ON STOCHASTIC FRACTIONAL VOLTERRA EQUATIONS IN HILBERT SPACE

Anna Karczewska
Department of Mathematics, University of Zielona Góra ul. Szafrana 4a, 65-516 Zielona Góra, Poland
Carlos Lizama
Departamento de Matemática, Universidad de Santiago de Chile Casilla 307-Correo 2, Santiago, Chile

Abstract

In this paper, stochastic Volterra equations, particularly fractional, in Hilbert space are studied. Sufficient conditions for existence of strong solutions are provided.

1. Introduction. Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, P\right)$ be a stochastic basis and H a separable Hilbert space. In this paper we consider the stochastic Volterra equations in H of the form

$$
\begin{equation*}
X(t)=X(0)+\int_{0}^{t} a(t-\tau) A X(\tau) d \tau+\int_{0}^{t} \Psi(\tau) d W(\tau), \quad t \geq 0 \tag{1}
\end{equation*}
$$

In (11), $X(0)$ is an H-valued \mathcal{F}_{0}-measurable random variable and $a \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{+}\right)$is a scalar kernel. The operator A is closed linear unbounded in H with a dense domain $D(A)$ equipped with the graph norm $|\cdot|_{D(A)}$, i.e. $|h|_{D(A)}:=\left(|h|_{H}^{2}+|A h|_{H}^{2}\right)^{1 / 2}$, where $|\cdot|_{H}$ denotes the norm in $H . W$ is a cylindrical Wiener process (see e.g. [3] or [7] for the definition, properties and the stochastic integral with respect to that process) on another separable Hilbert space U, with the covariance operator $Q \in L(U) . Q$ is a linear symmetric positive operator with $\operatorname{Tr} Q=+\infty$ and Ψ is an appropriate process defined below.

Equations (1) contain important special cases, e.g. heat, wave and integro-differential equations. Moreover, (1) are motivated by a wide class of model problems and correspond to abstract stochastic versions of several deterministic problems, mentioned, e.g. in [13] (see also the references therein).

In order to provide a sense for the integral $\int_{0}^{t} \Psi(\tau) d W(\tau)$, the process $\Psi(t)$, $t \geq 0$, has to be an operator-valued process (see, e.g. 7]). We define the subspace $U_{0}:=Q^{1 / 2}(U)$ of the space U endowed with the inner product $\langle u, v\rangle_{U_{0}}:=$ $\left\langle Q^{-1 / 2} u, Q^{-1 / 2} v\right\rangle_{U}$. By $L_{2}^{0}:=L_{2}\left(U_{0}, H\right)$ we denote the set of all Hilbert-Schmidt operators acting from U_{0} into H; the set L_{2}^{0} equipped with the norm $\|C\|_{L_{2}\left(U_{0}, H\right)}:=$ $\left(\sum_{k=1}^{+\infty}\left|C u_{k}\right|_{H}^{2}\right)^{\frac{1}{2}}$, is a separable Hilbert space.

[^0]By $\mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$, where $T<+\infty$ is fixed, we denote a Hilbert space of all $L_{2^{-}}^{0}$ predictable processes Ψ such that $\|\Psi\|_{T}<+\infty$, where

$$
\|\Psi\|_{T}:=\left\{\mathbb{E}\left(\int_{0}^{T}\|\Psi(\tau)\|_{L_{2}^{0}}^{2} d \tau\right)\right\}^{\frac{1}{2}}=\left\{\mathbb{E} \int_{0}^{T}\left[\operatorname{Tr}\left(\Psi(\tau) Q^{\frac{1}{2}}\right)\left(\Psi(\tau) Q^{\frac{1}{2}}\right)^{*}\right] d \tau\right\}^{\frac{1}{2}}
$$

If $\Psi \in \mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$, then the integral $\int_{0}^{t} \Psi(\tau) d W(\tau)$ makes sense.
Let us note that the results obtained below for cylindrical Wiener process $(\operatorname{Tr} Q=$ $+\infty)$ hold for genuine Wiener process $(\operatorname{Tr} Q<+\infty)$, too. In the latter case, that is, if Q is a nuclear operator, $L(U, H) \subset L_{2}\left(U_{0}, H\right)$ and then the stochastic integral $\int_{0}^{t} \Psi(\tau) d W(\tau)$ is well defined (for details, see [7]).

In this paper, we use the so-called resolvent approach to the Volterra equation (1) (for details we refer to [13]).

First, we recall some definitions connected with deterministic version of (1), that is, the equation

$$
\begin{equation*}
u(t)=\int_{0}^{t} a(t-\tau) A u(\tau) d \tau+f(t), \quad t \geq 0 \tag{2}
\end{equation*}
$$

where f is an H-valued function. In (2), the kernel function $a(t)$ and the operator A are the same like previously.

