A)) = 1, for almost all t ∈ [0, T ]; for any t ∈ [0, T ]

(3.48)
∫ t
0
|aα(t− τ)AX(τ)|H dτ <∞, P -a.s., α > 0,

and for any t ∈ [0, T ] the equation (3.32) holds P -a.s.
Definition 3.24. Let (PA) hold. An H-valued predictable process X(t),

t ∈ [0, T ], is said to be a weak solution to (3.32), if

P

(∫ t
0
|aα(t− τ)X(τ)|H dτ <∞

)
= 1, α > 0,

and if for all ξ ∈ D(A∗) and all t ∈ [0, T ] the following equation holds

〈X(t), ξ〉H = 〈X(0), ξ〉H +
〈∫ t
0
aα(t− τ)X(τ) dτ,A∗ξ

〉
H

+
〈∫ t
0
Ψ(τ) dW (τ), ξ

〉
H

, P -a.s.
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Definition 3.25. Assume that X(0) is F0-measurable random variable. An
H-valued predictable process X(t), t ∈ [0, T ], is said to be a mild solution to the
stochastic Volterra equation (3.32), if

E

(∫ t
0
||Sα(t− τ)Ψ(τ)||2L02 dτ

)
<∞, α > 0,

for t ≤ T and, for arbitrary t ∈ [0, T ],

(3.49) X(t) = Sα(t)X(0) +
∫ t
0
Sα(t− τ)Ψ(τ) dW (τ), P -a.s.

where Sα(t) is the α-times resolvent family.

We define the stochastic convolution

(3.50) WΨα (t) :=
∫ t
0
Sα(t− τ)Ψ(τ) dW (τ),

where Ψ ∈ N 2(0, T ;L02). Because α-times resolvent families Sα(t), t ≥ 0, are
bounded, then Sα(t− · )Ψ( · ) ∈ N 2(0, T ;L02), too.
Analogously like in Section 3.1, we can formulate the following results.

Proposition 3.26. Assume that Sα(t), t ≥ 0, are the resolvent operators to
(3.33). Then, for any process Ψ ∈ N 2(0, T ;L02), the convolution WΨα (t), t ≥ 0,
α > 0, given by (3.5) has a predictable version. Additionally, the process WΨα (t),
t ≥ 0, α > 0, has square integrable trajectories.
Under some conditions every mild solution to (3.32) is a weak solution to

(3.32).

Proposition 3.27. If Ψ ∈ N 2(0, T ;L02), then the stochastic convolution WΨα
fulfills the equation

(3.51) 〈WΨα (t), ξ〉H =
∫ t
0
〈aα(t− τ)WΨα (τ), A∗ξ〉H +

∫ t
0
〈ξ,Ψ(τ)dW (τ)〉H ,

α > 0 for any t ∈ [0, T ] and ξ ∈ D(A∗).
Immediately from the equation (3.51) we deduce the following result.

Corollary 3.28. If A is a bounded operator and Ψ ∈ N 2(0, T ;L02), then the
following equality holds

(3.52) WΨα (t) =
∫ t
0
aα(t− τ)AWΨα (τ) dτ +

∫ t
0
Ψ(τ) dW (τ),

for t ∈ [0, T ], α > 0.
Remark. The formula (3.52) says that the convolutionWΨα (t), t ≥ 0, α > 0,

is a strong solution to (3.32) if the operator A is bounded.

We can formulate following result which plays a key role in this subsection.
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Lemma 3.29. Let assumptions (VA) be satisfied. Suppose that (A1) or (A2)
holds. If Ψ and AΨ belong to N 2(0, T ;L02) and in addition Ψ(t)(U0) ⊂ D(A)
P -a.s., then the following equality holds

(3.53) WΨα (t) =
∫ t
0
aα(t− τ)AWΨα (τ) dτ +

∫ t
0
Ψ(τ) dW (τ), P -a.s.

Remark. Let us emphasize that in (A1), α ∈ (0, 1) and in (A2), α ∈ (0, 2).
Although the proof is analogous to that given in Section 3.1, we formulate it

for the reader’s convenience.

Proof. Because formula (3.52) holds for any bounded operator, then it holds
for the Yosida approximation An of the operator A, too, that is,

WΨα,n(t) =
∫ t
0
aα(t− τ)AnWΨα,n(τ) dτ +

∫ t
0
Ψ(τ) dW (τ),

where

WΨα,n(t) :=
∫ t
0
Sα,n(t− τ)Ψ(τ) dW (τ)

and

AnW
Ψ
α,n(t) = An

∫ t
0
Sα,n(t− τ)Ψ(τ) dW (τ).

By assumption Ψ ∈ N 2(0, T ;L02). Because the operators Sα,n(t) are deter-
ministic and bounded for any t ∈ [0, T ], α > 0, n ∈ N, then the operators
Sα,n(t− · )Ψ( · ) belong to N 2(0, T ;L02), too. In consequence, the difference

(3.54) Φα,n(t− · ) := Sα,n(t− · )Ψ( · )− Sα(t− · )Ψ( · )

belongs to N 2(0, T ;L02) for any t ∈ [0, T ], α > 0 and n ∈ N. This means that

(3.55) E

(∫ t
0
||Φα,n(t− τ)||2L02 dτ

)
<∞

for any t ∈ [0, T ].
The cylindrical Wiener process W (t), t ≥ 0, can be expanded in the series

(3.56) W (t) =
∞∑
j=1

gj βj(t),

where {gj} is an orthonormal basis of U0 and βj(t) are independent real Wiener
processes. From (3.56) we have

(3.57)
∫ t
0
Φα,n(t− τ) dW (τ) =

∞∑
j=1

∫ t
0
Φα,n(t− τ) gj dβj(τ).
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In consequence, from (3.55)

(3.58) E

[ ∫ t
0

( ∞∑
j=1

|Φα,n(t− τ) gj |2H
)
dτ

]
<∞

for any t ∈ [0, T ]. Next, from (3.57), properties of stochastic integral and (3.58)
we obtain for any t ∈ [0, T ],

E

∣∣∣∣
∫ t
0
Φα,n(t− τ) dW (τ)

∣∣∣∣
2

H

= E

∣∣∣∣
∞∑
j=1

∫ t
0
Φα,n(t− τ) gj dβj(τ)

∣∣∣∣
2

H

≤ E

[ ∞∑
j=1

∫ t
0
|Φα,n(t− τ) gj |2H dτ

]
≤ E

[ ∞∑
j=1

∫ T
0
|Φα,n(T − τ) gj |2H dτ

]
<∞.

By Theorem 3.20 or Theorem 3.21, the convergence of α-times resolvent
families is uniform in t on the interval [0, T ]. So, for any fixed α and j,

(3.59)
∫ T
0
|[Sα,n(T − τ)− Sα(T − τ)] Ψ(τ) gj |2Hdτ → 0 for n→∞.

Then, using (3.58) and (3.59) we can write

sup
t∈[0,T ]

E

∣∣∣∣
∫ t
0
Φα,n(t− τ) dW (τ)

∣∣∣∣
2

H

≡ sup
t∈[0,T ]

E

∣∣∣∣
∫ t
0
[Sα,n(t− τ)− Sα(t− τ)]Ψ(τ) dW (τ)

∣∣∣∣
2

H

≤E

[ ∞∑
j=1

∫ T
0
|[Sα,n(T − τ)− Sα(T − τ)]Ψ(τ) gj |2H dτ

]
→ 0

as n→∞ for any fixed α > 0.
Hence, by the Lebesgue dominated convergence theorem we obtained

(3.60) lim
n→∞ supt∈[0,T ]

E |WΨα,n(t)−WΨα (t)|2H = 0.

By Proposition 3.14, P (WΨα (t) ∈ D(A)) = 1.
For any n ∈ N, α > 0, t ≥ 0, we have

|AnWΨα,n(t)−AWΨα (t)|H ≤ Nn,1(t) +Nn,2(t),
where

Nn,1(t) := |AnWΨα,n(t)−AnWΨα (t)|H ,
Nn,2(t) := |AnWΨα (t)−AWΨα (t)|H = |(An −A)WΨα (t)|H .

Then

(3.61) |AnWΨα,n(t)−AWΨα (t)|2H < 3[N2n,1(t) +N2n,2(t)].
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Let us study the term Nn,1(t). Note that, either in cases (A1) or (A2) the
unbounded operator A generates a semigroup. Then we have from the Yosida
approximation the following properties:

(3.62) Anx = JnAx for any x ∈ D(A), sup
n
||Jn|| <∞,

where Anx = nAR(n,A)x = AJnx for any x ∈ H with Jn := nR(n,A). More-
over (see [27, Chapter II, Lemma 3.4]):

lim
n→∞nR(n,A)x = x for any x ∈ H,(3.63)

lim
n→∞Anx = Ax for any x ∈ D(A).(3.64)

Note that ASα,n(t)x = Sα,n(t)Ax for all x ∈ D(A), since etAn commutes with
A and A is closed (see (3.44)). So, by Proposition 3.14 and again the closedness
of A, we can write

AnWα,n(t) ≡An
∫ t
0
Sα,n(t− τ)Ψ(τ) dW (τ)

=nR(n,A)
[∫ t
0
Sα,n(t− τ)AΨ(τ) dW (τ)

]
.

Analogously,

AnWα(t) = nR(n,A)
[ ∫ t
0
Sα(t− τ)AΨ(τ) dW (τ)

]
.

By (3.63) we have

Nn,1(t) =

∣∣∣∣Jn
∫ t
0
[Sα,n(t− τ)− Sα(t− τ)]AΨ(τ) dW (τ)

∣∣∣∣
H

≤
∣∣∣∣
∫ t
0
[Sα,n(t− τ) − Sα(t− τ)]AΨ(τ) dW (τ)

∣∣∣∣
H

.

From assumptions, AΨ ∈ N 2(0, T ;L02). Then [Sα,n(t − τ) − Sα(t − τ)]AΨ(τ)
may be estimated exactly like the difference Φα,n defined by (3.54).
Hence, from (3.63) and (3.60) for the first term of the right hand side of

(3.61) we obtain
lim
n→∞ supt∈[0,T ]

E (N2n,1(t))→ 0.

For the second and third terms of (3.61) we can follow the same steps as above
for proving (3.60). We have to use the properties of Yosida approximation,
particularly the convergence (3.64). So, we can deduce that

lim
n→∞ supt∈[0,T ]

E |AnWΨα,n(t)−AWΨα (t)|2H = 0,

what gives (3.5). �
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Now, we are able to formulate the main result of this section.

Theorem 3.30. Suppose that assumptions of Lemma 3.29 hold. Then the
equation (3.32) has a strong solution. Precisely, the convolution WΨα defined by
(3.50) is the strong solution to (3.32).

