STOCHASTIC PDEs WITH FUNCTION-VALUED SOLUTIONS*

Anna Karczewska ${ }^{1}$ and Jerzy Zabczyk ${ }^{2}$
${ }^{1}$ Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: akarcz@golem.umcs.lublin.pl
${ }^{2}$ Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-950 Warszawa, Poland
e-mail: zabczyk@impan.gov.pl

Abstract

The paper provides necessary and sufficient conditions under which stochastic heat and wave equations on \mathbb{R}^{d} have function-valued solutions. The results extend, to all dimensions d and to all spatially homogeneous perturbations, recent characterizations by Dalang and Frangos [DaFr]. The paper proposes a natural framework for a study of nonlinear stochastic equations. It is based on the harmonic analysis technique and on the stochastic integration theory in functional spaces. Generalizations to the d-dimensional torus and to nonlinear equations are discussed as well.

1 Introduction

The paper is concerned with the stochastic heat and wave equations:

[^0]\[

\left\{$$
\begin{array}{l}
\frac{\partial u}{\partial t}(t, \theta)=\Delta u(t, \theta)+\frac{\partial W_{\Gamma}}{\partial t}(t, \theta), \quad t>0, \quad \theta \in \mathbb{R}^{d} \tag{1.1}\\
u(0, \theta)=0, \quad \theta \in \mathbb{R}^{d}
\end{array}
$$\right.
\]

and

$$
\left\{\begin{array}{ll}
\frac{\partial^{2} u}{\partial t^{2}}(t, \theta)=\Delta u(t, \theta)+\frac{\partial W_{\Gamma}}{\partial t}(t, \theta), & t>0, \quad \theta \in \mathbb{R}^{d} \tag{1.2}\\
u(0, \theta)=0, & \frac{\partial u}{\partial t}(0, \theta)=0,
\end{array} \quad \theta \in \mathbb{R}^{d} \quad l\right.
$$

where W_{Γ} is a spatially homogeneous Wiener process with the space correlation Γ. The correlation Γ can be any positive definite distribution. It defines the covariance operator of the Wiener process by the formula $Q \varphi=\Gamma * \varphi, \varphi \in S\left(\mathbb{R}^{d}\right)$.

It is well-known, see [Wa], that if $\frac{\partial W_{\Gamma}}{\partial t}$ is a space-time white noise, or equivalently if $\Gamma=\delta_{\{o\}}$, then the equations (1.1), (1.2) have function-valued solutions if and only if the space dimension $d=1$. It is therefore of interest to find out in dimensions $d \geqslant 1$ for what space-correlated noise, equations (1.1) and (1.2), have function-valued solutions. This problem has been recently investigated, for stochastic wave equation, by Dalang and Frangos [DaFr], see also Mueller $[\mathrm{Mu}]$, when $d=2$. Let $W_{\Gamma}(t, \theta), t \geqslant 0, \theta \in \mathbb{R}^{2}$, be a Wiener process with a space correlation function Γ :

$$
\mathbb{E} W_{\Gamma}(t, \theta) W_{\Gamma}(s, \eta)=t \wedge s \Gamma(\theta-\eta), \quad \theta, \eta \in \mathbb{R}^{2}
$$

where $\Gamma(\theta)=f(|\theta|), \theta \in \mathbb{R}^{2}$, and f is non-negative function, continuous outside 0 . It has been shown in $[\mathrm{DaFr}]$ that the stochastic wave equation (1.2) has a function-valued solution if and only if

$$
\begin{equation*}
\int_{|\theta| \leqslant 1} f(|\theta|) \ln \frac{1}{|\theta|} d \theta<+\infty . \tag{1.3}
\end{equation*}
$$

The proof in $[\mathrm{DaFr}]$ is based on explicit representation of the fundamental solution of the deterministic wave equation in dimension $d=2$ and can not be extended to higher dimensions.

In the present note we treat the general case of arbitrary dimension d and of arbitrary spatially homogeneous noise for both stochastic heat and wave equations. Spatially homogeneous noise processes were introduced by Holley and Stroock [HoSt] and Dawson and Salehi [DaSa] in connection with particle systems, see also Nobel [No], Da Prato and Zabczyk [DaPrZa1] and Peszat and Zabczyk [PeZa] for more recent investigations. We consider also equations (1.1) and (1.2) on the d-dimensional torus T^{d}. It is interesting that for both equations, (1.1) and (1.2) on \mathbb{R}^{d} and on T^{d}, the necessary and sufficient conditions are exactly the same. Obtained characterizations form a natural framework in which nonlinear heat and wave equations can be studied.

Similar results can be formulated for linear parts of Navier-Stokes equations and other equations of fluid dynamics. Techniques developed in the paper apply also to equations (1.1) and (1.2) with Δ replaced by fractional Laplacien $-(-\Delta)^{\alpha}, \alpha \in(0,2]$. However, those generalizations are not studied here.

To formulate our main theorems let us recall, see [GeVi], that positive definite, tempered distrubutions Γ are precisely Fourier transforms of tempered measures μ. The measure μ will be called the spectral measure of Γ and of the process W_{Γ}.