Definition 1. A family $(S(t))_{t \geq 0}$ of bounded linear operators in H is called resolvent for $\sqrt{2}$ if the following conditions are satisfied:

1. $S(t)$ is strongly continuous on \mathbb{R}_{+}and $S(0)=I$;
2. $S(t)$ commutes with the operator A : $S(t)(D(A)) \subset D(A)$ and $A S(t) x=S(t) A x$ for all $x \in D(A)$ and $t \geq 0 ;$
3. the following resolvent equation holds

$$
\begin{equation*}
S(t) x=x+\int_{0}^{t} a(t-\tau) A S(\tau) x d \tau \tag{3}
\end{equation*}
$$

for all $x \in D(A), t \geq 0$.
We will assume in the sequel that the resolvent family $(S(t))_{t \geq 0}$, to (2) exists.
Let us emphasize that the family $(S(t))_{t \geq 0}$ does not create in general any semigroup and that $S(t), t \geq 0$, are generated by the pair $(A, a(t))$, that is, the operator A and the kernel function $a(t), t \geq 0$.

A consequence of the strong continuity of $S(t)$ is that $\sup _{t \leq T}\|S(t)\|<+\infty$ for any $T \geq 0$.
Definition 2. We say that the function $a \in L^{1}(0, T)$ is completely positive on $[0, T]$, if for any $\mu \geq 0$, the solutions of the equations

$$
\begin{equation*}
s(t)+\mu(a \star s)(t)=1 \quad \text { and } \quad r(t)+\mu(a \star r)(t)=a(t) \tag{4}
\end{equation*}
$$

satisfy $s(t) \geq 0$ and $r(t) \geq 0$ on $[0, T]$.
The class of completely positive kernels, introduced in [2], arise naturally in applications, see [13]. For instance, the functions $a(t) \equiv 1, a(t)=t, a(t)=e^{-t}$, $t \geq 0$, are completely positive.

Definition 3. Suppose $S(t), t \geq 0$, is a resolvent. $S(t)$ is called exponentially bounded if there are constants $M \geq 1$ and $\omega \in \mathbb{R}$ such that

$$
\|S(t)\| \leq M e^{\omega t}, \text { for all } t \geq 0
$$

(M, ω) is called a type of $S(t)$.
Let us note that contrary to C_{0}-semigroups, not every resolvent family needs to be exponentially bounded; for counterexamples we refer to [4].

In the paper, the key role is played by the following, not yet published, result providing a convergence of resolvents.
Theorem 1. Let A be the generator of a C_{0}-semigroup in H and suppose the kernel function a is completely positive. Then (A, a) admits an exponentially bounded resolvent $S(t)$. Moreover, there exist bounded operators A_{n} such that $\left(A_{n}, a\right)$ admit resolvent families $S_{n}(t)$ satisfying $\left\|S_{n}(t)\right\| \leq M e^{w_{0} t}\left(M \geq 1\right.$, $\left.w_{0} \geq 0\right)$ for all $t \geq 0, n \in \mathbb{N}$, and

$$
\begin{equation*}
S_{n}(t) x \rightarrow S(t) x \quad \text { as } \quad n \rightarrow+\infty \tag{5}
\end{equation*}
$$

for all $x \in H, t \geq 0$.
Additionally, the convergence is uniform in t on every compact subset of \mathbb{R}_{+}.
Proof. The first assertion follows directly from [12, Theorem 5] (see also [13, Theorem 4.2]). Since A generates a C_{0}-semigroup $T(t), t \geq 0$, the resolvent set $\rho(A)$ of A contains the ray $[w, \infty)$ and

$$
\left\|R(\lambda, A)^{k}\right\| \leq \frac{M}{(\lambda-w)^{k}} \quad \text { for } \lambda>w, \quad k \in \mathbb{N}
$$

where $R(\lambda, A)=(\lambda I-A)^{-1}, \lambda \in \rho(A)$.
Define

$$
\begin{equation*}
A_{n}:=n A R(n, A)=n^{2} R(n, A)-n I, \quad n>w \tag{6}
\end{equation*}
$$

the Yosida approximation of A, where $R(n, A)=(n I-A)^{-1}$. For details, see e.g. 11.

Then

$$
\begin{aligned}
\left\|e^{t A_{n}}\right\| & =e^{-n t}\left\|e^{n^{2} R(n, A) t}\right\| \leq e^{-n t} \sum_{k=0}^{\infty} \frac{n^{2 k} t^{k}}{k!}\left\|R(n, A)^{k}\right\| \\
& \leq M e^{\left(-n+\frac{n^{2}}{n-w}\right) t}=M e^{\frac{n w t}{n-w}}
\end{aligned}
$$

Hence, for $n>2 w$ we obtain

$$
\begin{equation*}
\left\|e^{A_{n} t}\right\| \leq M e^{2 w t} \tag{7}
\end{equation*}
$$

