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Abstract. In this paper, stochastic Volterra equations, particularly fractional,

in Hilbert space are studied. Sufficient conditions for existence of strong solu-
tions are provided.

1. Introduction. Let (Ω,F , (Ft)t≥0, P ) be a stochastic basis and H a separable
Hilbert space. In this paper we consider the stochastic Volterra equations in H of
the form

X(t) = X(0) +
∫ t

0

a(t− τ)AX(τ)dτ +
∫ t

0

Ψ(τ) dW (τ), t ≥ 0 . (1)

In (1), X(0) is an H-valued F0-measurable random variable and a ∈ L1
loc(R+) is a

scalar kernel. The operator A is closed linear unbounded in H with a dense domain
D(A) equipped with the graph norm | · |D(A), i.e. |h|D(A) := (|h|2H + |Ah|2H)1/2,
where | · |H denotes the norm in H. W is a cylindrical Wiener process (see e.g.
[3] or [7] for the definition, properties and the stochastic integral with respect to
that process) on another separable Hilbert space U , with the covariance operator
Q ∈ L(U). Q is a linear symmetric positive operator with TrQ = +∞ and Ψ is an
appropriate process defined below.

Equations (1) contain important special cases, e.g. heat, wave and integro-diffe-
rential equations. Moreover, (1) are motivated by a wide class of model problems
and correspond to abstract stochastic versions of several deterministic problems,
mentioned, e.g. in [13] (see also the references therein).

In order to provide a sense for the integral
∫ t

0
Ψ(τ)dW (τ), the process Ψ(t),

t ≥ 0, has to be an operator-valued process (see, e.g. [7]). We define the sub-
space U0 := Q1/2(U) of the space U endowed with the inner product 〈u, v〉U0 :=
〈Q−1/2u, Q−1/2v〉U . By L0

2 := L2(U0,H) we denote the set of all Hilbert-Schmidt
operators acting from U0 into H; the set L0

2 equipped with the norm ||C||L2(U0,H) :=(∑+∞
k=1 |Cuk|2H

) 1
2
, is a separable Hilbert space.
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By N 2(0, T ;L0
2), where T < +∞ is fixed, we denote a Hilbert space of all L0

2-
predictable processes Ψ such that ||Ψ||T < +∞, where

||Ψ||T :=

{
E

(∫ T

0

||Ψ(τ)||2L0
2
dτ

)} 1
2

=

{
E
∫ T

0

[
Tr(Ψ(τ)Q

1
2 )(Ψ(τ)Q

1
2 )∗
]
dτ

} 1
2

.

If Ψ ∈ N 2(0, T ;L0
2), then the integral

∫ t

0
Ψ(τ) dW (τ) makes sense.

Let us note that the results obtained below for cylindrical Wiener process (Tr Q =
+∞) hold for genuine Wiener process (TrQ < +∞), too. In the latter case, that
is, if Q is a nuclear operator, L(U,H) ⊂ L2(U0,H) and then the stochastic integral∫ t

0
Ψ(τ)dW (τ) is well defined (for details, see [7]).

In this paper, we use the so-called resolvent approach to the Volterra equation
(1) (for details we refer to [13]).

First, we recall some definitions connected with deterministic version of (1), that
is, the equation

u(t) =
∫ t

0

a(t− τ)Au(τ)dτ + f(t), t ≥ 0, (2)

where f is an H-valued function. In (2), the kernel function a(t) and the operator
A are the same like previously.

Definition 1. A family (S(t))t≥0 of bounded linear operators in H is called resol-
vent for (2) if the following conditions are satisfied:

1. S(t) is strongly continuous on R+ and S(0) = I;
2. S(t) commutes with the operator A:

S(t)(D(A)) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0;
3. the following resolvent equation holds

S(t)x = x +
∫ t

0

a(t− τ)A S(τ)x dτ (3)

for all x ∈ D(A), t ≥ 0.

We will assume in the sequel that the resolvent family (S(t))t≥0, to (2) exists.
Let us emphasize that the family (S(t))t≥0 does not create in general any semi-

group and that S(t), t ≥ 0, are generated by the pair (A, a(t)), that is, the operator
A and the kernel function a(t), t ≥ 0.

A consequence of the strong continuity of S(t) is that supt≤T ||S(t)|| < +∞ for
any T ≥ 0.