Proof. We have to show only the condition (3.48). The convolution WΨα (t)
has integrable trajectories (see Section 3.1), that is, WΨα ( · ) ∈ L1([0, T ];H),
P -a.s. The closed linear unbounded operator A becomes bounded on (D(A),
| · |D(A)), see [78, Chapter 5]. So, we obtain AWΨα ( · ) ∈ L1([0, T ];H), P -a.s.
Hence, the function aα(T − τ)AWΨα (τ) is integrable with respect to τ , what
finishes the proof. �

The following result is an immediate consequence of Corollary 3.22 and The-
orem 3.30.

Corollary 3.31. Assume that (VA) hold, A generates an analytic semigroup
of angle π/2 and α ∈ (0, 1). If Ψ and AΨ belong to N 2(0, T ;L02) and in addition
Ψ(t)(U0) ⊂ D(A), P -a.s., then the equation (3.32) has a strong solution.

3.4. Examples

In this short section we give several examples fulfilling conditions of theorems
providing existence of strong solutions. The class of such equations depends on
where the operator A is defined, in particular, the domain of A depends on each
considered problem, and also depends on the properties of the kernel function
a(t), t ≥ 0.
Let G be a bounded domain in R

n with smooth boundary ∂G. Consider the
differential operator of order 2m:

(3.65) A(x,D) =
∑
|α|≤2m

bα(x)Dα

where the coefficients bα(x) are sufficiently smooth complex-valued functions of
x in G. The operator A(x,D) is called strongly elliptic if there exists a constant
c > 0 such that

Re(−1)m
∑
|α|=2m

bα(x)ξα ≥ c|ξ|2m

for all x ∈ G and ξ ∈ Rn.
Let A(x,D) be a given strongly elliptic operator on a bounded domain G ⊂

Rn and set D(A) = H2m(G) ∩Hm0 (G). For every u ∈ D(A) define
Au = A(x,D)u.

Then the operator −A is the infinitesimal generator of an analytic semigroup of
operators on H = L2(G) (cf. [65, Theorem 7.2.7]). We note that if the operator
A has constant coefficients, the result remains true for the domain G = Rn.
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The next example is the Laplacian

∆u =
n∑
i=1

∂2u

∂x2i
,

since −∆ is clearly strongly elliptic. It follows that ∆u on D(A) = H2(G) ∩
H10 (G) is the infinitesimal generator of an analytic semigroup on L

2(G).
In particular, by [70, Corollary 2.4] the operator A given by (3.65) gener-

ates an analytic resolvent S(t) whenever a ∈ C(0,∞) ∩ L1(0, 1) is completely
monotonic.
This example fits in our results if a(t) is also completely positive. For ex-

ample: a(t) = tα−1/Γ(α) is both, completely positive and completely monotonic
for 0 < α ≤ 1 (but not for α > 1).
Another class of examples is provided by the following: suppose a ∈ L1loc(R+)

is of subexponential growth and π/2-sectorial, and let A generate a bounded
analytic C0-semigroup in a complex Hilbert space H . Then it follows from [70,
Corollary 3.1] that the Volterra equation of scalar type u = a∗Au+f is parabolic.
If, in addition, a(t) is k-regular for all k ≥ 1 we obtain from [70, Theorem 3.1]
the existence of a resolvent S ∈ Ck−1((0,∞),B(H)) such that R(S(t)) ⊂ D(A)
for t > 0 (see [70, (f), p. 82]).





CHAPTER 4

STOCHASTIC VOLTERRA EQUATIONS
IN SPACES OF DISTRIBUTIONS

In this chapter we study two classes of linear Volterra equations driven by
spatially homogeneous Wiener process. We consider existence of solutions to
these equations in the space of tempered distributions and then derive conditions
under which the solutions are function-valued or even continuous. The conditions
obtained are expressed in terms of spectral measure and the space correlation of
the noise process, as well. Moreover, we give description of asymptotic properties
of solutions.
The chapter is organized as follows. In Section 4.1 we introduce generalized

and classical homogeneous Gaussian random fields basing on [36], [2] and [66].
We recall some facts which connect the generalized random fields with their space
corralations and spectral measures. Moreover, we recall some results used in the
proofs of the main theorems. Section 4.2 originates from [54]. Here we study
regularity of solutions to the equation (4.1) and provide some applications of
these results. Section 4.3 is a natural continuation of Section 4.2. In this section
we give necessary and sufficient conditions for the existence of a limit measure
to the stochastic equation under consideration. Results of Section 4.3 come from
[47]. In Section 4.4 we study an integro-differential stochastic equation with
infinite delay. We provide necessary and sufficient conditions under which weak
solution to that equation takes values in a Sobolev space. Section 4.4 originates
from [49].

4.1. Generalized and classical homogeneous Gaussian random fields

We start from recalling several concepts needed in this chapter. Let S(Rd),
Sc(Rd), denote respectively the spaces of all infinitely differentiable rapidly
decreasing real and complex functions on Rd and S′(Rd), S′c(Rd) denote the
spaces of real and complex, tempered distributions. The value of a distribution
ξ ∈ S′c(Rd) on a test function ψ will be written as 〈ξ, ψ〉. For ψ ∈ S(Rd) we

65



66 Anna Karczewska

set ψ(s)(θ) = ψ(−θ), θ ∈ Rd. Denote by S(s)(Rd) the space of all ψ ∈ S(Rd)
such that ψ = ψ(s), and by S′(s)(R

d) the space of all ξ ∈ S′(Rd) such that
〈ξ, ψ〉 = 〈ξ, ψ(s)〉 for every ψ ∈ S(Rd).
We define the derivative ξ̇ of the distribution ξ ∈ S′(Rd) by the formula

〈ξ̇, ϕ〉 = −〈ξ, ϕ̇〉 for ϕ ∈ S(Rd), see [34].
In the chapter we denote by F the Fourier transform both on Sc(Rd), and

on S′c(R
d). In particular,

Fψ(θ) =
∫

Rd

e−2πi〈θ,η〉ψ(η) dη, ψ ∈ Sc(Rd),

and for the inverse Fourier transform F−1,

F−1ψ(θ) =
∫

Rd

e2πi〈θ,η〉ψ(η) dη, ψ ∈ Sc(Rd).

Moreover, if ξ ∈ S′c(Rd),
〈Fξ, ψ〉 = 〈ξ,F−1ψ〉

for all ψ ∈ Sc(Rd). Let us note that F transforms the space of tempered distri-
butions S′(Rd) into S′(s)(R

d).

For any h ∈ Rd, ψ ∈ S(Rd), ξ ∈ S′(Rd), the translations τhψ, τ ′hξ are defined
by the formulas

τhψ(x) = ψ(x− h), 〈τ ′hξ, ψ〉 = 〈ξ, τhψ 〉, x ∈ R
d.

By B(S′(Rd)) and B(S′c(Rd)) we denote the smallest σ-algebras of subsets of
S′(Rd) and S′c(Rd), respectively, such that for any test function ϕ the mapping
ξ → 〈ξ, ϕ〉 is measurable.
The below notions of generalized random fields, their space correlations and

spectral measures are recalled directly from [36].
Let (Ω,F , P ) be a complete probability space. Any measurable mapping

Y : Ω→ S′(Rd) is called a generalized random field. A generalized random field Y
is called Gaussian if 〈Y, ϕ〉 is a Gaussian random variable for any ϕ ∈ S(Rd). The
definition implies that for any functions ϕ1, . . . , ϕn ∈ S(Rd) the random vector
(〈Y, ϕ1〉, . . . , 〈Y, ϕn〉) is also Gaussian. One says that a generalized random field
Y is homogeneous or stationary if for all h ∈ R

d, the translation τ ′h(Y ) of Y has
the same probability law as Y .
A distribution Γ on the space S(Rd) is called positive-definite if 〈Γ, ϕ�ϕ(s)〉≥0

for every ϕ ∈ S(Rd), where ϕ � ϕ(s) denotes the convolution of the functions ϕ
and ϕ(s).
If Y is a homogeneous, Gaussian random field then for each ψ ∈ S(Rd), 〈Y, ψ〉

is a Gaussian random variable and the bilinear functional q:S(Rd)×S(Rd)→ R

defined by the formula,

q(ϕ, ψ) = E (〈Y, ϕ〉〈Y, ψ〉) for ϕ, ψ ∈ S(Rd),
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is continuous and positive definite. Since q(ϕ, ψ) = q(τhϕ, τhψ) for all ϕ, ψ ∈
S(Rd), h ∈ Rd, there exists, see e.g. [36, Chapter II], a unique positive-definite
distribution Γ ∈ S′(Rd) such that for all ϕ, ψ ∈ S(Rd), one has

q(ϕ, ψ) = 〈Γ, ϕ ∗ ψ(s)〉.
The distribution Γ is called the space correlation of the field Y . By Bochner–
Schwartz theorem the positive-definite distribution Γ is the inverse Fourier trans-
form of a unique positive, symmetric, tempered measure µ on R

d: Γ = F−1(µ).
The measure µ is called the spectral measure of Γ and of the field Y .
Summing up a generalized homogeneous Gaussian random field Y is charac-

terized by the following properties:

(1) for any ψ ∈ S(Rd), 〈Y, ψ〉 is a real-valued Gaussian random variable,
(2) there exists a positve-definite distribution Γ ∈ S′(Rd) such that for all
ϕ, ψ ∈ S(Rd)

E (〈Y, ϕ〉〈Y, ψ〉) = 〈Γ, ϕ ∗ ψ(s)〉,
(3) the distribution Γ is the inverse Fourier transform of a positive and
symmetric tempered measure µ on Rd, that is, such that∫

Rd

(1 + |λ|)rµ(dλ) <∞, for some r < 0.

Let Y : Ω→ S′(Rd) be a generalized random field. When the values of Y are
functions, with probability 1, then Y is called a classical random field or shortly
random field. In this case, by Fubini’s theorem, for any θ ∈ Rd the function Y (θ)
is well-defined and

〈Y, ϕ〉 =
∫

Rd

Y (θ)ϕ(θ) dθ,

for any ϕ ∈ S(Rd). Thus any random field Y may be identified with the family of
random variables {Yθ}θ∈Rd parametrized by θ ∈ Rd. In particular a homogeneous
(stationary), Gaussian random field is a family of Gaussian random variables
Y (θ), θ ∈ Rd, with Gaussian laws invariant with respect to all translations. That
is, for any θ1, . . . , θn ∈ Rd and h ∈ Rd, the law of (Y (θ+h), . . . , Y (θn+h)) does
not depend on h ∈ Rd.
For the sake of completness we sketch now the proof of the following result,

(see also [66]).

Proposition 4.1. A generalized, homogeneous, Gaussian random field Y is
classical if and only if the space correlation Γ of Y is a bounded function and if
and only if the spectral measure µ of Y is finite.

