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ABSTRACT. In this paper, stochastic Volterra equations, particularly fractional,
in Hilbert space are studied. Sufficient conditions for existence of strong solu-
tions are provided.

1. Introduction. Let (2, F, (F:)i>0, P) be a stochastic basis and H a separable
Hilbert space. In this paper we consider the stochastic Volterra equations in H of
the form

X(?f)=X(0)+/0 a(t—r)AX(r)dr+/0 U(r)dW(r), t>0. (1)

In , X (0) is an H-valued Fo-measurable random variable and a € L .(RT) is a
scalar kernel. The operator A is closed linear unbounded in H with a dense domain
D(A) equipped with the graph norm | - [pay, ie. [h|peay = (|} + |Ah|%)Y2,
where | - | denotes the norm in H. W is a cylindrical Wiener process (see e.g.
[B] or [7] for the definition, properties and the stochastic integral with respect to
that process) on another separable Hilbert space U, with the covariance operator
Q € L(U). Q is a linear symmetric positive operator with Tr Q) = +o0 and ¥ is an
appropriate process defined below.

Equations (|1) contain important special cases, e.g. heat, wave and integro-diffe-
rential equations. Moreover, are motivated by a wide class of model problems
and correspond to abstract stochastic versions of several deterministic problems,
mentioned, e.g. in [I3] (see also the references therein).

In order to provide a sense for the integral fg\D(T)dW(T), the process W(t),
t > 0, has to be an operator-valued process (see, e.g. [7]). We define the sub-
space Uy := QY/2(U) of the space U endowed with the inner product (u,v)y, :=
(Q'?u,Q='?v)y. By LY := Ly(Uy, H) we denote the set of all Hilbert-Schmidt

operators acting from Uy into H; the set L9 equipped with the norm ||C] | Lo (U0, H) =
1

( e \C’uk|2H>§, is a separable Hilbert space.
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By N?2(0,T;LY), where T < 400 is fixed, we denote a Hilbert space of all L3-
predictable processes ¥ such that ||¥||r < 400, where

1]z = {E ( [ o, d7> } - {E [ [mweehmeedy] dT}Z |

If ¥ € N2(0,T; LY), then the integral fot U(7) dW (7) makes sense.

Let us note that the results obtained below for cylindrical Wiener process (Tr @ =
+00) hold for genuine Wiener process (Tr Q) < +00), too. In the latter case, that
is, if @ is a nuclear operator, L(U, H) C Lo(Uy, H) and then the stochastic integral

fg U(7)dW (1) is well defined (for details, see [7]).

In this paper, we use the so-called resolvent approach to the Volterra equation
(for details we refer to [13]).

First, we recall some definitions connected with deterministic version of , that
is, the equation

u(t) = /0 a(t — 7) Au(r)dr + f(t), t>0, 2)

where f is an H-valued function. In , the kernel function a(t) and the operator
A are the same like previously.

Definition 1. A family (S(t)):>0 of bounded linear operators in H is called resol-
vent for if the following conditions are satisfied:
1. S(t) is strongly continuous on Ry and S(0) = I;
2. S(t) commutes with the operator A:
S(t)(D(A)) C D(A) and AS(t)z = S(t)Ax for all x € D(A) and ¢ > 0;
3. the following resolvent equation holds

Stz =z + /0 a(t — 7)AS(r)z dr 3)

for all x € D(A), t > 0.

We will assume in the sequel that the resolvent family (S(t))¢>o, to exists.

Let us emphasize that the family (S(¢));>0 does not create in general any semi-
group and that S(t), t > 0, are generated by the pair (A, a(t)), that is, the operator
A and the kernel function a(t), ¢ > 0.

A consequence of the strong continuity of S(t) is that sup,«p [|S(¢)|| < +oo for
any T' > 0. -

Definition 2. We say that the function a € L*(0,T) is completely positive on
[0,T7, if for any p > 0, the solutions of the equations

st)+p(axs)(t) =1 and r(t)+ulaxr)(t) = a(t) (4)
satisfy s(¢) > 0 and r(¢) > 0 on [0, 7.

The class of completely positive kernels, introduced in [2], arise naturally in
applications, see [13]. For instance, the functions a(t) = 1, a(t) = t, a(t) = e ¢,

t > 0, are completely positive.