Definition 2. We say that the function a ∈ L1(0, T ) is completely positive on
[0, T ], if for any µ ≥ 0, the solutions of the equations

s(t)+µ(a ? s)(t) = 1 and r(t)+µ(a ? r)(t) = a(t) (4)

satisfy s(t) ≥ 0 and r(t) ≥ 0 on [0, T ].

The class of completely positive kernels, introduced in [2], arise naturally in
applications, see [13]. For instance, the functions a(t) ≡ 1, a(t) = t, a(t) = e−t,
t ≥ 0, are completely positive.

Definition 3. Suppose S(t), t ≥ 0, is a resolvent. S(t) is called exponentially
bounded if there are constants M ≥ 1 and ω ∈ R such that

||S(t)|| ≤ M eωt, for all t ≥ 0 ;
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(M,ω) is called a type of S(t).

Let us note that contrary to C0-semigroups, not every resolvent family needs to
be exponentially bounded; for counterexamples we refer to [4].

In the paper, the key role is played by the following, not yet published, result
providing a convergence of resolvents.

Theorem 1. Let A be the generator of a C0-semigroup in H and suppose the kernel
function a is completely positive. Then (A, a) admits an exponentially bounded
resolvent S(t). Moreover, there exist bounded operators An such that (An, a) admit
resolvent families Sn(t) satisfying ||Sn(t)|| ≤ Mew0t (M ≥ 1, w0 ≥ 0) for all
t ≥ 0, n ∈ N, and

Sn(t)x → S(t)x as n → +∞ (5)

for all x ∈ H, t ≥ 0.
Additionally, the convergence is uniform in t on every compact subset of R+.

Proof. The first assertion follows directly from [12, Theorem 5] (see also [13, Theo-
rem 4.2]). Since A generates a C0-semigroup T (t), t ≥ 0, the resolvent set ρ(A) of
A contains the ray [w,∞) and

||R(λ, A)k|| ≤ M

(λ− w)k
for λ > w, k ∈ N,

where R(λ, A) = (λI −A)−1, λ ∈ ρ(A).
Define

An := nAR(n, A) = n2R(n, A)− nI, n > w (6)

the Yosida approximation of A, where R(n, A) = (nI−A)−1. For details, see e.g.
[11].

Then

||etAn || = e−nt||en2R(n,A)t|| ≤ e−nt
∞∑

k=0

n2ktk

k!
||R(n, A)k||

≤ Me(−n+ n2
n−w )t = Me

nwt
n−w .

Hence, for n > 2w we obtain

||eAnt|| ≤ Me2wt. (7)

Taking into account the above estimate and the complete positivity of the kernel
function a, we can follow the same steps as in [12, Theorem 5] to obtain that there
exist constants M1 > 0 and w1 ∈ R (independent of n, due to (7)) such that

||[Hn(λ)](k)|| ≤ M1

(λ− w1)k+1
for λ > w1,

where Hn(λ) := (λ − λâ(λ)An)−1. Here and in the sequel the hat indicates the
Laplace transform. Hence, the generation theorem for resolvent families implies
that for each n > 2ω, the pair (An, a) admits resolvent family Sn(t) such that

||Sn(t)|| ≤ M1e
w1t. (8)

In particular, the Laplace transform Ŝn(λ) exists and satisfies

Ŝn(λ) = Hn(λ) =
∫ ∞

0

e−λtSn(t)dt, λ > w1.



544 ANNA KARCZEWSKA AND CARLOS LIZAMA

Now recall from semigroup theory that for all µ sufficiently large we have

R(µ,An) =
∫ ∞

0

e−µt eAnt dt

as well as,

R(µ,A) =
∫ ∞

0

e−µt T (t) dt .

Since â(λ) → 0 as λ →∞, we deduce that for all λ sufficiently large, we have

Hn(λ) :=
1

λâ(λ)
R(

1
â(λ)

, An) =
1

λâ(λ)

∫ ∞

0

e(−1/â(λ))teAntdt ,

and

H(λ) :=
1

λâ(λ)
R(

1
â(λ)

, A) =
1

λâ(λ)

∫ ∞

0

e(−1/â(λ))tT (t)dt .