Proof. First, let us prove that if a positive definite distribution Γ is a bounded
function then it is continuous and its spectral measure µ is finite. It is enough
to show only that the spectral measure µ of the distribution Γ is finite.
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Let pt( · ) denote the normal density with the Fourier transform e−t|λ|2 , t > 0,
λ ∈ Rd. Define measures µt, t > 0, by the formula

µt(B) =
∫
B

e−t|λ|
2
µ(dλ), B ⊂ R

d.

Since the measure µ is tempered, the measures µt are finite.
The Fourier transform F(µt) of µt, for any t > 0, is a continuous function

and
Γt(θ) = F−1(µt)(θ) = (Γ ∗ pt)(θ), θ ∈ R

d.

But

Γt(θ) =
∫

Rd

Γ(θ − η)pt(η) dη
and

|Γt(θ)| ≤
[
sup
ζ∈Rd

|Γ(ζ)|
] ∫

Rd

pt(η) dη ≤
[
sup
ζ∈Rd

|Γ(ζ)|
]
.

In particular

|Γt(0)| =
∫

Rd

e−t|λ|
2
µ(dλ) ≤

[
sup
ζ∈Rd

|Γ(ζ)|
]
.

Letting t ↓ 0 one obtains that∫
Rd

µ(dλ) ≤
[
sup
ζ∈Rd

|Γ(ζ)|
]
<∞,

so the measure µ is finite as required.
Let now Y be a classical, homogeneous, Gaussian random field. It means that

the field Y is function-valued. Moreover, E (Y (θ1)Y (θ2)) = Γ(θ1 − θ2), for θ1,
θ2 ∈ Rd, the space correlation Γ is positive-definite and |Γ(θ1−θ2)| ≤ Γ(0) <∞.
Let now µ be the finite spectral measure of a homogeneous Gaussian random

field Y . Then Γ is a positive definite continuous function. By Kolmogorov’s
existence theorem, there exists a family Ỹ (θ), θ ∈ Rd, such that:

E (Ỹ (θ1) Ỹ (θ2)) = Γ(θ1 − θ2), θ1, θ2 ∈ R
d.

From the continuity of Γ, it follows that the family Ỹ , is stochastically continuous
and therefore has a measurable version. Since the laws of the random fields Y ,
Ỹ coincide, the result follows. �

We finish the section recalling a continuity criterium which will be used in
the proof of the continuity results, see ([2, Theorem 3.4.3]).

Proposition 4.2. Let Y (θ), θ ∈ Rd, be a homogeneous, Gaussian random
field with the spectral measure µ. If, for some ε > 0,∫

Rd

(ln(1 + |λ|))1+εµ(dλ) <∞,

then Y has a version with almost surely continuous sample functions.
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4.2. Regularity of solutions to stochastic Volterra equations

This section is concerned with the following stochastic Volterra equation

(4.1) X(t, θ) = X0(θ) +
∫ t
0
b(t− τ)AX(τ, θ) dτ +W (t, θ),

where t ∈ R+, θ ∈ R
d, X0 ∈ S′(Rd), b ∈ L1loc(R+) and W is a spatially homoge-

neous Wiener process which takes values in the space of real, tempered distribu-
tions S′(Rd). The class of operators A covered in the present chapter contains in
particular the Laplace operator ∆ and its fractional powers−(−∆)β/2, β ∈ (0, 2].
The equation (4.1) is a generalization of stochastic heat and wave equations

studied by many authors, see e.g. [20], [55], [53], [61]–[63], [67] and [77] and
references therein. In the context of infinite particle systems stochastic heat
equation of a similar type has been investigated by Bojdecki with Jakubowski
[9]–[11] and by Dawson with Gorostiza in [25].
As we have already said, our aim is to obtain conditions under which solutions

to the stochastic Volterra equation (4.1) are function-valued and even continuous
with respect to the space variable. In the chapter we treat the case of general
dimension and the correlated, spatially homogeneous noise WΓ of the general
form.

4.2.1. Stochastic integration. In this section we will integrate operator-
valued functions R(t), t ≥ 0, with respect to a Wiener process W . The opera-
tors R(t), t ≥ 0, will be non-random and will act from some linear subspaces of
S′(Rd) into S′(Rd). We shall assume that W (t), t ≥ 0, is a continuous process
with independent increments taking values in S′(Rd). The process W is space
homogeneous in the sense that, for each t ≥ 0, random variables W (t) are sta-
tionary, Gaussian, generalized random fields. We denote by Γ the covariance of
W (1) and the associated spectral measure by µ. To underline the fact that the
probability law of W is determined by Γ we will write WΓ. From now on we
denote by q a scalar product on S(Rd) given by the formula

q〈φ, ψ〉 = 〈Γ, φ ∗ ψ(s)〉, φ, ψ ∈ S(Rd).

Let us present three examples of spatially homogeneous Wiener processes.

Examples. (a) Important examples of random fields are provided by sym-
metric α-stable distributions Γ(x) = e−|x|

α

, where α ∈ ]0, 2]. For α = 1
and α = 2 the densities of the spectral measures are given by the formulas
c1(1 + |x|2)−(d+1)/2 and c2e−|x|2, where c1 and c2 are appropriate constants.
(b) Let q(ψ, ϕ) = 〈(−∆ +m2)−1ψ, ϕ〉, where ∆ is the Laplace operator on

Rd and m is a strictly positive constant. Then Γ is a continuous function on
Rd \ {0} and (dµ/dx)(x) = (2π)−d/2(|x|2 + m2)−1. The law of W (1) is the
so-called Euclidean free field.
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(c) Let q(ψ, ϕ) = 〈ψ, ϕ〉. Then Γ is equal to the Dirac δ0-function, its spectral
density dµ/dx is the constant function (2π)−d/2 and ∂W/∂t is a white noise on
L2([0,∞[×Rd). If B(t, x), t ≥ 0 and x ∈ Rd, is a Brownian sheet on [0,∞[×Rd,
then W can be defined by the formula

W (t, x) =
∂dB(t, x)
∂x1 . . . ∂xd

, t ≥ 0.

The crucial role in the theory of stochastic integration with respect to WΓ
is played by the Hilbert space S′q ⊂ S′(Rd) called the kernel or the reproducing
kernel of WΓ. Namely the space S′q consists of all distributions ξ ∈ S′(Rd) for
which there exists a constant C such that

|〈ξ, ψ〉| ≤ C
√
q(ψ, ψ), ψ ∈ S(Rd).

The norm in S′q is given by the formula

|ξ|S′q = sup
ψ∈S

|〈ξ, ψ〉|√
q(ψ, ψ)

.

Let us assume that we require that the stochastic integral should take values in
a Hilbert space H continuously imbedded into S′(Rd). Let LHS(S′q, H) be the
space of Hilbert–Schmidt operators from S′q into H . Assume that R(t), t ≥ 0 is
measurable LHS(S′q, H)-valued function such that∫ t

0
‖R(σ)‖2LHS(S′q,H) dσ <∞, for all t ≥ 0.

Then the stochastic integral∫ t
0
R(σ)dWΓ(σ), t ≥ 0

can be defined in a standard way, see [44], [23] or [66]. The stochastic integral
is an H-valued martingale for which

E

(∫ t
0
R(σ)dWΓ(σ)

)
= 0, t ≥ 0

and

E

∣∣∣∣
∫ t
0
R(σ)dWΓ(σ)

∣∣∣∣2
H

= E

(∫ t
0
‖R(σ)‖2LHS(S′q,H) dσ

)
, t ≥ 0.

We will need a characterization of the space S′q. In the proposition below,
L2(s)(R

d, µ) denotes the subspace of L2(Rd, µ;C) consisting of all functions u
such that u(s)(θ) = u(−θ) for θ ∈ Rd.
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Proposition 4.3 ([66, Proposition 1.2]). A distribution ξ belongs to S′q if
and only if ξ = ûµ for some u ∈ L2(s)(Rd, µ). Moreover, if ξ = ûµ and η = v̂µ,
then

〈ξ, η〉S′q = 〈u, v〉L2(s)(Rd,µ).
The operators R(t), t ≥ 0, of convolution type are of special interest

R(t)ξ = r(t) ∗ ξ, t ≥ 0, ξ ∈ S′(Rd),
with r(t) ∈ S′(Rd). The convolution operator is not, in general, defined for all
ξ ∈ S′(Rd) and for the stochastic integration it is important to know under what
conditions on r( · ) and ξ the convolution is well-defined. For many important
cases the Fourier transform Fr(t)(λ), t ≥ 0, λ ∈ Rd, is continuous in both
variables and, for any T ≥ 0,
(4.2) sup

t∈[0,T ]
sup
λ∈Rd

|Fr(t)(λ)| =MT <∞.

If this is the case then the operatorsR(t) can be defined using Fourier transforms
R(t)ξ = F−1(Fr(t)Fξ),

for all ξ such that Fξ has a representation as a function.
Now, we can characterize the stochastic convolution as follows.

Theorem 4.4. Assume that the function Fr is continuous in both variables
and satisfies condition (4.2). Then the stochastic convolution

R ∗WΓ(t) =
∫ t
0
R(t− σ) dWΓ(σ), t ≥ 0,

is a well-defined S′(Rd)-valued stochastic process. For each t ≥ 0, R ∗WΓ(t) is
a Gaussian, stationary, generalized random field with the spectral measure

(4.3) µt(dλ) =
(∫ t
0
|Fr(σ)(λ)|2 dσ

)
µ(dλ),

and with the covariance

(4.4) Γt =
∫ t
0
r(σ) ∗ Γ ∗ r(s)(σ) dσ.

Proof. Let p be an arbitrary continuous scalar product on S(Rd), such that
the embedding S′q(R

d) ⊂ S′p(Rd) is Hilbert–Schmidt; here S′p(Rd) denotes a space
of distributions on S(Rd) endowed with p. For more information on a family of
Hilbert spaces of distributions we refer to [43]. Note that for ξ ∈ S′q(Rd),

ξ = F−1(uµ) with u ∈ L2(s)(Rd, µ).
By (4.2), F(r(t))F(ξ) is a measure

F(r(t))(λ)u(λ)µ(dλ),
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belonging again to S′q(Rd). Moreover, for t ∈ [0, T ],
||R(t)||L(S′q,S′q) ≤ sup

t∈[0,T ]
sup
λ∈Rd

|Fr(t)(λ)| =MT <∞.