Definition 3. Suppose S(t), ¢t > 0, is a resolvent. S(t) is called exponentially
bounded if there are constants M > 1 and w € R such that

[[S(t)|] < M e, forall t >0 ;
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(M,w) is called a type of S(t).

Let us note that contrary to Cp-semigroups, not every resolvent family needs to
be exponentially bounded; for counterexamples we refer to [4].

In the paper, the key role is played by the following, not yet published, result
providing a convergence of resolvents.

Theorem 1. Let A be the generator of a Cy-semigroup in H and suppose the kernel
function a is completely positive. Then (A,a) admits an exponentially bounded
resolvent S(t). Moreover, there exist bounded operators A, such that (Ay,a) admit
resolvent families Sy(t) satisfying ||S,(t)|| < Me“t (M > 1, wo > 0) for all
t>0, neN, and

Sp(t)r — S(t)r as n— +oo (5)
forallz e H, t > 0.

Additionally, the convergence is uniform in t on every compact subset of R..

Proof. The first assertion follows directly from [I2, Theorem 5] (see also [I3 Theo-
rem 4.2]). Since A generates a Co-semigroup T'(t), ¢ > 0, the resolvent set p(A) of
A contains the ray [w, 00) and

M
k
where R(\, A) = (M — A)~1, X € p(A).
Define
A, :=nAR(n,A) = n*R(n, A) —nl, n>uw (6)
the Yosida approximation of A, where R(n, A) = (nI — A)~!. For details, see e.g.
[11].
Then
tA —nt|| n?R(n,A)t —nt = nkh k
[l = e B < ey T || R(n, A)"|
k=0
< MR Z pfents
Hence, for n > 2w we obtain
||eA”t < M 2wt (7)

Taking into account the above estimate and the complete positivity of the kernel
function a, we can follow the same steps as in [I2, Theorem 5] to obtain that there
exist constants M; > 0 and w; € R (independent of n, due to ) such that

M,
(A — wy)k+1
where H, () := (A — Ma(\)A,)~!. Here and in the sequel the hat indicates the

Laplace transform. Hence, the generation theorem for resolvent families implies
that for each n > 2w, the pair (A,,,a) admits resolvent family S,,(¢) such that

1Sn(®)]] < Mye™". (8)

||[Hn()‘)](k)|| < for A > wy,

In particular, the Laplace transform S, (M) exists and satisfies

S,(\) = H,(\) = / e NS, (H)dt, A > w.
0
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Now recall from semigroup theory that for all y sufficiently large we have
o0
R(u, A,) = / e M eAnt gt
0
as well as,
o0
R(p, A) = / e MT(t)dt.
0

Since a(A) — 0 as A — oo, we deduce that for all A sufficiently large, we have

Ho(\) = — R(— 4,) = —! / REV IR
0

Aa(N)” ra(N)’ Aa(A)
and .
H(\) = )\dl(A)R(d(l)\),A) = )\dl()\) /O eV a0t (1),
Hence, from the identity
1 1 1
Ha(N) = HO) = a5 (R An) = Rl A)

and the fact that R(u, A,) — R(u, A) as n — oo for all u sufficiently large (see,
e.g. [I1l Lemma 7.3], we obtain that

H,(\) — H(A) asn— 0. (9)

Finally, due to (8] and @D we can use the Trotter-Kato theorem for resolvent families
of operators (cf. [9, Theorem 2.1]) and the conclusion follows. O

Remark 1. (a) The convergence is an extension of the result due to Clément
and Nohel [2].

(b) The above theorem gives a partial answer to the following open problem for
a resolvent family S(¢) generated by a pair (4,a): do there exist bounded linear
operators A, generating resolvent families S, (¢) such that S,(t)z — S(t)z?. In
particular case a(t) = 1, A, are provided by the Hille-Yosida approximation of A
and additionally S, (t) = et~.

2. Probabilistic results. In the sequel we shall use the following Probability
Assumptions, abbr. (PA):

1. X(0) is an H-valued, Fp-measurable random variable;
2. U e N%(0,T; LY) and the interval [0, 7] is fixed.

The following types of definitions of solutions to are possible, see [§].

Definition 4. Assume that (PA) hold. An H-valued predictable process X(t),
t € [0,T], is said to be a strong solution to , if X has a version such that
P(X(t) € D(A)) =1 for almost all ¢t € [0, T7]; for any ¢ € [0,T]

/Ot la(t — T)AX (7)|gr dm < 400, P—as. (10)

and for any ¢ € [0, 7] the equation (1)) holds P-a.s.