Hence, from the identity

Hn(λ)−H(λ) =
1

λâ(λ)
[R(

1
â(λ)

, An)−R(
1

â(λ)
, A)]

and the fact that R(µ, An) → R(µ,A) as n → ∞ for all µ sufficiently large (see,
e.g. [11, Lemma 7.3], we obtain that

Hn(λ) → H(λ) as n →∞ . (9)

Finally, due to (8) and (9) we can use the Trotter-Kato theorem for resolvent families
of operators (cf. [9, Theorem 2.1]) and the conclusion follows. �

Remark 1. (a) The convergence (5) is an extension of the result due to Clément
and Nohel [2].

(b) The above theorem gives a partial answer to the following open problem for
a resolvent family S(t) generated by a pair (A, a): do there exist bounded linear
operators An generating resolvent families Sn(t) such that Sn(t)x → S(t)x?. In
particular case a(t) ≡ 1, An are provided by the Hille-Yosida approximation of A
and additionally Sn(t) = etAn .

2. Probabilistic results. In the sequel we shall use the following Probability
Assumptions, abbr. (PA):

1. X(0) is an H-valued, F0-measurable random variable;
2. Ψ ∈ N 2(0, T ;L0

2) and the interval [0, T ] is fixed.

The following types of definitions of solutions to (1) are possible, see [8].

Definition 4. Assume that (PA) hold. An H-valued predictable process X(t),
t ∈ [0, T ], is said to be a strong solution to (1), if X has a version such that
P (X(t) ∈ D(A)) = 1 for almost all t ∈ [0, T ]; for any t ∈ [0, T ]∫ t

0

|a(t− τ)AX(τ)|H dτ < +∞, P−a.s. (10)

and for any t ∈ [0, T ] the equation (1) holds P -a.s.

Let A∗ be the adjoint of A with a dense domain D(A∗) ⊂ H and the graph norm
| · |D(A∗) defined as follows: |h|D(A∗) := (|h|2H + |A∗h|2H)1/2 for h ∈ D(A∗).
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Definition 5. Let (PA) hold. An H-valued predictable process X(t), t ∈ [0, T ],
is said to be a weak solution to (1), if P (

∫ t

0
|a(t− τ)X(τ)|Hdτ < +∞) = 1 and if

for all ξ ∈ D(A∗) and all t ∈ [0, T ] the following equation holds

〈X(t), ξ〉H =〈X(0), ξ〉H + 〈
∫ t

0

a(t− τ)X(τ) dτ, A∗ξ〉H

+ 〈
∫ t

0

Ψ(τ)dW (τ), ξ〉H , P−a.s.

Definition 6. Assume that X(0) is F0-measurable random variable. An H-valued
predictable process X(t), t ∈ [0, T ], is said to be a mild solution to the stochastic
Volterra equation (1), if E(

∫ t

0
||S(t − τ)Ψ(τ)||2

L0
2
dτ) < +∞ for t ≤ T and, for

arbitrary t ∈ [0, T ],

X(t) = S(t)X(0) +
∫ t

0

S(t− τ)Ψ(τ) dW (τ), P−a.s. (11)

The integral appearing in (11) will be called stochastic convolution and de-
noted by

WΨ(t) :=
∫ t

0

S(t− τ)Ψ(τ) dW (τ), t ≥ 0, (12)

where Ψ ∈ N 2(0, T ;L0
2).

We will show in the sequel that the convolution WΨ is a weak solution to (1)
and next we will provide sufficient conditions under which WΨ is a strong solution
to (1), as well.

Let us recall (from [3] and [8]) some properties of the convolution WΨ(t), t ≥ 0.

Proposition 1. (see, e.g.[3, Proposition 4.15])
Assume that A is a closed linear unbounded operator with the dense domain D(A) ⊂
H and Φ(t), t ∈ [0, T ] is an L2(U0,H)-predictable process. If Φ(t)(U0) ⊂ D(A),
P − a.s. for all t ∈ [0, T ] and

P

(∫ T

0

||Φ(s)||2L0
2
ds < ∞

)
= 1, P

(∫ T

0

||AΦ(s)||2L0
2
ds < ∞

)
= 1,

then P

(∫ T

0

Φ(s) dW (s) ∈ D(A)

)
= 1

and A

∫ T

0

Φ(s) dW (s) =
∫ T

0

AΦ(s) dW (s), P − a.s.

For the proofs of Propositions 2, 3 and 4 we refer to [8].

Proposition 2. Assume that (2) admits resolvent operators S(t), t ≥ 0. Then, for
arbitrary process Ψ ∈ N 2(0, T ;L0

2), the process WΨ(t), t ≥ 0, given by (12) has a
predictable version.