Since the embedding S′q ⊂ S′p is Hilbert–Schmidt, the stochastic integral, by the
very definition, is an S′p-valued random variable. Denote

Zt = R ∗WΓ(t).
Then we may write

E (〈Zt, ϕ〉〈Zt, ψ〉)

=E

(〈∫ t
0
R(t− σ) dWΓ(σ), ϕ

〉〈∫ t
0
R(t− u) dWΓ(u), ψ

〉)

=E

(∫ t
0
〈r(t− σ) ∗ ϕ, dWΓ(σ)〉

∫ t
0
〈r(t− u) ∗ ψ, dWΓ(u)〉

)

=
∫ t
0
〈Γ, (r(σ) ∗ ϕ) ∗ (r(σ) ∗ ψ)(s)〉 dσ

where ϕ, ψ ∈ S(Rd). This implies the formula (4.4) of the theorem, from which
(4.3) easily folows. �

As an application define

(4.5) v(λ) =
1
2
〈Qλ, λ〉 −

∫
Rd
(ei〈λ,y〉 − 1)ν(dy)

In the formula (4.5), Q is a symmetric, non-negative definite matrix and ν is a
symmetric measure concentrated on Rd \ {0} such that

(4.6)
∫
|y|≤1
|y|2ν(dy) <∞,

∫
|y|>1
1ν(dy) <∞.

This is the Levy–Khinchin exponent of an infinitely divisible symmetric law.
From Theorem 4.4 we have the following proposition.

Proposition 4.5. Assume that

Fr(t)(λ) = e−tv(λ), t ≥ 0
where v is the Levy–Khinchin exponent given by (4.5) and (4.6). Then the con-
ditions of Theorem 4.4 are satisfied.

For more information on stochastic integral with values in the Schwartz space
of tempered distributions S′(Rd) we refere to Itô ([43], [44]), Bojdecki with
Jakubowski ([8]–[11]), Bojdecki with Gorostiza ([7]) and Peszat with Zabczyk
([66]–[67]).
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4.2.2. Stochastic Volterra equation. We finally pass to the linear, sto-
chastic, Volterra equation in S′(Rd)

(4.7) X(t) = X0 +
∫ t
0
b(t− τ)AX(τ) dτ +WΓ(t),

where X0 ∈ S′(Rd), A is an operator given in the Fourier transform form
(4.8) F(Aξ)(λ) = −v(λ)F(ξ)(λ),
v is a locally integrable function andWΓ is an S′(Rd)-valued space homogeneous
Wiener process.
Note that if v(λ) = |λ|2, then A = ∆ and if v(λ) = |λ|α, α ∈ (0, 2), then

A = −(−∆)α/2 is the fractional Laplacian.
We shall assume the following hypothesis:

(H) For any γ ≥ 0, the unique solution s( · , γ) to the equation

(4.9) s(t) + γ
∫ t
0
b(t− τ) s(τ) dτ = 1, t ≥ 0

fullfils the following condition:

sup
t∈[0,T ]

sup
γ≥0
|s(t, γ)| <∞ for any T ≥ 0.

Comment. Let us note that under assumption, that the function b is a lo-
cally integrable function, the solution s( · , γ) of the equation (4.9) is locally
integrable function and measurable with respect to both variables γ ≥ 0 and
t ≥ 0.
For some special cases the function s(t; γ) may be found explicitely. Namely,

we have (see e.g. [70]):

for b(t) = 1, s(t; γ) = e−γt, t ≥ 0, γ ≥ 0;(4.10)

for b(t) = t, s(t; γ) = cos(
√
γt), t ≥ 0, γ ≥ 0;(4.11)

for b(t) = e−t, s(t; γ) = (1+γ)−1[1+γe−(1+γ)t], t ≥ 0, γ ≥ 0.(4.12)

We introduce now the so called resolvent family R( · ) determined by the
operator A and the function v. Namely,

R(t)ξ = r(t) ∗ ξ, ξ ∈ S′(Rd),
where,

r(t) = F−1s(t, v( · )), t ≥ 0.
As in the deterministic case the solution to the stochastic Volterra equation

(4.7) is of the form

(4.13) X(t) = R(t)X0 +
∫ t
0
R(t− τ) dWΓ(τ), t ≥ 0.
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By Theorem 4.4, we can formulate the following result.

Theorem 4.6 ([54, Theorem 1]). LetWΓ be a spatially homogeneous Wiener
process and R(t), t ≥ 0, the resolvent for the equation (4.7). If hypothesis (H)
holds then the stochastic convolution

R ∗WΓ(t) =
∫ t
0
R(t− σ) dWΓ(σ), t ≥ 0,

is a well-defined S′(Rd)-valued process. For each t ≥ 0 the random variable
R∗WΓ(t) is generalized, stationary random field on Rd with the spectral measure

(4.14) µt(dλ) =
[ ∫ t
0
(s(σ, v(λ)))2 dσ

]
µ(dλ).

By Propositions 4.1 and 4.2, we can conclude the below result.

Theorem 4.7 ([54, Theorem 2]). Assume that the hypothesis (H) holds.
Then the process R ∗WΓ(t) is function-valued for all t ≥ 0 if and only if∫

Rd

(∫ t
0
(s(σ, v(λ)))2 dσ

)
µ(dλ) <∞, t ≥ 0.

If for some ε > 0 and all t ≥ 0,∫ t
0

∫
Rd

(ln(1 + |λ|))1+ε(s(σ, v(λ)))2 dσµ(dλ) <∞,

then, for each t ≥ 0, R ∗WΓ(t) is a sample continuous random field.
4.2.3. Continuity in terms of Γ. In this subsection we provide sufficient

conditions for continuity of the solutions in terms of the covariance kernel Γ of
the Wiener process WΓ rather than in terms of the spectral measure as we have
done up to now. Analogical conditions for existence of function-valued solutions
can be derived in a similar way.

Theorem 4.8. Assume that d ≥ 2, that Γ is a non-negative measure and
A = −(−∆)α/2, α ∈ ]0, 2]. If for some δ > 0,∫

|λ|≤1

1
|λ|d−α+δ Γ(dλ) <∞,

∫
|λ|>1

1
|λ|d+α−δ Γ(dλ) <∞,

then for the cases (4.10)–(4.12) the solution to the stochastic Volterra equation
(4.7) has continuous version.

The proof will be based on several lemmas. For any γ ∈ ]0, 2] denote by pγt
the density of the γ-stable, rotationally invariant, density on the d-dimensional
space. Thus,

(4.15) e−t|λ|
γ

= Fpγt (λ).



Chapter 4. Stochastic Volterra Equations in Spaces of Distributions 75

Lemma 4.9. For arbitrary t > 0 and arbitrary x ∈ Rd,

pγt (x) = t
−d/γpγ1(xt

−1/γ).

Proof. From (4.15) we have

I := e−|t
1/γλ|γ =

∫
Rd

ei〈t
1/γλ,x〉 pγ1(x) dx =

∫
Rd

ei〈λ,t
1/γx〉 pγ1(x) dx.

Introducing a new variable y = t1/γx, one has

I :=
∫

Rd

ei〈λ,y〉 pγ1(yt
−1/γ) dy

and the result follows. �

Lemma 4.10. There exists a constant c > 0 such that for all γ ≤ 2,

Gγd(x)
df=
∫ ∞
0
e−tpγt (x) dt ≤

c

|x|d+γ , x ∈ R
d.

Proof. It is well-known, see e.g. Gorostiza and Wakolbinger [37, p. 286], that
for some constant c1 > 0:

(4.16) pγ1(x) ≤
c1

1 + |x|d+γ , x ∈ R
d.

From Lemma 4.9 and the estimate (4.16) we obtain:

Gγd(x) =
∫ ∞
0
e−tt−d/γpγ1(x t

−1/γ) dt

≤
∫ ∞
0
e−tt−d/γ

c1
1 + |xt−1/γ |d+γ dt ≤

∫ ∞
0
e−tt−d/γ

c1t
(d+γ)/γ

t(d+γ)/γ + |x|d+γ dt

≤
∫ ∞
0
e−tt

c1
t(d+γ)/γ + |x|d+γ dt ≤

c1
|x|d+γ

∫ ∞
0
e−tt dt. �

Lemma 4.11. If γ < d, γ ∈ ]0, 2], then there exists a constant c > 0 such
that

Gγd(x) ≤
c

|x|d−γ for |x| < 1.

Proof. Since

Gγd(x) ≤
∫ ∞
0
pγt (x) dt,

the result follows from the well-known formula for Riesz γ-potential, see e.g.
Landkof [56]. �
Conclusion. There exists a constant c > 0 such that, if γ < d, γ ≤ 2, then:
Gγd(x) ≤

c

|x|d−γ if |x| ≤ 1, and Gγd(x) ≤
c

|x|d+γ if |x| ≥ 1.
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Proof of Theorem 4.8. Now, we pass to the proof of the theorem and restrict
to the case of b(t) = 1, t ≥ 0, that is, to stochastic heat equation. (Proof for the
next two cases may be obtained in a similar way.) We have s(t; γ) = e−γt, t ≥ 0,
γ ≥ 0 and therefore

s(t; v(λ)) = e−v(λ)t, λ ∈ R
d, t ≥ 0.

By Theorem 4.7, if for some ε > 0 and all t > 0,

(4.17)
∫

Rd

(ln(1 + |λ|))1+ε
[∫ t
0
e−2v(λ)σdσ

]
µ(dλ) <∞,

then for all t > 0, the solution of the stochastic equation (in the general form),
has a continuous version. Taking into account that a is a non-negative continuous
function, one can replace (4.17) by

(4.18)
∫

Rd

(ln(1 + |λ|))1+ε 1
1 + v(λ)

µ(dλ) <∞.

Since we have assumed that A = −(−∆)α/2, then v(λ) = |λ|α, with α ∈ ]0, 2]
and therefore (4.18) becomes

(4.19)
∫

Rd

(ln(1 + |λ|))1+ε 1
1 + |λ|α µ(dλ) <∞.

However, the condition (4.19) holds for some ε > 0 if for some δ > 0∫
Rd

1
1 + |λ|α−δ µ(dλ) <∞.

In the same way as in the paper [53] by Karczewska and Zabczyk, for some
constant c > 0: ∫

Rd

1
1 + |λ|γ µ(dλ) = c

∫
Rd

Gγd(x)Γ(dx),

where γ := α−δ. Taking into account Lemmas 4.10 and 4.11, the result follows.�
4.2.4. Some special cases. In this subsection we illustrate the main results

obtained considering several special cases.
Let us recall that the linear stochastic Volterra equation (4.7) considered in

the chapter has the following form

X(t) = X0 +
∫ t
0
b(t− τ)AX(τ) dτ +WΓ(t),

where X0 ∈ S′(Rd), A is an operator given in the Fourier transform form

F(Aξ)(λ) = −v(λ)F(ξ)(λ), ξ ∈ S′(Rd),
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v is a locally integrable function andWΓ is an S′(Rd)-valued space homogeneous
Wiener process. This equation is determined by three objects: the spatial cor-
relation Γ of the processWΓ, the operator A and the function v or, equivalently,
by the spectral measure µ, the function a and the function s, respectively.
We apply our Theorems 4.7 and 4.8 to several special cases corresponding

to particular choices of functions v, a and of the measure µ. We will assume,
for instance, that b(t) = 1 or b(t) = t or b(t) = e−t, t ≥ 0, that v(λ) = |λ|α,
α ∈ ]0, 2], λ ∈ Rd and that the measure µ is either finite or µ(dλ) = (1/|λ|γ)dλ,
γ ∈ ]0, d[. Note that if v(λ) = |λ|2, then A = ∆ and if v(λ) = |λ|α, α ∈]0, 2[, then
A = −(−∆)α/2 is the fractional Laplacian. In all considered cases we assume
that hypothesis (H), on the function v, holds.