Taking into account the above estimate and the complete positivity of the kernel function a, we can follow the same steps as in [12, Theorem 5] to obtain that there exist constants $M_{1}>0$ and $w_{1} \in \mathbb{R}$ (independent of n, due to 77$)$ such that

$$
\left\|\left[H_{n}(\lambda)\right]^{(k)}\right\| \leq \frac{M_{1}}{\left(\lambda-w_{1}\right)^{k+1}} \quad \text { for } \lambda>w_{1}
$$

where $H_{n}(\lambda):=\left(\lambda-\lambda \hat{a}(\lambda) A_{n}\right)^{-1}$. Here and in the sequel the hat indicates the Laplace transform. Hence, the generation theorem for resolvent families implies that for each $n>2 \omega$, the pair $\left(A_{n}, a\right)$ admits resolvent family $S_{n}(t)$ such that

$$
\begin{equation*}
\left\|S_{n}(t)\right\| \leq M_{1} e^{w_{1} t} \tag{8}
\end{equation*}
$$

In particular, the Laplace transform $\hat{S}_{n}(\lambda)$ exists and satisfies

$$
\hat{S}_{n}(\lambda)=H_{n}(\lambda)=\int_{0}^{\infty} e^{-\lambda t} S_{n}(t) d t, \quad \lambda>w_{1}
$$

Now recall from semigroup theory that for all μ sufficiently large we have

$$
R\left(\mu, A_{n}\right)=\int_{0}^{\infty} e^{-\mu t} e^{A_{n} t} d t
$$

as well as,

$$
R(\mu, A)=\int_{0}^{\infty} e^{-\mu t} T(t) d t
$$

Since $\hat{a}(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$, we deduce that for all λ sufficiently large, we have

$$
H_{n}(\lambda):=\frac{1}{\lambda \hat{a}(\lambda)} R\left(\frac{1}{\hat{a}(\lambda)}, A_{n}\right)=\frac{1}{\lambda \hat{a}(\lambda)} \int_{0}^{\infty} e^{(-1 / \hat{a}(\lambda)) t} e^{A_{n} t} d t
$$

and

$$
H(\lambda):=\frac{1}{\lambda \hat{a}(\lambda)} R\left(\frac{1}{\hat{a}(\lambda)}, A\right)=\frac{1}{\lambda \hat{a}(\lambda)} \int_{0}^{\infty} e^{(-1 / \hat{a}(\lambda)) t} T(t) d t
$$

Hence, from the identity

$$
H_{n}(\lambda)-H(\lambda)=\frac{1}{\lambda \hat{a}(\lambda)}\left[R\left(\frac{1}{\hat{a}(\lambda)}, A_{n}\right)-R\left(\frac{1}{\hat{a}(\lambda)}, A\right)\right]
$$

and the fact that $R\left(\mu, A_{n}\right) \rightarrow R(\mu, A)$ as $n \rightarrow \infty$ for all μ sufficiently large (see, e.g. [11, Lemma 7.3], we obtain that

$$
\begin{equation*}
H_{n}(\lambda) \rightarrow H(\lambda) \quad \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

Finally, due to (8) and (9) we can use the Trotter-Kato theorem for resolvent families of operators (cf. [9, Theorem 2.1]) and the conclusion follows.

Remark 1. (a) The convergence (5) is an extension of the result due to Clément and Nohel [2].
(b) The above theorem gives a partial answer to the following open problem for a resolvent family $S(t)$ generated by a pair (A, a) : do there exist bounded linear operators A_{n} generating resolvent families $S_{n}(t)$ such that $S_{n}(t) x \rightarrow S(t) x$?. In particular case $a(t) \equiv 1, A_{n}$ are provided by the Hille-Yosida approximation of A and additionally $S_{n}(t)=e^{t A_{n}}$.
2. Probabilistic results. In the sequel we shall use the following Probability Assumptions, abbr. (PA):

1. $X(0)$ is an H-valued, \mathcal{F}_{0}-measurable random variable;
2. $\Psi \in \mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$ and the interval $[0, T]$ is fixed.

The following types of definitions of solutions to (1) are possible, see [8].
Definition 4. Assume that (PA) hold. An H-valued predictable process $X(t)$, $t \in[0, T]$, is said to be a strong solution to (1), if X has a version such that $P(X(t) \in D(A))=1$ for almost all $t \in[0, T]$; for any $t \in[0, T]$

$$
\begin{equation*}
\int_{0}^{t}|a(t-\tau) A X(\tau)|_{H} d \tau<+\infty, \quad P-\text { a.s. } \tag{10}
\end{equation*}
$$

and for any $t \in[0, T]$ the equation (1) holds P-a.s.
Let A^{*} be the adjoint of A with a dense domain $D\left(A^{*}\right) \subset H$ and the graph norm $|\cdot|_{D\left(A^{*}\right)}$ defined as follows: $|h|_{D\left(A^{*}\right)}:=\left(|h|_{H}^{2}+\left|A^{*} h\right|_{H}^{2}\right)^{1 / 2}$ for $h \in D\left(A^{*}\right)$.