Proposition 3. Assume that Ψ ∈ N 2(0, T ;L0
2). Then the process WΨ(t), t ≥ 0,

defined by (12) has square integrable trajectories.
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Proposition 4. If Ψ ∈ N 2(0, T ;L0
2), then the stochastic convolution WΨ fulfills

the equation

〈WΨ(t), ξ〉H =
∫ t

0

〈a(t− τ)WΨ(τ), A∗ξ〉H +
∫ t

0

〈ξ,Ψ(τ)dW (τ)〉H , P − a.s.

for any t ∈ [0, T ] and ξ ∈ D(A∗).

Proposition 4 shows that the convolution WΨ is a weak solution to (1) (see [8])
and enables us to formulate the following results.

Proposition 5. Let A be the generator of C0-semigroup in H and suppose that
the function a is completely positive. If Ψ and AΨ belong to N 2(0, T ;L0

2) and in
addition Ψ(t)(U0) ⊂ D(A), P -a.s., then the following equality holds

WΨ(t) =
∫ t

0

a(t− τ)A WΨ(τ) dτ +
∫ t

0

Ψ(τ) dW (τ), P − a.s. (13)

Proof. Because formula (13) holds for any bounded operator, then it holds for the
Yosida approximation An of the operator A, too, that is

WΨ
n (t) =

∫ t

0

a(t− τ)AnWΨ
n (τ)dτ +

∫ t

0

Ψ(τ)dW (τ),

where

WΨ
n (t) :=

∫ t

0

Sn(t− τ)Ψ(τ)dW (τ)

and

AnWΨ
n (t) = An

∫ t

0

Sn(t− τ)Ψ(τ)dW (τ).

Recall that by assumption Ψ ∈ N 2(0, T ;L0
2). Because the operators Sn(t) are

deterministic and bounded for any t ∈ [0, T ], n ∈ N, then the operators Sn(t−·)Ψ(·)
belong to N 2(0, T ;L0

2), too. In consequence, the difference

Φn(t− ·) := Sn(t− ·)Ψ(·)− S(t− ·)Ψ(·) (14)

belongs to N 2(0, T ;L0
2) for any t ∈ [0, T ] and n ∈ N. This means that

E
(∫ t

0

|Φn(t− τ)|2L0
2
dτ

)
< +∞ (15)

for any t ∈ [0, T ].
Let us recall (see [7]) that the cylindrical Wiener process W (t), t ≥ 0, can be

written in the form

W (t) =
+∞∑
j=1

fj βj(t), (16)

where {fj} is an orthonormal basis of U0 and βj(t) are independent real Wiener
processes. From (16) we have∫ t

0

Φn(t− τ) dW (τ) =
+∞∑
j=1

∫ t

0

Φn(t− τ) fj dβj(τ). (17)

Then, from (15)

E

∫ t

0

+∞∑
j=1

|Φn(t− τ) fj |2H

 dτ

 < +∞ (18)
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for any t ∈ [0, T ]. Next, from (17), properties of stochastic integral and (18) we
obtain for any t ∈ [0, T ], that

E
∣∣∣∣∫ t

0

Φn(t− τ) dW (τ)
∣∣∣∣2
H

= E

∣∣∣∣∣∣
+∞∑
j=1

∫ t

0

Φn(t− τ) fj dβj(τ)

∣∣∣∣∣∣
2

H

≤

E

+∞∑
j=1

∫ t

0

|Φn(t− τ) fj |2Hdτ

 ≤ E

+∞∑
j=1

∫ T

0

|Φn(T − τ) fj |2Hdτ

 < +∞.

By Theorem 1, the convergence (5) of resolvent families is uniform in t on every
compact subset of R+, particularly on the interval [0, T ]. Then, for any fixed j,∫ T

0

|[Sn(T − τ)− S(T − τ)]Ψ(τ) fj |2Hdτ −→ 0, as n → infty. (19)

So, using (18) and (19) we can write

sup
t∈[0,T ]

E
∣∣∣∣∫ t

0

Φn(t−τ)dW (τ)
∣∣∣∣2
H

≡ sup
t∈[0,T ]