Case 1. If (H) holds, the function a is given by (4.5) and (4.6) and the
measure µ is finite then R ∗WΓ is a function-valued process. To see this note
that by (H) and Theorem 4.6, the measure µt given by (4.14) is finite. So, the
result follows from Theorem 4.7.

Case 2. If (H) holds, the function a is given by (4.5) and (4.6) and µ is
a measure such that for some ε > 0,∫

Rd

(ln(1 + |λ|)1+εµ(dλ) <∞,

then for arbitrary t > 0, R ∗WΓ(t) is a continuous random field. This follows
immediately from Theorem 4.7.

Case 3. Assume that b(t) = 1 or b(t) = t or b(t) = e−t, t ≥ 0, A = ∆
(Laplace operator) and Γ(x) = Γβ(x) = 1/|x|β, β ∈ [0, d[. Then function s
is given by formulas (4.10)–(4.12), respectively. Function v(λ) = |λ|2, and the
spectral measure µβ corresponding to Γβ is of the form µβ(dλ) = cβ/|λ|d−β ,
with cβ a positive constant. To simplify notation we assume that d ≥ 2. Then
R ∗WΓ is a function-valued process if an only if β ∈ ]0, 2[, see ([53]). Moreover,
if β ∈ ]0, 2[ then for each t > 0, R ∗WΓ(t), is a continuous random field. To
prove this we use Theorem 4.8 and show that for some δ > 0,

(4.20)
∫
|x|<1

1
|x|d−2+δ Γβ(x) dx <∞

and

(4.21)
∫
|x|≥1

1
|x|d+2−δ Γβ(x) dx <∞.

Condition (4.21) is always satisfied because (4.21) is equivalent to: β > δ − 2.
Condition (4.20) may be replaced by the following one:∫

|x|<1

1
|x|d−2+δ+β dx = c

∫ 1
0

1
rd−2+δ+β

rd−1 dr = c
∫ 1
0

1
rβ−1+δ

dr <∞,



78 Anna Karczewska

equivalent to β < 2− δ, which holds for sufficiently small δ > 0.
Case 4. Assume that b(t) = 1 and the operator A is given by the formula

F(Aξ)(λ) = −v(λ)F(ξ),
where

v(λ) = 〈Qλ, λ〉 +
∫

Rd

(1− cos〈λ, x〉)ν(dx)
and ν is a symmetric measure such that∫

Rd

(|x|2 ∧ 1) ν(dx) <∞.

Then the equation (4.7) has a function-valued solution if and only if∫
Rd

1
1 + v(λ)

µ(dλ) <∞.

Additionally, if X0 = 0 and∫
Rd

(ln(1 + |λ|)1+ε) 1
1 + v(λ)

µ(dλ) <∞,

then equation (4.7) has continuous version for each t ≥ 0.
In this situation, s(σ, v(λ)) = e−σv(λ). By Theorem 4.7 the condition for

function-valued solution of the equation (4.7) becomes:∫
Rd

(∫ t
0
(s(σ, v(λ)))2dσ

)
µ(dλ) =

∫
Rd

∫ t
0
e−2σv(λ)dσ µ(dλ) <∞,

and it is equivalent to ∫
Rd

∫ t
0

1
1 + v(λ)

µ(dλ) <∞.

4.3. Limit measure to stochastic Volterra equations

This section is a natural continuation of the previous one. Description of
asymptotic properties of solutions to stochastic evolution equations in finite di-
mensional spaces and Hilbert spaces is well-known and has been collected in the
monograph [24]. This problem has been studied for generalized Langevin equa-
tions in conuclear spaces also by Bojdecki and Jakubowski [11]. The question of
existence of invariant and limit measures in the space of distributions seems to
be particularly interesting. Especially for stochastic Volterra equations, because
this class of equations is not well-investigated.
In the section we give necessary and sufficient conditions for the existence

of a limit measure and describe all limit measures to the equation (4.1). Our
results are in a sense analogous to those formulated for the finite-dimensional
and Hilbert space cases obtained for stochastic evolution equations, see [24,
Chapter 6].
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Let us recall the stochastic Volterra equation (4.1) in the simpler form (4.7),
that is,

X(t) = X0 +
∫ t
0
b(t− τ)AX(τ) dτ +WΓ(t).

As previously, we study this equation in the space S′(Rd), where X0 ∈ S′(Rd),
A is an operator given in the Fourier transform form (4.8), i.e.

F(Aξ)(λ) = −v(λ)F(ξ)(λ),

where v is a locally integrable function and WΓ is an S′(Rd)-valued space homo-
geneous Wiener process.

4.3.1. The main results. In this subsection we formulate results providing
the existence of a limit measure and the form of any limit measure for the
stochastic Volterra equation (4.7) with the operator A given by (4.8). In our
considerations we assume that the hypothesis (H) holds.
Let us recall the definition of weak convergence of probability measures de-

fined on the space S′(Rd) of tempered distributions.

Definition 4.12. We say that a sequence {γt}, t ≥ 0, of probability mea-
sures on S′(Rd) converges weakly to probability measure γ on S′(Rd) if for any
function f ∈ Cb(S′)

(4.22) lim
t→∞

∫
S′(Rd)

f(x) γt(dx) =
∫
S′(Rd)

f(x) γ(dx).

More general definition on weak convergence of probability measures defined
on topological spaces may be found, e.g. in [6] or [45].
By νt we denote the law L(Z̃(t)) = N (0,Γt) of the process

(4.23) Z̃(t) :=
∫ t
0
R(t− σ) dWΓ(σ), t ≥ 0.

Let us define

(4.24) µ∞(dλ) :=
[∫ ∞
0
(s(σ, a(λ)))2 dσ

]
µ(dλ).

Convergence of measures in the distribution sense is a special kind of weak
convergence of measures. This means that

(4.25)
∫

Rd

ϕ(λ) dµt(λ)
t→∞−−−−→

∫
Rd

ϕ(λ) dµ∞(λ)

for any test function ϕ ∈ S(Rd).
Now, we can formulate the following results.
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Lemma 4.13. Let µt and µ∞ be measures defined by (4.14) and (4.24),
respectively. If µ∞ is a slowly increasing measure, then the measures µt → µ∞,
as t→∞, in the distribution sense.
Proof. First of all, let us notice that, by Theorem 4.6, µt, t ≥ 0, are spec-

tral measures of stationary generalized Gaussian random fields. Moreover, the
measures µt, t ≥ 0, are slowly increasing. Since the function s(τ, a(λ)), τ ≥ 0,
λ ∈ Rd is bounded, then the integral gt(λ) =

∫ t
0 (s(τ, a(λ)))

2 dτ , for t < ∞, is
bounded, as well. In the proof we shall use the specific form of the measures µt,
t ≥ 0, defined by (4.14).
We assume that the measure µ∞ is slowly increasing, that is, there exists

k > 0:∫
Rd

(1 + |λ|2)−k dµ∞(λ) =
∫

Rd

(1 + |λ|2)−k
[∫ ∞
0
(s(t, a(λ)))2 dτ

]
dµ(λ) <∞.

Hence, the function g∞(λ) =
∫∞
0 (s(τ, a(λ)))

2 dτ <∞ for µ-almost every λ.
In our case, because of formulae (4.14) and (4.24), we have to prove the

following convergence:

(4.26) lim
t→∞

∫
Rd

ϕ(λ) gt(λ) dµ(λ) =
∫

Rd

ϕ(λ) g∞(λ) dµ(λ),

where ϕ ∈ S(Rd), and gt and g∞ are as above.
In other words, the convergence (4.25) of the measures µt, t ≥ 0, to the

measure µ∞ in the distribution sense, in our case is equivalent to the weak
convergence (4.26) of functions gt, t ≥ 0, to the function g∞.
Let us recall that the function s determining the measures µt, t ≥ 0, and

µ∞, satisfies the Volterra equation (4.9) (see hypothesis (H)):

s(t) + γ
∫ t
0
b(t− τ)s(τ) dτ = 1.

Additionally, by Lemma 2.1 from [15], limt→∞ s(t) = 0.
For any ϕ ∈ S(Rd) we have the following estimations

(4.27)
∣∣∣∣
∫

Rd

ϕ(λ) gt(λ) dµ(λ) −
∫

Rd

ϕ(λ) g∞(λ) dµ(λ)
∣∣∣∣

≤
∫

Rd

|ϕ(λ)| |gt(λ)− g∞(λ)| dµ(λ)

=
∫

Rd

|ϕ(λ)|
∣∣∣∣
∫ t
0
(s(τ, a(λ)))2 dτ −

∫ ∞
0
(s(τ, a(λ)))2 dτ

∣∣∣∣ dµ(λ)
≤
∫

Rd

|ϕ(λ)|
(∫ ∞
t

(s(τ, a(λ)))2 dτ
)
dµ(λ).
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The right hand side of (4.27) tends to zero because

h∞(λ) =
∫ ∞
t

(s(τ, a(λ)))2 dτ

tends to zero, as t→∞.
Hence, we have proved the convergence (4.26) which is equivalent to the

convergence (4.25) of the measures µt, as t → ∞, to the measure µ∞ in the
distribution sense. �

Lemma 4.14. Let Γt, Γ∞ be covariance kernels of the stochastic convolution
(4.23) for t <∞ and t =∞, respectively, and let µt, µ∞ be defined by (4.14) and
(4.24). Assume that µ∞ is a slowly increasing measure on R

d. Then Γt → Γ∞,
as t → ∞, in the distribution sense if and only if the measures µt → µ∞, for
t→∞, in the distribution sense.
Proof. The sufficiency comes from the convergence of measures in the distri-

bution sense which, in fact, is a type of weak convergence of measures. Actually,
the convergence of µt, t ≥ 0, to the measure µ∞ in the distribution sense means
that 〈µt, ϕ〉 t→∞−−−−→ 〈µ∞, ϕ〉 for any ϕ ∈ S(Rd). Particularly, because the Fourier
transform acts from S(Rd) into S(Rd), we have 〈µt,F(ϕ)〉 t→∞−−−−→ 〈µ∞,F(ϕ)〉
for any ϕ ∈ S(Rd). This is equivalent to the convergence 〈F−1(µt), ϕ〉 t→∞−−−−→
〈F−1(µ∞), ϕ)〉, ϕ ∈ S(Rd).
This means the convergence of the Fourier inverse transforms of considered

measures µt, as t → ∞, to the inverse transform of the measure µ∞ in the
distribution sense.
Because the measures µt, t ≥ 0, and µ∞ are positive, symmetric and slowly

increasing on Rd, then their Fourier inverse transforms define, by Bochner–
Schwartz theorem, covariance kernels Γt = F−1(µt), t ≥ 0, and Γ∞ = F−1(µ∞),
respectively. Hence, Γt → Γ∞ as t→∞, in the distribution sense.
The necessity is the version of Lévy–Cramér’s theorem generalized for a se-

quence of slowly increasing measures {µt}, t ≥ 0, and their Fourier inverse
transforms which are their characteristic functionals. �

Now, we are able to formulate the main results of the section.