Definition 5. Let (PA) hold. An H-valued predictable process $X(t), t \in[0, T]$, is said to be a weak solution to (1), if $P\left(\int_{0}^{t}|a(t-\tau) X(\tau)|_{H} d \tau<+\infty\right)=1$ and if for all $\xi \in D\left(A^{*}\right)$ and all $t \in[0, T]$ the following equation holds

$$
\begin{aligned}
\langle X(t), \xi\rangle_{H}= & \langle X(0), \xi\rangle_{H}+\left\langle\int_{0}^{t} a(t-\tau) X(\tau) d \tau, A^{*} \xi\right\rangle_{H} \\
& +\left\langle\int_{0}^{t} \Psi(\tau) d W(\tau), \xi\right\rangle_{H}, \quad P-\text { a.s. }
\end{aligned}
$$

Definition 6. Assume that $X(0)$ is \mathcal{F}_{0}-measurable random variable. An H-valued predictable process $X(t), t \in[0, T]$, is said to be a mild solution to the stochastic Volterra equation $\sqrt{1}$, if $\mathbb{E}\left(\int_{0}^{t}\|S(t-\tau) \Psi(\tau)\|_{L_{2}^{0}}^{2} d \tau\right)<+\infty$ for $t \leq T$ and, for arbitrary $t \in[0, T]$,

$$
\begin{equation*}
X(t)=S(t) X(0)+\int_{0}^{t} S(t-\tau) \Psi(\tau) d W(\tau), \quad P-\text { a.s. } \tag{11}
\end{equation*}
$$

The integral appearing in will be called stochastic convolution and denoted by

$$
\begin{equation*}
W^{\Psi}(t):=\int_{0}^{t} S(t-\tau) \Psi(\tau) d W(\tau), \quad t \geq 0 \tag{12}
\end{equation*}
$$

where $\Psi \in \mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$.
We will show in the sequel that the convolution W^{Ψ} is a weak solution to 11 and next we will provide sufficient conditions under which W^{Ψ} is a strong solution to (1), as well.

Let us recall (from [3] and [8]) some properties of the convolution $W^{\Psi}(t), t \geq 0$.
Proposition 1. (see, e.g. 3, Proposition 4.15])
Assume that A is a closed linear unbounded operator with the dense domain $D(A) \subset$ H and $\Phi(t), t \in[0, T]$ is an $L_{2}\left(U_{0}, H\right)$-predictable process. If $\Phi(t)\left(U_{0}\right) \subset D(A)$, $P-$ a.s. for all $t \in[0, T]$ and

$$
\begin{gathered}
P\left(\int_{0}^{T}\|\Phi(s)\|_{L_{2}^{0}}^{2} d s<\infty\right)=1, P\left(\int_{0}^{T}\|A \Phi(s)\|_{L_{2}^{0}}^{2} d s<\infty\right)=1 \\
\text { then } P\left(\int_{0}^{T} \Phi(s) d W(s) \in D(A)\right)=1 \\
\text { and } A \int_{0}^{T} \Phi(s) d W(s)=\int_{0}^{T} A \Phi(s) d W(s), P-a . s
\end{gathered}
$$

For the proofs of Propositions 2, 3 and 4 we refer to [8].
Proposition 2. Assume that (2) admits resolvent operators $S(t), t \geq 0$. Then, for arbitrary process $\Psi \in \mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$, the process $W^{\Psi}(t)$, $t \geq 0$, given by (12) has a predictable version.

Proposition 3. Assume that $\Psi \in \mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$. Then the process $W^{\Psi}(t), t \geq 0$, defined by (12) has square integrable trajectories.

Proposition 4. If $\Psi \in \mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$, then the stochastic convolution W^{Ψ} fulfills the equation

$$
\left\langle W^{\Psi}(t), \xi\right\rangle_{H}=\int_{0}^{t}\left\langle a(t-\tau) W^{\Psi}(\tau), A^{*} \xi\right\rangle_{H}+\int_{0}^{t}\langle\xi, \Psi(\tau) d W(\tau)\rangle_{H}, \quad P-a . s .
$$

for any $t \in[0, T]$ and $\xi \in D\left(A^{*}\right)$.
Proposition 4 shows that the convolution W^{Ψ} is a weak solution to (1) (see [8]) and enables us to formulate the following results.
Proposition 5. Let A be the generator of C_{0}-semigroup in H and suppose that the function a is completely positive. If Ψ and $A \Psi$ belong to $\mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$ and in addition $\Psi(t)\left(U_{0}\right) \subset D(A), P$-a.s., then the following equality holds

$$
\begin{equation*}
W^{\Psi}(t)=\int_{0}^{t} a(t-\tau) A W^{\Psi}(\tau) d \tau+\int_{0}^{t} \Psi(\tau) d W(\tau), \quad P-a . s . \tag{13}
\end{equation*}
$$