E
∣∣∣∣∫ t

0

[Sn(t−τ)−S(t−τ)]Ψ(τ)dW (τ)
∣∣∣∣2
H

≤ E

+∞∑
j=1

∫ T

0

|[Sn(T−τ)−S(T−τ)]Ψ(τ) fj |2Hdτ

→0

as n → +∞.
Hence, by the Lebesgue dominated convergence theorem

lim
n→+∞

sup
t∈[0,T ]

E
∣∣WΨ

n (t)−WΨ(t)
∣∣2
H

= 0. (20)

By assumption, Ψ(t)(U0) ⊂ D(A), P − a.s. Because S(t)(D(A)) ⊂ D(A),
then S(t − τ)Ψ(τ)(U0) ⊂ D(A), P − a.s., for any τ ∈ [0, t], t ≥ 0. Hence, by
Proposition 1, P (WΨ(t) ∈ D(A)) = 1.

For any n ∈ N, t ≥ 0, we can estimate

|AnWΨ
n (t)−AWΨ(t)|2H < 3[N2

n,1(t) + N2
n,2(t)], (21)

where

Nn,1(t) := |AnWΨ
n (t)−AnWΨ(t)|H ,

Nn,2(t) := |AnWΨ(t)−AWΨ(t)|H .

Using the convergence of resolvents (5) and the Yoshida approximation properties,
we can follow the same steps as above for proving

lim
n→+∞

sup
t∈[0,T ]

E(N2
n,1(t)) → 0

and
lim

n→+∞
sup

t∈[0,T ]

E(N2
n,2(t)) → 0 .

Therefore, we can deduce that

lim
n→+∞

sup
t∈[0,T ]

E|AnWΨ
n (t)−AWΨ(t)|2H = 0,

and then (13) holds. �
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Theorem 2. Suppose that assumptions of Proposition 5 hold. Then the equation
(1) has a strong solution. Precisely, the convolution WΨ given by (12) is the strong
solution to (1).

Proof. In order to prove Theorem 2, we have to show only the condition (10). Let
us note that the convolution WΨ has integrable trajectories. Because the closed
unbounded linear operator A becomes bounded on (D(A), | · |D(A)), see [14, Chapter
5], we obtain that AWΨ(·) ∈ L1([0, T ];H), P-a.s. Hence, properties of convolution
provide integrability of the function a(T−τ)AWΨ(τ) with respect to τ , what finishes
the proof. �

3. Fractional Volterra equations. As we have already written, (2) contains
some class of equations. For instance when a(t) = tα−1

Γ(α) , α > 0, we obtain integro-
differential equations studied by many authors, see e.g. [1] and references therein.
These facts lead us to the fractional stochastic Volterra equations of the form

X(t) = X(0) +
∫ t

0

gα(t− τ)AX(τ)dτ +
∫ t

0

Ψ(τ) dW (τ), t ≥ 0, (22)

where gα(t) = tα−1

Γ(α) , α > 0. Let us emphasize that for α ∈ (0, 1], gα are completely
positive, but for α > 1, gα are not completely positive.

Now, the pairs (A, gα(t)) generate α-times resolvents Sα(t), t ≥ 0 which are
analogous to resolvents defined in section 1; for more details, see [1].

Remark 2. Observe that the α-times resolvent family corresponds to a C0-semi-
group in case α = 1 and a cosine family in case α = 2. (Let us recall, e.g. from [5],
that a family C(t), t ≥ 0, of linear bounded operators on H is called cosine family
if for every t, s ≥ 0, t > s: C(t + s) + C(t − s) = 2C(t)C(s).) In consequence, when
1 < α < 2 such resolvent families interpolate C0-semigroups and cosine functions.
In particular, for A = ∆, the integro-differential equations corresponding to such
resolvent families interpolate the heat equation and the wave equation, see, e.g. [6].

We consider two cases:
(A1): A is the generator of C0-semigroup and α ∈ (0, 1);
(A2): A is the generator of a strongly continuous cosine family and α ∈ (0, 2).
In this part of the paper, the results concerning a weak convergence of α-times

resolvents play the key role. Using the very recent result due to Li and Zheng [10],
we can formulate the approximation theorems for fractional Volterra equations.

Theorem 3. Let A be the generator of a C0-semigroup (T (t))t≥0 in H such that
||T (t)|| ≤ Meωt, t ≥ 0. Then, for each 0 < α < 1 there exist bounded operators An

and α-times resolvent families Sα,n(t) for An satisfying ||Sα,n(t)|| ≤ MCe(2ω)1/αt,
for all t ≥ 0, n ∈ N, and

Sα,n(t)x → Sα(t)x as n → +∞ (23)

for all x ∈ H, t ≥ 0. Moreover, the convergence is uniform in t on every compact
subset of R+.