Let A* be the adjoint of A with a dense domain D(A*) C H and the graph norm
|- |p(a~) defined as follows: |h|p(a-) == (|h|} +|A*h|3;)1/? for h € D(A*).
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Definition 5. Let (PA) hold. An H-valued predictable process X(¢), ¢t € [0,T],
is said to be a weak solution to , if P(f(;t la(t — 7) X (7)|gdT < +00) =1 and if
for all £ € D(A*) and all ¢ € [0,T] the following equation holds

(X(8), €)1 =(X(0), )t + ( /0 aft — 1) X (1) dr, A*€) i

ny /O W)W (7), E)m,  Pas,

Definition 6. Assume that X (0) is Fo-measurable random variable. An H-valued
predictable process X (t), ¢ € [0,T], is said to be amild solution to the stochastic
Volterra equation , if E(fot ||S(t — T)\IJ(T)||:23 dr) < 400 for t < T and, for
arbitrary t € [0, 7],

X(t) = S()X(0) + /O St — )1 dW(r), P-as. (11)

The integral appearing in will be called stochastic convolution and de-
noted by

WY (f) = /OtS(t—T)q/de(T), £>0, (12)

where ¥ € N2(0,T; L3).
We will show in the sequel that the convolution WY is a weak solution to
and next we will provide sufficient conditions under which WY is a strong solution

to (1), as well.
Let us recall (from [3] and [§]) some properties of the convolution WY (), t > 0.

Proposition 1. (see, e.g.[3, Proposition 4.15])

Assume that A is a closed linear unbounded operator with the dense domain D(A) C
H and ®(t), t € [0,T] is an La(Uy, H)-predictable process. If ®(t)(Up) C D(A),
P —a.s. for allt € [0,T] and

T T
P(/ |(I>(s)||%ods<oo> =1, P</ ||A<I>(s)|2Lods<oo> =1,
0 2 0 2

then P (/T O(s)dW(s) € D(A)) =1
0
T T
and A/o O(s)dW(s) :/0 AD(s)dW (s), P — a.s.

For the proofs of Propositions and [4] we refer to [g].

Proposition 2. Assume that @ admits resolvent operators S(t), t > 0. Then, for
arbitrary process W € N2(0,T; LY), the process WY (t), t > 0, given by has a
predictable version.

Proposition 3. Assume that ¥V € N?(0,T;L3Y). Then the process W¥(t), t > 0,
defined by (@ has square integrable trajectories.
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Proposition 4. If U € N?2(0,T;LY), then the stochastic convolution WY fulfills
the equation
¢

(WY (1), :/O (alt — YWY (r), A%€)y +A (€ U(H)AW (D), P —as.
for any t € [0,T] and £ € D(A*).

Proposition 4] shows that the convolution WY is a weak solution to (1)) (see [§])
and enables us to formulate the following results.

Proposition 5. Let A be the generator of Cy-semigroup in H and suppose that
the function a is completely positive. If ¥ and AW belong to N*(0,T;LY) and in
addition V(t)(Up) C D(A), P-a.s., then the following equality holds

Y(t) = ta -7 Y(r)dr t T T —a.s.
% (t)—/o (t— D) AWY(r)d +/0 W(r)dW(r), P (13)

Proof. Because formula holds for any bounded operator, then it holds for the
Yosida approximation A,, of the operator A, too, that is
t

wﬁaw3/3u—fwuwfvmf+/\wﬂavw»

0 0
where

/S (t — 1)U (1)dW (1)
and
A WY (¢t /S (t —7)U(1)dW (T).

Recall that by assumption ¥ € NZ2(0,7;LY). Because the operators S, (t) are
deterministic and bounded for any t € [O T] n € N, then the operators Sy, (t—)¥(-)
belong to N2(0,T; LY), too. In consequence, the difference

Ot =) 1= Sn(t = )W() = St —)¥() (14)
belongs to N'2(0, T LY) for any ¢ € [0,7] and n € N. This means that

</ [P, ( |Lod7'> < +00 (15)
for any ¢ € [0,7].