Proof. Because formula holds for any bounded operator, then it holds for the Yosida approximation A_{n} of the operator A, too, that is

$$
W_{n}^{\Psi}(t)=\int_{0}^{t} a(t-\tau) A_{n} W_{n}^{\Psi}(\tau) d \tau+\int_{0}^{t} \Psi(\tau) d W(\tau)
$$

where

$$
W_{n}^{\Psi}(t):=\int_{0}^{t} S_{n}(t-\tau) \Psi(\tau) d W(\tau)
$$

and

$$
A_{n} W_{n}^{\Psi}(t)=A_{n} \int_{0}^{t} S_{n}(t-\tau) \Psi(\tau) d W(\tau)
$$

Recall that by assumption $\Psi \in \mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$. Because the operators $S_{n}(t)$ are deterministic and bounded for any $t \in[0, T], n \in \mathbb{N}$, then the operators $S_{n}(t-\cdot) \Psi(\cdot)$ belong to $\mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$, too. In consequence, the difference

$$
\begin{equation*}
\Phi_{n}(t-\cdot):=S_{n}(t-\cdot) \Psi(\cdot)-S(t-\cdot) \Psi(\cdot) \tag{14}
\end{equation*}
$$

belongs to $\mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$ for any $t \in[0, T]$ and $n \in \mathbb{N}$. This means that

$$
\begin{equation*}
\mathbb{E}\left(\int_{0}^{t}\left|\Phi_{n}(t-\tau)\right|_{L_{2}^{0}}^{2} d \tau\right)<+\infty \tag{15}
\end{equation*}
$$

for any $t \in[0, T]$.
Let us recall (see [7]) that the cylindrical Wiener process $W(t), t \geq 0$, can be written in the form

$$
\begin{equation*}
W(t)=\sum_{j=1}^{+\infty} f_{j} \beta_{j}(t) \tag{16}
\end{equation*}
$$

where $\left\{f_{j}\right\}$ is an orthonormal basis of U_{0} and $\beta_{j}(t)$ are independent real Wiener processes. From we have

$$
\begin{equation*}
\int_{0}^{t} \Phi_{n}(t-\tau) d W(\tau)=\sum_{j=1}^{+\infty} \int_{0}^{t} \Phi_{n}(t-\tau) f_{j} d \beta_{j}(\tau) \tag{17}
\end{equation*}
$$

Then, from 15

$$
\begin{equation*}
\mathbb{E}\left[\int_{0}^{t}\left(\sum_{j=1}^{+\infty}\left|\Phi_{n}(t-\tau) f_{j}\right|_{H}^{2}\right) d \tau\right]<+\infty \tag{18}
\end{equation*}
$$

for any $t \in[0, T]$. Next, from (17), properties of stochastic integral and 18 we obtain for any $t \in[0, T]$, that

$$
\begin{aligned}
\mathbb{E}\left|\int_{0}^{t} \Phi_{n}(t-\tau) d W(\tau)\right|_{H}^{2} & =\mathbb{E}\left|\sum_{j=1}^{+\infty} \int_{0}^{t} \Phi_{n}(t-\tau) f_{j} d \beta_{j}(\tau)\right|_{H}^{2} \leq \\
\mathbb{E}\left[\sum_{j=1}^{+\infty} \int_{0}^{t}\left|\Phi_{n}(t-\tau) f_{j}\right|_{H}^{2} d \tau\right] & \leq \mathbb{E}\left[\sum_{j=1}^{+\infty} \int_{0}^{T}\left|\Phi_{n}(T-\tau) f_{j}\right|_{H}^{2} d \tau\right]<+\infty
\end{aligned}
$$

By Theorem 1, the convergence (5) of resolvent families is uniform in t on every compact subset of \mathbb{R}_{+}, particularly on the interval $[0, T]$. Then, for any fixed j,

$$
\begin{equation*}
\int_{0}^{T}\left|\left[S_{n}(T-\tau)-S(T-\tau)\right] \Psi(\tau) f_{j}\right|_{H}^{2} d \tau \longrightarrow 0, \quad \text { as } \quad n \rightarrow \text { infty } \tag{19}
\end{equation*}
$$

So, using (18) and 19 we can write

$$
\begin{aligned}
\sup _{t \in[0, T]} \mathbb{E}\left|\int_{0}^{t} \Phi_{n}(t-\tau) d W(\tau)\right|_{H}^{2} & \equiv \sup _{t \in[0, T]} \mathbb{E}\left|\int_{0}^{t}\left[S_{n}(t-\tau)-S(t-\tau)\right] \Psi(\tau) d W(\tau)\right|_{H}^{2} \\
& \leq \mathbb{E}\left[\sum_{j=1}^{+\infty} \int_{0}^{T}\left|\left[S_{n}(T-\tau)-S(T-\tau)\right] \Psi(\tau) f_{j}\right|_{H}^{2} d \tau\right] \rightarrow 0
\end{aligned}
$$

as $n \rightarrow+\infty$.
Hence, by the Lebesgue dominated convergence theorem

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sup _{t \in[0, T]} \mathbb{E}\left|W_{n}^{\Psi}(t)-W^{\Psi}(t)\right|_{H}^{2}=0 \tag{20}
\end{equation*}
$$

By assumption, $\Psi(t)\left(U_{0}\right) \subset D(A), P-$ a.s. Because $S(t)(D(A)) \subset D(A)$, then $S(t-\tau) \Psi(\tau)\left(U_{0}\right) \subset D(A), P-$ a.s., for any $\tau \in[0, t], t \geq 0$. Hence, by Proposition 1, $P\left(W^{\Psi}(t) \in D(A)\right)=1$.