Theorem 4.15. There exists the limit measure ν∞ = N (0,Γ∞), the weak
limit of the measures νt = N (0,Γt), as t → ∞, if and only if the measure µ∞
defined by (4.24) is slowly increasing.

Theorem 4.16. Assume that the measure µ∞ defined by (4.24) is slowly
increasing. Then any limit measure of the stochastic Volterra equation (4.7) is
of the form

(4.28) m∞ ∗ N (0,Γ∞),
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where m∞ is the limit measure for the deterministic version of the equation (4.7)
with condition (4.8), and N (0,Γ∞) is the limit measure of the measures νt, as
t→∞.
We would like to emphasize that Theorems 4.15 and 4.16 have been formu-

lated in the spirit analogous to well-known theorems giving invariant measures
for linear evolution equations, see e.g. [24] or [11]. Such results first give con-
ditions for the existence of invariant measure and next describe all invariant
measures provided they exist. Our theorems extend, in some sense, Theorem
6.2.1 from [24]. Because we consider stochastic Volterra equations we can not
study invariant measures but limit measures.

4.3.2. Proofs of theorems.

Proof of Theorem 4.15. (⇒) Let us notice that, by Theorem 4.6, the laws νt =
N (0,Γt), t ≥ 0, are laws of Gaussian, stationary, generalized random fields with
the spectral measures µt and the covariances Γt. The weak convergence (4.22)
is equivalent to the convergence of the characteristic functionals corresponding
to the measures νt, t ≥ 0 and ν∞, respectively. Particularly

ν̂t(ϕ)
t→∞−−−−→ ν̂∞(ϕ) for any ϕ ∈ S(Rd).

We may use the specific form of the characteristic functionals of Gaussian
fields. Namely, we have

ν̂t(ϕ) = E ei〈Z̃(t),ϕ〉 = exp
(
− 1
2
qt(ϕ,ϕ)

)
= exp

(
− 1
2
〈Γt, ϕ ∗ ϕ(s)〉

)
,

where t ≥ 0, ϕ ∈ S(Rd) and Z̃(t) is the stochastic convolution given by (4.23).
Analogously

ν̂∞(ϕ) = exp
(
− 1
2
〈Γ∞, ϕ ∗ ϕ(s)〉

)
, ϕ ∈ S(Rd).

Hence, we have the following convergence

exp
(
− 1
2
〈Γt, ϕ ∗ ϕ(s)〉

)
t→∞−−−−→ exp

(
− 1
2
〈Γ∞, ϕ ∗ ϕ(s)〉

)

for any ϕ ∈ S(Rd).
Because Γt, t ≥ 0, are positive-definite generalized functions then Γ∞ is

a positive-definite generalized function, too. So, by Bochner–Schwartz theorem,
there exists a slowly increasing measure µ∞ such that Γ∞ = F−1(µ∞).
(⇐) Assume that the measure µ∞, defined by the formula (4.24) is slowly

increasing. Then, by Bochner–Schwartz theorem, there exists a positive-definite
distribution Γ∞ on S such that Γ∞ = F−1(µ∞) and

〈Γ∞, ϕ〉 =
∫

Rd

ϕ(x) dµ∞(x).
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Now, we have to show, that Γ∞ is the limit, in the distribution sense, of
the functionals Γt, t ≥ 0. In order to do this, by Lemma 4.14, we have to
prove the convergence of the spectral measures µt → µ∞, as t → ∞, in the
distribution sense. But, by Lemma 4.13, the measures µt, t ≥ 0, defined by
(4.14), converge to the measure µ∞ in the distribution sense. This fact implies,
by Lemma 4.14, that Γt → Γ∞, as t → ∞, in the distribution sense. Then, the
following convergence

exp
(
− 1
2
〈Γt, ϕ ∗ ϕ(s)〉

)
t→∞−−−−→ exp

(
− 1
2
〈Γ∞, ϕ ∗ ϕ(s)〉

)

holds for any ϕ ∈ S(Rd). This means the convergence of characteristic function-
als of the measures νt = N (0,Γt), t ≥ 0, to the characteristic functional of the
measure ν∞ = N (0,Γ∞). Hence, there exists the weak limit ν∞ of the sequence
νt, t ≥ 0, and ν∞ = N (0,Γ∞). �

Proof of Theorem 4.16. Consider a limit measure for the stochastic Volterra
equation (4.7) with the condition (4.8). This means that we study a limit dis-
tribution of the solution given by (4.13) to the considered equation (4.7).
Let us introduce the following notation for distributions, when 0 ≤ t <∞:
• ηt = L(X(t)) means the distribution of the solution X(t);
• mt = L(R(t)X0) denotes the distribution of the part R(t)X0 of the
solution X(t);
• νt = L(Z̃(t)) = L(

∫ t
0 R(t − τ) dWΓ(τ)) is, as earlier, the distribution of

the stochastic convolution Z̃(t), that is, νt = N (0,Γt).
We assume that η∞ is any limit measure of the stochastic Volterra equation

(4.7) with the condition (4.8). This means that distributions ηt of the solution
X(t), as t→∞, converge weakly to η∞.
We have to show the formula (4.28), that is the distribution η∞ has the form

η∞ = m∞ ∗ N (0,Γ∞).
The distribution of the solution (4.13) can be written

L(X(t)) = L
(
R(t)X0 +

∫ t
0
R(t− τ) dWΓ(τ)

)

for any 0 ≤ t <∞.
Because the initial value X0 is independent of the process WΓ(t), we have

L(X(t)) = L(R(t)X0) ∗ L(Z̃(t))

or, using the above notation

ηt = mt ∗ νt, for any 0 ≤ t <∞.
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This formula can be rewritten in terms of characteristic functionals of the above
distributions:

(4.29) η̂t(ϕ) = m̂t(ϕ) ν̂t(ϕ),

where ϕ ∈ S(Rd) and 0 ≤ t <∞.
Then, letting in (4.29) t to tend to ∞, we have

η̂∞(ϕ) = C(ϕ) ν̂∞(ϕ), ϕ ∈ S(Rd),
where η̂∞(ϕ) is the characteristic functional of the limit distribution η∞, C(ϕ) =
limt→∞ m̂t(ϕ) and ν̂∞(ϕ) is the characteristic functional of the limit measure
ν∞ = N (0,Γ∞); moreover, ν̂∞(ϕ) = exp(−(1/2)〈Γ∞, ϕ ∗ ϕ(s)〉).
Now, we have to prove that C(ϕ) is the characteristic functional of the weak

limit measure m∞ of the distributions mt = L(R(t)X0).
In fact,

C(ϕ) = η̂∞(ϕ) exp
(
1
2
〈Γ∞, ϕ ∗ ϕ(s)〉

)
,

where the right hand side of this formula, as the product of characteristic func-
tionals, satisfies conditions of the generalized Bochner’s theorem (see e.g. [44]).
So, using the generalized Bochner’s theorem once again, there exists a measure
m∞ in S′(Rd), such that C(ϕ) = m̂∞, as required. Hence, we have obtained
η∞ = m∞ ∗ N (0,Γ∞). �

4.3.3. Some special case. Stochastic Volterra equations have been consid-
ered by several authors, see e.g. [14]–[17] and [54], and are studied in connection
with problems arising in viscoelasticity. Particularly, in [15] the heat equation
in materials with memory is treated. In that paper the authors consider an
auxiliary equation of the form

(4.30) z(t) +
∫ t
0
[µ c(t− τ) + β(t− τ)] z(τ) dτ = 1,

t ≥ 0, where µ is a positive constant and c, β are some functions specified below.
Let us notice that if in the Volterra equation (4.9) we take b(τ) = [µ c(τ) +

β(τ)]/γ, we arrive at the equation (4.30). On the contrary, if we assume in
the equation (4.30) that β(τ) = 0, µ = γ and b(τ) = c(τ), we obtain the
equation (4.9).
Assume, as in [15], the following hypothesis:

(H1) (a) Function β is nonnegative nonincreasing and integrable on R+.
(b) The constants µ, c0 are positive.
(c) There exists a function δ ∈ L1(R+) such that:

c(t) := c0 −
∫ t
0
δ(σ) dσ and c∞ := c0 −

∫ ∞
0
|δ(σ)| dσ > 0.
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Proposition 4.17 ([15, Lemma 2.1]). Let functions β, δ and c be as in
hypothesis (H1). Then the solution to (4.30) satisfies:

(a) 0 ≤ |z(t)| ≤ 1, t ≥ 0;
(b)
∫∞
0 |z(t)| dt ≤ (µ c∞)−1 <∞.

In the next result we will use the above assumption and Proposition 4.17 of
Clément and Da Prato and follow the spirit of their argumantation.

Proposition 4.18. Assume that the stochastic Volterra equation (4.7) has
the kernel function v given in the form

b(t) = c0 −
∫ t
0
|δ(σ)|dσ > 0, c0 > 0 where δ ∈ L1(R+),

and the operator A is given by (4.8). In this case the limit measure µ∞ given by
the formula (4.24) is a slowly increasing measure.