Outline of the proof. The first assertion follows from [1, Theorem 3.1], that is, for
each 0 < α < 1 there is an α-times resolvent family (Sα(t))t≥0 for A given by

Sα(t)x =
∫ ∞

0

ϕt,α(s)T (s)xds, t > 0,



STOCHASTIC FRACTIONAL VOLTERRA EQUATIONS 549

where ϕt,γ(s) := t−γΦγ(st−γ) and Φγ(z) is the Wright function defined as

Φγ(z) :=
∞∑

n=0

(−z)n

n! Γ(−γn + 1− γ)
, 0 < γ < 1.

Define
An := nAR(n, A) = n2R(n, A)− nI, n > w,

the Yosida approximation of A.
Since each An is bounded, it follows that for each 0 < α < 1 there exists an

α-times resolvent family (Sα,n(t))t≥0 for An given as

Sα,n(t) =
∫ ∞

0

ϕt,α(s)esAnds, t > 0.

We recall that the Laplace transform of the Wright function corresponds to
Eγ(−z) where Eγ denotes the Mittag-Leffler function. In particular, Φγ(z) is a
probability density function. It follows that for t ≥ 0:

‖Sα,n(t)‖ ≤
∫ ∞

0

ϕt,α(s)‖esAn‖ds

≤ M

∫ ∞

0

ϕt,α(s)e2ωsds = M

∫ ∞

0

Φα(τ)e2ωtατdτ = MEα(2ωtα).

The continuity in t ≥ 0 of the Mittag-Leffler function and its asymptotic behavior,
imply that for ω ≥ 0 there exists a constant C > 0 such that

Eα(ωtα) ≤ Ceω1/αt, t ≥ 0, α ∈ (0, 2).

This gives

‖Sα,n(t)‖ ≤ MCe(2ω)1/αt, t ≥ 0.

Now we recall the fact that R(λ, An)x → R(λ, A)x as n →∞ for all λ sufficiently
large (e.g. [11, Lemma 7.3]), so we can conclude from [10, Theorem 4.2] that

Sα,n(t)x → Sα(t)x as n → +∞

for all x ∈ H, uniformly for t on every compact subset of R+

An analogous convergence for α-times resolvents can be proved in another case,
too.

Theorem 4. Let A be the generator of a C0-cosine family (T (t))t≥0 in H. Then,
for each 0 < α < 2 there exist bounded operators An and α-times resolvent families
Sα,n(t) for An satisfying ||Sα,n(t)|| ≤ MCe(2ω)1/αt, for all t ≥ 0, n ∈ N, and
Sα,n(t)x → Sα(t)x as n → +∞ for all x ∈ H, t ≥ 0. Moreover, the convergence is
uniform in t on every compact subset of R+.

Now, we are able to formulate the result analogous to that in section 2.

Theorem 5. Assume that (A1) or (A2) holds. If Ψ and AΨ belong to N 2(0, T ;L0
2)

and in addition Ψ(t)(U0) ⊂ D(A), P -a.s., then the equation (1) has a strong solu-
tion. Precisely, the convolution

WΨ
α (t) :=

∫ t

0

Sα(t− τ) Ψ(τ) dW (τ)

is the strong solution to (1).
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Outline of the proof. First, analogously like in section 2, we show that the convolu-
tion WΨ

α (t) fulfills the following equation

WΨ
α (t) =

∫ t

0

gα(t− τ)A WΨ
α (τ) dτ +

∫ t

0

Ψ(τ) dW (τ) . (24)

Next, we have to show the condition∫ T

0

|gα(T − τ)AWΨ
α (τ)|H dτ < +∞, P − a.s., α > 0, (25)

that is, the condition (10) adapted for the fractional Volterra equation (22).
The convolution WΨ

α (t) has integrable trajectories, that is, WΨ
α (·) ∈ L1([0, T ];H),

P-a.s. The closed linear unbounded operator A becomes bounded on (D(A), |·|D(A)),
see [14, Chapter 5]. Hence, AWΨ

α (·) ∈ L1([0, T ];H), P-a.s. Therefore, the function
gα(T − τ)AWΨ

α (τ) is integrable with respect to τ , what completes the proof.
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