For any $n \in \mathbb{N}, t \geq 0$, we can estimate

$$
\begin{equation*}
\left|A_{n} W_{n}^{\Psi}(t)-A W^{\Psi}(t)\right|_{H}^{2}<3\left[N_{n, 1}^{2}(t)+N_{n, 2}^{2}(t)\right] \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
N_{n, 1}(t) & :=\left|A_{n} W_{n}^{\Psi}(t)-A_{n} W^{\Psi}(t)\right|_{H} \\
N_{n, 2}(t) & :=\left|A_{n} W^{\Psi}(t)-A W^{\Psi}(t)\right|_{H}
\end{aligned}
$$

Using the convergence of resolvents (5) and the Yoshida approximation properties, we can follow the same steps as above for proving

$$
\lim _{n \rightarrow+\infty} \sup _{t \in[0, T]} \mathbb{E}\left(N_{n, 1}^{2}(t)\right) \rightarrow 0
$$

and

$$
\lim _{n \rightarrow+\infty} \sup _{t \in[0, T]} \mathbb{E}\left(N_{n, 2}^{2}(t)\right) \rightarrow 0
$$

Therefore, we can deduce that

$$
\lim _{n \rightarrow+\infty} \sup _{t \in[0, T]} \mathbb{E}\left|A_{n} W_{n}^{\Psi}(t)-A W^{\Psi}(t)\right|_{H}^{2}=0
$$

and then 13 holds.

Theorem 2. Suppose that assumptions of Proposition 5 hold. Then the equation (1) has a strong solution. Precisely, the convolution W^{Ψ} given by (12) is the strong solution to (1).

Proof. In order to prove Theorem 2, we have to show only the condition (10). Let us note that the convolution W^{Ψ} has integrable trajectories. Because the closed unbounded linear operator A becomes bounded on $\left(D(A),|\cdot|_{D(A)}\right)$, see [14, Chapter 5], we obtain that $A W^{\Psi}(\cdot) \in L^{1}([0, T] ; H)$, P-a.s. Hence, properties of convolution provide integrability of the function $a(T-\tau) A W^{\Psi}(\tau)$ with respect to τ, what finishes the proof.
3. Fractional Volterra equations. As we have already written, (2) contains some class of equations. For instance when $a(t)=\frac{t^{\alpha-1}}{\Gamma(\alpha)}, \alpha>0$, we obtain integrodifferential equations studied by many authors, see e.g. [1] and references therein. These facts lead us to the fractional stochastic Volterra equations of the form

$$
\begin{equation*}
X(t)=X(0)+\int_{0}^{t} g_{\alpha}(t-\tau) A X(\tau) d \tau+\int_{0}^{t} \Psi(\tau) d W(\tau), \quad t \geq 0 \tag{22}
\end{equation*}
$$

where $g_{\alpha}(t)=\frac{t^{\alpha-1}}{\Gamma(\alpha)}, \alpha>0$. Let us emphasize that for $\alpha \in(0,1], g_{\alpha}$ are completely positive, but for $\alpha>1, g_{\alpha}$ are not completely positive.

Now, the pairs $\left(A, g_{\alpha}(t)\right)$ generate α-times resolvents $S_{\alpha}(t), t \geq 0$ which are analogous to resolvents defined in section 1, for more details, see [1].

Remark 2. Observe that the α-times resolvent family corresponds to a C_{0}-semigroup in case $\alpha=1$ and a cosine family in case $\alpha=2$. (Let us recall, e.g. from [5], that a family $\mathcal{C}(t), t \geq 0$, of linear bounded operators on H is called cosine family if for every $t, s \geq 0, t>s: \mathcal{C}(t+s)+\mathcal{C}(t-s)=2 \mathcal{C}(t) \mathcal{C}(s)$.) In consequence, when $1<\alpha<2$ such resolvent families interpolate C_{0}-semigroups and cosine functions. In particular, for $A=\Delta$, the integro-differential equations corresponding to such resolvent families interpolate the heat equation and the wave equation, see, e.g. [6].