Proof. This proposition is the direct consequence of the definition (4.24) of
the measure µ∞ and Proposition 4.17. In fact, from Proposition 4.17 we have

(4.31)
∫ ∞
0
|s(τ, γ)| dτ ≤ (γ c∞)−1 ,

where γ satisfies hypothesis (H1), so c∞ is finite. Hence, the right hand side of
(4.31) is finite for any finite γ. In our case, because A satisfies (4.8), γ = a(λ).
From the definition (4.24) of the measure µ∞ we have:

(4.32)
∫

Rd

(1 + |λ|2)−k dµ∞(λ) =
∫

Rd

(1 + |λ|2)−k
[ ∫ ∞
0
(s(t, a(λ)))2 dτ

]
dµ(λ)

for k > 0. Let us notice that, by Proposition 4.17, 0 ≤ |s(t, a(λ))| ≤ 1 for t ≥ 0.
So, (s(t, a(λ)))2 ≤ |s(t, a(λ))|. Therefore, because (4.31) holds and the measure
µ is slowly increasing, the right hand side of (4.32) is finite. Hence, the measure
µ∞ is slowly increasing, too. �

4.4. Regularity of solutions to equations with infinite delay

4.4.1. Introduction and setting the problem. In this section we con-
sider the following integro-differential stochastic equation with infinite delay

(4.33) X(t, θ) =
∫ t
−∞
b(t− s)[∆X(s, θ) + ẆΓ(s, θ)] ds, t ≥ 0, θ ∈ T d,

where b ∈ L1(R+), ∆ is the Laplace operator and T d is the d-dimensional torus.
In (4.33), WΓ is a spatially homogeneous Wiener process with the space co-
variance Γ taking values in the space of tempered distributions S′(T d) and ẆΓ
denotes its partial derivative with respect to the first argument in the sense of
distributions. Such equation arises, in the deterministic case, in the study of
heat flow in materials of fading memory type (see [13], [64]).
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In this section we address the following question: under what conditions
on the covariance Γ the process X takes values in a Sobolev space Hα(T d),
particularly in L2(T d)?
We remark that the knowledge of the regularity of solutions is important in

the study of nonlinear stochastic equations (see e.g. [20] and [62]).
We study a particular case of weak solutions under the basis of an explicit

representation of the solution to (4.33) (cf. Definition 4.20).
Observe that equation (4.33) can be viewed as the limiting equation for the

stochastic Volterra equation

(4.34) X(t, θ) =
∫ t
0
b(t− s)[∆X(s, θ) + ẆΓ(s, θ)]ds, t ≥ 0, θ ∈ T d.

If b is sufficiently regular, we get, by differentiating (4.34) with respect to t,

(4.35)
∂X

∂t
(t, θ) = b(0)[∆X(t, θ) + ẆΓ(t, θ)]

+
∫ t
0
b′(t− s)[∆X(s, θ) + ẆΓ(s, θ)] ds,

where t ≥ 0 and θ ∈ T d.
Taking in (4.35), b(t) ≡ 1 we obtain

(4.36)



∂X

∂t
(t, θ) = ∆X(t, θ) + ẆΓ(t, θ), t > 0, θ ∈ T d,

X(0, θ) = 0, θ ∈ T d.
Similarly, taking b(t) = t and differentiating (4.34) twice with respect to t we
obtain

(4.37)




∂2X

∂t2
(t, θ) = ∆X(t, θ) + ẆΓ(t, θ), t > 0, θ ∈ T d,

X(0, θ) = 0, θ ∈ T d,
∂X

∂t
(0, θ) = 0, θ ∈ T d.

It has been shown in [53, Theorem 5.1] (see also [55, Theorem 1]) that equations
(4.36) and (4.37) on the d-dimensional torus T d have an Hα+1(T d)-valued solu-
tions if and only if the Fourier coefficients (γn) of the space covariance Γ of the
process WΓ satisfy

(4.38)
∑
n∈Zd

γn(1 + |n|2)α <∞.

Observe that for both, stochastic heat (4.36) and wave (4.37) equations, the
conditions are exactly the same, despite of the different nature of the equations.
On the other hand, the obtained characterization form a natural framework in
which nonlinear heat and wave equations can be studied.
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We will prove that condition (4.38) even characterizes Hα+1(T d)-valued so-
lutions for the stochastic Volterra equation (4.33), provided certain conditions
on the kernel b are satisfied. This is a strong contrast with the deterministic
case, where regularity of (4.33) is dependent on the kernel b. The conditions
that we impose on b are satisfied by a large class of functions. Moreover, the
important example b(t) = e−t is shown to satisfy our assumptions.
We use, instead of resolvent families, a direct approach to the equation (4.33)

finding an explicit expression for the solution in terms of the kernel b. This
approach reduces the considered problem to questions in harmonic analysis and
lead us with a complete answer.
Let (Ω,F , (Ft)t≥0, P ) be a complete filtered probability space. By T d we

denote the d-dimensional torus which can be identified with the product (−π, π]d.
Let D(T d) and D′(T d) denote, respectively, the space of test functions on T d and
the space of distributions. By 〈ξ, φ〉 we denote the value of a distribution ξ on
a test function. We assume that WΓ is a D′(T d)-valued spatially homogeneous
Wiener process with covariance Γ which is a positive-definite distribution.
As we have already written, any arbitrary spatially homogeneous Wiener

process WΓ is uniquely determined by its covariance Γ according to the formula

(4.39) E 〈WΓ(t, θ), φ〉 〈WΓ(τ, θ), ψ〉 = min(t, τ) 〈Γ, φ � ψ(s)〉,

where φ, ψ ∈ D(T d) and ψ(s)(η) = ψ(−η), for η ∈ T d. Because WΓ is spatially
homogeneous process, the distribution Γ = Γ(θ − η) for θ, η ∈ T d.
The space covariance Γ, like distribution in D′(T d), may be uniquely ex-

panded (see e.g. [33] or [74]) into its Fourier series (with parameter w = 1
because the period is 2π)

(4.40) Γ(θ) =
∑
n∈Zd

ei(n,θ)γn, θ ∈ T d,

convergent in D′(T d). In (4.40), (n, θ) =
∑d
i=1 niθi and Zd denotes the product

of integers.
The coefficients γn, in the Fourier series (4.40), satisfy:

(1) γn = γ−n for n ∈ Zd,
(2) the sequence (γn) is slowly increasing, that is

(4.41)
∑
n∈Zd

γn
1 + |n|r <∞, for some r > 0.

Let us introduce, by induction, the following set of indexes. Denote Z1s := N,
the set of natural numbers and define Zd+1s := (Z1s × Zd) ∪ {(0, n) : n ∈ Zds}.
Let us notice that Zd = Zds ∪ (−Zds) ∪ {0}. For instance, for d = 2, Z2s =
N× Z ∪ {(0, n) : n ∈ Z}.
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Now, the spatially homogeneous Wiener process WΓ corresponding to the
covariance Γ given by (4.40) may be represented in the form

(4.42) WΓ(t, θ) =
√
γ0β0(t) +

∑
n∈Zds

√
2γn[cos(n, θ)β1n(t) + sin(n, θ)β

2
n(t)],

for t ≥ 0 and θ ∈ T d. In (4.42) β0, β1n, β2n, n ∈ Zds , are independent real Brownian
motions and γ0, γn are coefficients of the series (4.40). The series (4.42) is
convergent in the sense of D′(T d).
Because any periodic distribution with positive period is a tempered distri-

bution (see, e.g. [33]), we may restrict our considerations to the space S′(T d) of
tempered distributions. By S(T d) we denote the space of infinitely differentiable
rapidly decreasing functions on the torus T d.
Let us denote by Hα = Hα(T d), α ∈ R, the real Sobolev space of order α

on the torus T d. The norms in such spaces may be expressed in terms of the
Fourier coefficients (see [1])

||ξ||Hα =
( ∑
n∈Zd

(1 + |n|2)α|ξn|2
)1/2

=
(
|ξ0|2 + 2

∑
n∈Zds

(1 + |n|2)α((ξ1n)2 + (ξ2n)2)
)1/2
,

where ξn = ξ1n + iξ
2
n, ξ=ξ̄−n, n ∈ Zd.

There is another possibility to define the Sobolev spaces (see, e.g. [71]). We
say that a distribution ξ ∈ S′(T d) belongs to Hα, α ∈ R, if its Fourier transform
ξ̂ is a measurable function and∫

Td
(1 + |λ|2)α |ξ̂(|λ|)|2 dλ <∞.

4.4.2. Main results. If b ∈ L1loc(R+) and µ ∈ C, we shall denote by r(t, µ)
the unique solution in L1loc(R+) to the linear Volterra equation

(4.43) r(t, µ) = b(t) + µ
∫ t
0
b(t− s)r(s, µ) ds, t ≥ 0.

In many cases the function r(t, µ) may be found explicitly. For instance:

b(t) ≡ 1, r(t, µ) = eµt,

b(t) = t, r(t, µ) =
sinh
√
µ t√
µ

µ �= 0,

b(t) = e−t, r(t, µ) = e(1+µ)t,

b(t) = te−t, r(t, µ) = e−t
sinh
√
µ t√
µ
, µ �= 0.

For more examples, see monograph [70] by Prüss.
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Let us denote by f̂(k), k ∈ Z, the k-th Fourier coefficient of an integrable
function f :

f̂(k) =
1
2π

∫ 2π
0
eiktf(t) dt.

Given b ∈ L1(R+), we find that, for F (t) :=
∫ t
−∞ b(t− s)f(s) ds, we have

(4.44) F̂ (k) = b̃(ik)f̂(k), k ∈ Z,

where b̃(λ) :=
∫∞
0 e

−λtb(t) dt denotes the Laplace transform of b.
In what follows we will assume that b̃(ik) exists for all k ∈ Z and suppose that

λ → b̃(λ) admits an analytical extension to a sector containing the imaginary
axis, and still denote this extension by b̃. We introduce the following definition.

Definition 4.19. We say that a kernel b ∈ L1(R+) is admissible for equation
(4.33) if

lim
|n|→∞

|n|2
∫ ∞
0
[r(s,−|n|2)]2 ds =: Cb

exists.

Examples. (a) In the case b(t) = e−t we obtain

|n|2
∫ ∞
0
[r(s,−|n|2)]2 ds = −|n|2

2(1− |n|2)
and hence Cb = 1/2.
(b) In the case b(t) = te−t we obtain

|n|2
∫ ∞
0
[r(s,−|n|2)]2 ds = |n|2

4 + 4|n|2

and hence Cb = 1/4.

Denote by Wn(t, θ) := cos(n, θ)β1n(t) + sin(n, θ)β
2
n(t), n ∈ Zds , that is the

n-th element in the expansion (4.42).

Definition 4.20. By a solution X(t, θ) to the stochastic Volterra equation
(4.33) we will understand the process of the form

(4.45) X(t, θ) =
√
γ0 β0(t) +

∑
n∈Zds

√
2γn

∫ t
−∞
r(t− s,−|n|2) dWn(s, θ),

where the function r is as above, t ≥ 0 and θ ∈ T d.
The process X given by (4.45) is a particular form of the weak solution to

the equation (4.33) (cf. [53]) and takes values in the space S′(T d).
The following is our main result.