Let us recall (see [7]) that the cylindrical Wiener process W (t), t > 0, can be
written in the form

+oo
=358, (16)

where {f;} is an orthonormal basis of Uy and §;(t) are independent real Wiener
processes. From we have

t +o0
| @utt-ryawe) Z/ ™) £y dB; (). (7)
0
Then, from
IE/O Z|<1> ) fil% | dr| < +oo (18)
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for any ¢ € [0,T]. Next, from (I7), properties of stochastic integral and we
obtain for any ¢ € [0, T], that

2

“+oo t
_ ]EZ/ B, (t —7) f;dB;(7)| <

H

2

E /0 D, (t—7)dW(T)

H

IN

+oo ¢
B[S [ foatt— 1) fhar
j=1"9

By Theorem |1} the convergence of resolvent families is uniform in ¢ on every
compact subset of R, particularly on the interval [0, T]. Then, for any fixed j,

+oo LT
E Z/ |®,(T — 7) f|%dr | < +o0.
j=1"0

T
/0 I[Sn(T — 1) — S(T — 1) ¥(7) fi|3,dT — 0, as n — infty. (19)

So, using and we can write
2

= sup E
H  te[0,T]

2

sup E
te[0,T]

/Cbn(t—T)dW(T) /[Sn(t—T)—S(t—T)]\II(T)dW(T)
0 0

H
+oo LT

< B> [1I8(T-7)-S@-0)¥(r) ffydr | -0
=170

as n — +00.
Hence, by the Lebesgue dominated convergence theorem

lim  sup E|WY(t) - W), =0. (20)
n—+ 4c[0,T)
By assumption, ¥(t)(Uy) € D(A), P — a.s. Because S(¢)(D(A)) C D(A),
then S(t — RW(T)(UO) C D(A), P —a.s., for any 7 € [0,t], t > 0. Hence, by
1}

Proposition |1} P(WY(t) € D(4)) = 1.
For any n € N, ¢ > 0, we can estimate
[ AW (1) — AW ()3 < B[N (1) + Ny o (8)], (21)
where
Npa(t) = ‘Anwr‘zlj(t) - AnW\P(t”Ha
Npo(t) = A WY () — AWY (t)|x .

Using the convergence of resolvents and the Yoshida approximation properties,
we can follow the same steps as above for proving

lim  sup E(NZ,(t)) —0
n— 400 tE[O,T] ’

and

lim  sup E(N2,(t)) —0.
n—-4oo tE[O,T] ’

Therefore, we can deduce that

lim  sup E|A,WY(t)— AWY(t)|% =0,
n—=+00  4c0,T)

and then holds. O
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Theorem 2. Suppose that assumptions of Proposition [5 hold. Then the equation
(1) has a strong solution. Precisely, the convolution WY given by (@ is the strong
solution to .

Proof. In order to prove Theorem |2 we have to show only the condition . Let
us note that the convolution WY has integrable trajectories. Because the closed
unbounded linear operator A becomes bounded on (D(A), |-|p(a)), see [I4, Chapter
5], we obtain that AWY(-) € L'([0,T]; H), P-a.s. Hence, properties of convolution
provide integrability of the function a(T—7) AW Y (1) with respect to 7, what finishes
the proof. O

3. Fractional Volterra equations. As we have already written, (2|) contains

some class of equations. For instance when a(t) = %, a > 0, we obtain integro-

differential equations studied by many authors, see e.g. [I] and references therein.
These facts lead us to the fractional stochastic Volterra equations of the form

X(t)=X(0)+ /t Jo(t — T)AX (T)dT + /t U(r)dW(r), t=>0, (22)

where g, (t) = ij(—;), a > 0. Let us emphasize that for a € (0, 1], g, are completely
positive, but for a > 1, g, are not completely positive.

Now, the pairs (A4, g.(t)) generate a-times resolvents S, (t), t > 0 which are
analogous to resolvents defined in section [} for more details, see [I].

Remark 2. Observe that the a-times resolvent family corresponds to a Cy-semi-
group in case @ = 1 and a cosine family in case « = 2. (Let us recall, e.g. from [5],
that a family C(¢), t > 0, of linear bounded operators on H is called cosine family
if for every t,s > 0,t > s: C(t+s) +C(t —s) = 2C(¢)C(s).) In consequence, when
1 < a < 2 such resolvent families interpolate Cy-semigroups and cosine functions.
In particular, for A = A, the integro-differential equations corresponding to such
resolvent families interpolate the heat equation and the wave equation, see, e.g. [6].