We consider two cases:
(A1): A is the generator of C_{0}-semigroup and $\alpha \in(0,1)$;
(A2): A is the generator of a strongly continuous cosine family and $\alpha \in(0,2)$.
In this part of the paper, the results concerning a weak convergence of α-times resolvents play the key role. Using the very recent result due to Li and Zheng [10], we can formulate the approximation theorems for fractional Volterra equations.

Theorem 3. Let A be the generator of a C_{0}-semigroup $(T(t))_{t \geq 0}$ in H such that $\|T(t)\| \leq M e^{\omega t}, t \geq 0$. Then, for each $0<\alpha<1$ there exist bounded operators A_{n} and α-times resolvent families $S_{\alpha, n}(t)$ for A_{n} satisfying $\left\|S_{\alpha, n}(t)\right\| \leq M C e^{(2 \omega)^{1 / \alpha} t}$, for all $t \geq 0, n \in \mathbb{N}$, and

$$
\begin{equation*}
S_{\alpha, n}(t) x \rightarrow S_{\alpha}(t) x \quad \text { as } \quad n \rightarrow+\infty \tag{23}
\end{equation*}
$$

for all $x \in H, t \geq 0$. Moreover, the convergence is uniform in t on every compact subset of \mathbb{R}_{+}.

Outline of the proof. The first assertion follows from [1, Theorem 3.1], that is, for each $0<\alpha<1$ there is an α-times resolvent family $\left(S_{\alpha}(t)\right)_{t \geq 0}$ for A given by

$$
S_{\alpha}(t) x=\int_{0}^{\infty} \varphi_{t, \alpha}(s) T(s) x d s, \quad t>0
$$

where $\varphi_{t, \gamma}(s):=t^{-\gamma} \Phi_{\gamma}\left(s t^{-\gamma}\right)$ and $\Phi_{\gamma}(z)$ is the Wright function defined as

$$
\Phi_{\gamma}(z):=\sum_{n=0}^{\infty} \frac{(-z)^{n}}{n!\Gamma(-\gamma n+1-\gamma)}, \quad 0<\gamma<1
$$

Define

$$
A_{n}:=n A R(n, A)=n^{2} R(n, A)-n I, \quad n>w
$$

the Yosida approximation of A.
Since each A_{n} is bounded, it follows that for each $0<\alpha<1$ there exists an α-times resolvent family $\left(S_{\alpha, n}(t)\right)_{t \geq 0}$ for A_{n} given as

$$
S_{\alpha, n}(t)=\int_{0}^{\infty} \varphi_{t, \alpha}(s) e^{s A_{n}} d s, \quad t>0
$$

We recall that the Laplace transform of the Wright function corresponds to $E_{\gamma}(-z)$ where E_{γ} denotes the Mittag-Leffler function. In particular, $\Phi_{\gamma}(z)$ is a probability density function. It follows that for $t \geq 0$:

$$
\begin{aligned}
\left\|S_{\alpha, n}(t)\right\| & \leq \int_{0}^{\infty} \varphi_{t, \alpha}(s)\left\|e^{s A_{n}}\right\| d s \\
& \leq M \int_{0}^{\infty} \varphi_{t, \alpha}(s) e^{2 \omega s} d s=M \int_{0}^{\infty} \Phi_{\alpha}(\tau) e^{2 \omega t^{\alpha} \tau} d \tau=M E_{\alpha}\left(2 \omega t^{\alpha}\right)
\end{aligned}
$$

The continuity in $t \geq 0$ of the Mittag-Leffler function and its asymptotic behavior, imply that for $\omega \geq 0$ there exists a constant $C>0$ such that

$$
E_{\alpha}\left(\omega t^{\alpha}\right) \leq C e^{\omega^{1 / \alpha} t}, \quad t \geq 0, \alpha \in(0,2)
$$

This gives

$$
\left\|S_{\alpha, n}(t)\right\| \leq M C e^{(2 \omega)^{1 / \alpha} t}, \quad t \geq 0
$$

Now we recall the fact that $R\left(\lambda, A_{n}\right) x \rightarrow R(\lambda, A) x$ as $n \rightarrow \infty$ for all λ sufficiently large (e.g. [11, Lemma 7.3]), so we can conclude from [10, Theorem 4.2] that

$$
S_{\alpha, n}(t) x \rightarrow S_{\alpha}(t) x \quad \text { as } \quad n \rightarrow+\infty
$$

for all $x \in H$, uniformly for t on every compact subset of \mathbb{R}_{+}
An analogous convergence for α-times resolvents can be proved in another case, too.

Theorem 4. Let A be the generator of a C_{0}-cosine family $(T(t))_{t \geq 0}$ in H. Then, for each $0<\alpha<2$ there exist bounded operators A_{n} and α-times resolvent families $S_{\alpha, n}(t)$ for A_{n} satisfying $\left\|S_{\alpha, n}(t)\right\| \leq M C e^{(2 \omega)^{1 / \alpha} t}$, for all $t \geq 0, n \in \mathbb{N}$, and $S_{\alpha, n}(t) x \rightarrow S_{\alpha}(t) x$ as $n \rightarrow+\infty$ for all $x \in H, t \geq 0$. Moreover, the convergence is uniform in t on every compact subset of \mathbb{R}_{+}.