90 Anna Karczewska

Theorem 4.21. Assume b ∈ L1(R+) is admissible for (4.33). Then, the
equation (4.33) has an Hα+1(T d)-valued solution if and only if the Fourier coef-
ficients (γn) of the covariance Γ satisfy

(4.46)
∑
n∈Zd

γn(1 + |n|2)α <∞.

In particular, equation (4.33) has an L2(T d)-valued solution if and only if∑
n∈Zd

γn
1 + |n|2 <∞.

Proof. We shall use the representation (4.42) for the Wiener processWΓ(t, θ)
with respect to the basis: 1, cos(n, θ), sin(n, θ), where n ∈ Zds and θ ∈ T d.
Equation (4.33) may be solved coordinatewise as follows.
Assume that

(4.47) X(t, θ) =
∑
n∈Zds

[cos(n, θ)X1n(t) + sin(n, θ)X
2
n(t)] +X0(t).

Introducing (4.47) into (4.33), we obtain

cos(n, θ)X1n(t) + sin(n, θ)X
2
n(t)

= − |n|2
∫ t
−∞
b(t− s)[cos(n, θ)X1n(s) + sin(n, θ)X2n(s)] ds

+
√
2γn

∫ t
−∞
b(t− s)[cos(n, θ)β1n(s) + sin(n, θ)β2n(s)] ds,

or, equivalently

[cos(n, θ), sin(n, θ)]
[
X1n(t)
X2n(t)

]

= − |n|2
∫ t
−∞
b(t− s)[cos(n, θ), sin(n, θ)]

[
X1n(s)
X2n(s)

]
ds

+
√
2γn

∫ t
−∞
b(t− s)[cos(n, θ), sin(n, θ)]

[
dβ1n(s)
dβ2n(s)

]
.

Denoting

Xn(t) :=
[
X1n(t)
X2n(t)

]
and βn(t) :=

[
β1n(t)
β2n(t)

]
we arrive at the equation

(4.48) Xn(t) = −|n|2
∫ t
−∞
b(t− s)Xn(s) ds+

√
2γn

∫ t
−∞
b(t− s) dβn(s).
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Taking Fourier transform in t, and making use of (4.43) with µ = −|n|2 and
(4.44), we get the following solution to the equation (4.48):

Xn(t) =
∫ t
−∞
r(t− s,−|n|2)

√
2γn dβn(s) =

∫ ∞
0
r(s,−|n|2)

√
2γn dβn(t− s).

Hence, we deduce the following explicit formula for the solution to the equation
(4.33):

(4.49) X(t, θ) =
√
γ0β0(t) +

∑
n∈Zds

√
2γn

[
cos(n, θ)

∫ ∞
0
r(s,−|n|2)dβ1n(t− s)

+ sin(n, θ)
∫ ∞
0
r(s,−|n|2) dβ2n(t− s)

]
.

Since the series defining the process X converges in S′(T d), P -almost surely, it
follows from the definition of the space Hα that X(t) ∈ Hα+1, P -almost surely
if and only if

(4.50)
∑
n∈Zd

(1 + |n|2)α+1γn
[(∫ t

−∞
r(t − s,−|n|2) dβ1n(s)

)2

+
(∫ t
−∞
r(t− s,−|n|2) dβ2n(s)

)2]
<∞.

Because the stochastic integrals in (4.50) are independent Gaussian random vari-
ables, we obtain that (4.50) holds P -almost surely if and only if

(4.51)
∑
n∈Zd

(1 + |n|2)α+1γnE
[(∫ t

−∞
r(t − s,−|n|2) dβ1n(s)

)2

+
(∫ t
−∞
r(t− s,−|n|2) dβ2n(s)

)2]
<∞.

Or equivalently, using properties of stochastic integrals, if and only if

(4.52)
∑
n∈Zd

(1 + |n|2)α+1γn
∫ ∞
0
[r(s,−|n|2)]2 ds <∞.

Since b is admissible for the equation (4.33), we conclude that (4.52) holds if and
only if ∑

n∈Zd

(1 + |n|2)α+1 γn|n|2 <∞,

and the proof is completed. �

Concerning uniqueness, we have the following result.
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Proposition 4.22. Assume b ∈ L1(R+) is admissible for (4.33) and the
following conditions hold:

(a)
∑
n∈Zd
γn(1 + |n|2)α <∞,

(b) {1/b̃(ik)}k∈Z ⊂ C \ {−|n|2 : n ∈ Zd}.
Then, (4.33) has a unique Hα+1(T d)-valued solution.

Proof. Let X(t, θ) be solution of

X(t, θ) =
∫ t
−∞
b(t− s)∆X(s, θ) ds.

Taking Fourier transform in θ and denoting by Xn(t) the n-th Fourier coefficient
of X(t, θ) (t fixed), we obtain

Xn(t) = −|n|2
∫ t
−∞
b(t− s)Xn(s) ds

for all n ∈ Zd. Taking now Fourier transform in t, we get that the Fourier
coefficients of Xn(t) (n fixed) satisfy

(1 + |n|2b̃(ik))X̂n(k) = 0

for all k ∈ Z. According to (b) we obtain that X̂n(k) = 0 for all k ∈ Z and all
n ∈ Zd. Hence, the assertion follows by uniqueness of the Fourier transform. �

The following corollaries are an immediate consequence of Theorem 4.21.
The arguments are the same as in [55]. We give here the proof for the sake of
completeness.

Corollary 4.23. Suppose b ∈ L1(R+) is admissible for (4.33) and assume
Γ ∈ L2(T d). Then the integro-differential stochastic equation (4.33) has a solu-
tion with values in L2(T d) for d = 1, 2, 3.

Proof. We have to check equation (4.46) with α = −1. Note, that if Γ ∈
L2(T d) then Γ̂ = (γn) ∈ l2(Zd). Consequently

∑
n∈Zd

γn
1 + |n|2 ≤

( ∑
n∈Zd

γn
2
)1/2( ∑

n∈Zd

1
(1 + |n|2)2

)1/2
.

But
∑
n∈Zd
γn
2 <∞ and

(4.53)
∑
n∈Zd

1
(1 + |n|2)q <∞ if and only if 2q > d.

Hence, the result follows. �
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Corollary 4.24. Suppose b ∈ L1(R+) is admissible for (4.33) and assume
Γ̂ ∈ lp(Zd) for 1 < p ≤ 2. Then the integro-differential stochastic equation (4.33)
has a solution with values in L2(T d) for all d < 2p/(p− 1).

Proof. Note that

∑
n∈Zd

γn
1 + |n|2 ≤

( ∑
n∈Zd

γn
p

)1/p( ∑
n∈Zd

1
(1 + |n|2)q

)1/q
,

where 1/p+ 1/q = 1. Hence the result follows from (4.53) with q = p/(p− 1).�

For α = −1, the condition (4.46) can be written as follows.

Theorem 4.25. Let b be admissible for the equation (4.33). Assume that the
covariance Γ is not only a positive definite distribution but is also a non-negative
measure. Then the equation (4.33) has L2(T d)-valued solution if and only if

(4.54) (Γ, Gd) <∞,

where

(4.55) Gd(x) =
∑
n∈Zd

∫ ∞
0

1√
(4πt)d

e−t e−|x+2πn|
2/t dt, x ∈ T d.

The proof of Theorem 4.25 is the same that for Theorem 2, part 2) in [55], so
we omit it. For more details concerning the function Gd we refer to [55] and [56].
Additionally, from properties of function Gd defined by (4.55) and the con-

dition (4.54) we obtain the following result (see [53, Theorem 6.1]).

Corollary 4.26. Assume that Γ is a non-negative measure and b is admis-
sible. Then equation (4.33) has function valued solutions:

(a) for all Γ if d = 1;
(b) for exactly those Γ for which

∫
|θ|≤1 ln |θ|Γ(dθ) <∞ if d = 2;

(c) for exactly those Γ for which
∫
|θ|≤1(1/|θ|d−2) Γ(dθ) <∞ if d ≥ 3.

In what follows, we will see that formula (4.49) also provides hölderianity of
X with respect to t. In order to do that, we need assumptions very similar to
those in [14].

(H2) Assume that there exist δ ∈ (0, 1) and Cδ > 0 such that, for all s ∈
(−∞, t) we have:
(a)
∫ t
s [r(t − τ,−|n|2)]2 dτ ≤ Cδ|n|2(δ−1) |t− s|δ;

(b)
∫ s
−∞[r(t− τ,−|n|2)− r(s− τ,−|n|2)]2 dτ ≤ Cδ|n|2(δ−1) |t− s|δ.
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Proposition 4.27. Assume that
∑
n∈Zd
γn/(1 + |n|2) <∞. Under hypoth-

esis (H2), the trajectories of the solution X to the equation (4.33) are almost
surely η-Hölder continuous with respect to t, for every η ∈ (0, δ/2).
Proof. From the expansion (4.49) and properties of stochastic integral, we

have

E ||X(t, θ)−X(s, θ)||2L2
=E

∥∥∥∥√γ0(β0(t)− β0(s)) + ∑
n∈Zds

√
2γn

[
cos(n, θ)

(∫ t
−∞
r(t− τ,−|n|2) dβ1n(τ)

−
∫ s
−∞
r(s− τ,−|n|2) dβ1n(τ)

)

+ sin(n, θ)
(∫ t
−∞
r(t− τ,−|n|2) dβ2n(τ)−

∫ s
−∞
r(s− τ,−|n|2) dβ2n(τ)

)]∥∥∥∥2
L2

=(2π)d
(
γ0|t− s|+

∑
n∈Zds

2γn

[ ∫ s
−∞
[r(t − τ,−|n|2)− r(s − τ,−|n|2)]2 dτ

+
∫ t
s

r2(t− τ,−|n|2) dτ
])
.

According to assumptions (a) and (b) of the hypothesis (H2), we have

E ||X(t, θ)−X(s, θ)||2L2 ≤ Cδ
∑
n∈Zds

2γn |n|2(δ−1)|t− s|δ.

Because X is a Gaussian process, then for any m ∈ N , there exists a constant
Cm > 0 that

E ||X(t, θ)−X(s, θ)||2mL2 ≤ Cm
[
Cδ
∑
n∈Zds

2γn |n|2(δ−1)
]m
|t− s|mδ.

Taking m such that mδ > 1 and using the Kolmogorov test, we see that the
solutionX(t, θ) is η-Hölder continuous, with respect to t, for η = δ/2−1/(2m).�
Example. Let us consider the particular case b(t) = e−t, t ≥ 0. Then, by

previous considerations, r(t,−|n|2) = e(1−|n|2) t. One can check that in this case
the hypothesis (H2) is fulfilled.

Remark. We observe that the condition (a) in hypothesis (H2) is the same
as

|n|2
∫ t
0
[r(s,−|n|2)]2 ds ≤ Cδ|n|2δ|t|δ

and hence it is nearly equivalent to say that the function b is admissible.
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