We consider two cases:

(A1): A is the generator of Cy-semigroup and « € (0, 1);
(A2): A is the generator of a strongly continuous cosine family and « € (0, 2).

In this part of the paper, the results concerning a weak convergence of a-times
resolvents play the key role. Using the very recent result due to Li and Zheng [10],
we can formulate the approximation theorems for fractional Volterra equations.

Theorem 3. Let A be the generator of a Co-semigroup (T'(t))i>o0 in H such that
| T(t)|] < Me*t, t > 0. Then, for each 0 < a < 1 there exist bounded operators A,

and a-times resolvent families Sq ,(t) for A, satisfying ||San(t)[| < MCe@)'
forallt >0, neN, and

San(t)r — Sa(t)z as n— +oo (23)

for all x € H, t > 0. Moreover, the convergence is uniform in t on every compact
subset of R .

Outline of the proof. The first assertion follows from [I, Theorem 3.1], that is, for
each 0 < a < 1 there is an a-times resolvent family (S, (t)):>0 for A given by

Sty = [ oraloT(s)ads, 1> 0
0
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where ¢y ,(s) :=t"7®,(st77) and ®,(z) is the Wright function defined as

N (=2)"
D, (2) ._;n!r(_wﬂ_l —5 0<vy<l1.

Define
A, i=nAR(n, A) = n*R(n, A) — nl, n > w,
the Yosida approzimation of A.

Since each A,, is bounded, it follows that for each 0 < « < 1 there exists an
a-times resolvent family (S, (t))i>0 for A, given as

Sa,n(t):/ Or.a(s)ends, t>0.
0

We recall that the Laplace transform of the Wright function corresponds to
E.,(—z) where E, denotes the Mittag-Leffler function. In particular, ®,(z) is a
probability density function. It follows that for ¢ > 0:

1Sam(®l < / ra(s)]|e*A [ ds

< M/ @tya(s)eQWSdSZM/ Do (1)e2 Tdr = M Eq(2wt®).
0 0

The continuity in ¢ > 0 of the Mittag-Leffler function and its asymptotic behavior,
imply that for w > 0 there exists a constant C' > 0 such that

Ey(wt®) < Ce”

1/ay
Y

t>0, a€(0,2).
This gives

|San(®)]] < MCe®)* ¢ >0,
Now we recall the fact that R(A, A, )z — R(A, A)x as n — oo for all A sufficiently
large (e.g. [II, Lemma 7.3]), so we can conclude from [I0, Theorem 4.2] that
San(t)r — Sa(t)r as n— +oo

for all x € H, uniformly for ¢ on every compact subset of R O
An analogous convergence for a-times resolvents can be proved in another case,
too.

Theorem 4. Let A be the generator of a Cy-cosine family (T(t))i>0 in H. Then,
for each 0 < v < 2 there exist bounded operators A, and a-times resolvent families
San(t) for Ay, satisfying ||San(t)]] < MCe®)" ™ for all t > 0, n € N, and
San(t)r — Sa(t)x as n— +oo for allz € H, t > 0. Moreover, the convergence is
uniform in t on every compact subset of R .

Now, we are able to formulate the result analogous to that in section 2]

Theorem 5. Assume that (A1) or (A2) holds. If ¥ and AV belong to N?(0,T; LY)
and in addition U (t)(Uy) C D(A), P-a.s., then the equation has a strong solu-
tion. Precisely, the convolution

Wf(t) = / Sa(t —7)U(7)dW (1)
0

is the strong solution to .
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Outline of the proof. First, analogously like in section [2| we show that the convolu-
tion WY (¢) fulfills the following equation

V() = t -7 Y(r)dr t T 7).
Wa<t>—/0 Golt — ) AW (r) d +/O (r) dW (r) (24)

Next, we have to show the condition
T
/ 19a(T — T)AWY (1) dr < +o0, P —a.s., a>0, (25)
0

that is, the condition adapted for the fractional Volterra equation .

The convolution WY (t) has integrable trajectories, that is, WY (-) € L*([0,T]; H),
P-a.s. The closed linear unbounded operator A becomes bounded on (D(A), |-|p(a)),
see [I4, Chapter 5]. Hence, AWY(-) € L*([0,T]; H), P-a.s. Therefore, the function
9o (T — 7)AWY (1) is integrable with respect to 7, what completes the proof. O
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