Now, we are able to formulate the result analogous to that in section 2 ,
Theorem 5. Assume that (A1) or (A2) holds. If Ψ and $A \Psi$ belong to $\mathcal{N}^{2}\left(0, T ; L_{2}^{0}\right)$ and in addition $\Psi(t)\left(U_{0}\right) \subset D(A), P$-a.s., then the equation (1) has a strong solution. Precisely, the convolution

$$
W_{\alpha}^{\Psi}(t):=\int_{0}^{t} S_{\alpha}(t-\tau) \Psi(\tau) d W(\tau)
$$

is the strong solution to (1).

Outline of the proof. First, analogously like in section 2, we show that the convolution $W_{\alpha}^{\Psi}(t)$ fulfills the following equation

$$
\begin{equation*}
W_{\alpha}^{\Psi}(t)=\int_{0}^{t} g_{\alpha}(t-\tau) A W_{\alpha}^{\Psi}(\tau) d \tau+\int_{0}^{t} \Psi(\tau) d W(\tau) \tag{24}
\end{equation*}
$$

Next, we have to show the condition

$$
\begin{equation*}
\int_{0}^{T}\left|g_{\alpha}(T-\tau) A W_{\alpha}^{\Psi}(\tau)\right|_{H} d \tau<+\infty, \quad P-a . s ., \quad \alpha>0 \tag{25}
\end{equation*}
$$

that is, the condition (10) adapted for the fractional Volterra equation (22).
The convolution $W_{\alpha}^{\Psi}(t)$ has integrable trajectories, that is, $W_{\alpha}^{\Psi}(\cdot) \in L^{1}([0, T] ; H)$, P-a.s. The closed linear unbounded operator A becomes bounded on $\left(D(A),|\cdot|_{D(A)}\right)$, see [14, Chapter 5]. Hence, $A W_{\alpha}^{\Psi}(\cdot) \in L^{1}([0, T] ; H)$, P-a.s. Therefore, the function $g_{\alpha}(T-\tau) A W_{\alpha}^{\Psi}(\tau)$ is integrable with respect to τ, what completes the proof.

Acknowledgements. The authors thank the referee for a careful reading of the manuscript and useful remarks.

REFERENCES

[1] E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces," Ph.D. Dissertation, Eindhoven University of Technology, 2001.
[2] Ph. Clément, J. A. Nohel, Abstract linear and nonlinear Volterra equations preserving positivity, SIAM J. Math. Anal., 10 (1979), 365-388.
[3] G. Da Prato, J. Zabczyk, "Stochastic equations in infinite dimensions," Cambridge University Press, Cambridge, 1992.
[4] W. Desch, J. Prüss, Counterexamples for abstract linear Volterra equations, J. Integral Eqns. Appl., 5 (1993), 29-45.
[5] H. O. Fattorini, "The Cauchy Problem," Addison-Wesley Publishing Company, London, 1983.
[6] Y. Fujita, Integrodifferential equations which interpolates the heat equation and the wave equation, J. Math. Phys., 30 (1989), 134-144.
[7] A. Karczewska, Stochastic integral with respect to cylindrical Wiener process, Annales Universitatis Mariae Curie-Skłodowska Sec. A, Vol. LII.2,9 (1998), 79-93. http://xxx.lanl.gov/ps/math.PR/0511512.
[8] A. Karczewska, Properties of convolutions arising in stochastic Volterra equations, preprint; http://xxx.lanl.gov/ps/math.PR/0410510.
[9] C. Lizama, On an extension of the Trotter-Kato theorem for resolvent families of operators, J. Integral Eqns. Appl., 2(2) (1990), 269-280.
[10] M. Li, Q. Zheng, On spectral inclusions and approximations of α-times resolvent families, Semigroup Forum, 69 (2004), 356-368.
[11] A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Math. Sciences, 44, Springer, New York, 1983.
[12] J. Prüss, Positivity and regularity of hiperbolic Volterra equations in Banach spaces, Math. Ann., 279 (1987), 317-344.
[13] J. Prüss, "Evolutionary integral equations and applications," Birkhäuser, Basel, 1993.
[14] J. Weidmann, "Linear operators in Hilbert spaces," Springer, New York, 1980.
Received September 2006; revised February 2007.

```
E-mail address: A.Karczewska@im.uz.zgora.pl
E-mail address: clizama@lauca.usach.cl
```


[^0]: 2000 Mathematics Subject Classification. Primary: 60H15, 60H20; Secondary: 60H05, 45D05
 Key words and phrases. Stochastic fractional Volterra equation, α-times resolvent, strong solution, stochastic convolution, convergence of resolvent families.

 Both authors are partially supported by Laboratorio de Análisis Estocástico, PBCT-ACT13.