Theorem 1. Let Γ be a positive definite, tempered distribution on \mathbb{R}^{d}, with the spectral measure μ. Then the equations (1.1) and (1.2) have function-valued solutions if and only if

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \mu(d \lambda)<+\infty \tag{1.4}
\end{equation*}
$$

Theorem 2. Assume that Γ is not only a positive definite distribution but also a non-negative measure. The equations (1.1) and (1.2) have function-valued solutions:
i) for all Γ if $d=1$;
ii) for exactly those Γ for which $\int_{|\theta| \leqslant 1} \ln |\theta| \Gamma(d \theta)<+\infty$ if $d=2$;
iii) for exactly those Γ for which $\int_{|\theta| \leqslant 1} \frac{1}{|\theta|^{d-2}} \Gamma(d \theta)<+\infty$ if $d \geqslant 3$.

Note that condition (1.3) is a special case of ii).
Similar theorems hold for stochastic heat and ware equations on the d-dimensional torus, see Theorem 3 and Theorem 4 in $\S 5$.

The paper is organized as follows. Preliminaries and formulation of the problem will be given in section 2. Section 3 contains proofs of the results for the case of \mathbb{R}^{d}. Applications are discussed in section 4. Extensions to d-dimensional torus are contained in section 5 . We finish the paper with two conjectures in section 6 .

2 Preliminaries

2.1 Heat and wave semigroups

Let $S_{c}\left(\mathbb{R}^{d}\right)$ denote the space of all infinitely differentiable functions ψ on \mathbb{R}^{d} taking complex values, for which the seminorms

$$
\|\psi\|_{\alpha, \beta}=\sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} D^{\beta} \psi(x)\right|
$$

are finite. The adjoint space $S_{c}^{\prime}\left(\mathbb{R}^{d}\right)$ is then the space of tempered distributions. By $S\left(\mathbb{R}^{d}\right)$ and $S^{\prime}\left(\mathbb{R}^{d}\right)$ we denote the spaces of real functions from $S_{c}\left(\mathbb{R}^{d}\right)$ and the space of real functionals on $S\left(\mathbb{R}^{d}\right)$.

For $\psi \in S_{c}\left(\mathbb{R}^{d}\right)$ define $\psi_{(s)}(x)=\overline{\psi(-x)}, x \in \mathbb{R}^{d}$. By $S_{(s)}\left(\mathbb{R}^{d}\right)$ and $S_{(s)}^{\prime}\left(\mathbb{R}^{d}\right)$ denote the spaces of $\psi \in S_{c}\left(\mathbb{R}^{d}\right)$ such that $\psi(x)=\psi_{(s)}(x)$ and the space of all $\xi \in S_{c}^{\prime}\left(\mathbb{R}^{d}\right)$ such that $(\xi, \psi)=\left(\xi, \psi_{(s)}\right)$ for all $\psi \in S\left(\mathbb{R}^{d}\right)$.

If \mathcal{F} is the Fourier transform on $S_{c}\left(\mathbb{R}^{d}\right)$:

$$
\mathcal{F}(\psi)(\lambda)=\int_{\mathbb{R}^{d}} e^{t\langle x, \lambda\rangle} \psi(x) d x, \quad \lambda \in \mathbb{R}^{d}, \quad \psi \in S_{c}\left(\mathbb{R}^{d}\right),
$$

then its inverse \mathcal{F}^{-1} is given by the formula

$$
\mathcal{F}^{-1} \psi(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{-t\langle x, \lambda\rangle} \psi(\lambda) d \lambda, \quad \lambda \in \mathbb{R}^{d}, \quad \psi \in S_{c}\left(\mathbb{R}^{d}\right) .
$$

We use the same notation for the Fourier transforms acting on $S_{c}^{\prime}\left(\mathbb{R}^{d}\right)$.
Note that the operators \mathcal{F} and \mathcal{F}^{-1} transform $S^{\prime}\left(\mathbb{R}^{d}\right)$ onto $S_{(s)}^{\prime}\left(\mathbb{R}^{d}\right)$ and $S_{(s)}^{\prime}\left(\mathbb{R}^{d}\right)$ onto $S^{\prime}\left(\mathbb{R}^{d}\right)$, respectively. The Fourier transforms of $\varphi \in S_{c}\left(\mathbb{R}^{d}\right)$ and $\xi \in S_{c}^{\prime}\left(\mathbb{R}^{d}\right)$ will be denoted by $\hat{\varphi}$ and $\hat{\xi}$.

Consider first the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta u, \quad t \geqslant 0 \quad u(0)=\xi \tag{2.1}
\end{equation*}
$$

where $\xi \in S_{c}^{\prime}\left(\mathbb{R}^{d}\right)$. If \hat{u} denotes the Fourier transform of u then

$$
\frac{\partial \hat{u}}{\partial t}=-|\lambda|^{2} \hat{u} \quad \text { and } \quad \hat{u}(0)=\hat{\xi}
$$

and therefore

$$
\hat{u}(t)=e^{-|\lambda|^{2} t} \hat{\xi} .
$$

Consequently, for arbitrary $\xi \in S_{c}^{\prime}\left(\mathbb{R}^{d}\right)$, equation (2.1) has a unique solution in $S_{c}^{\prime}\left(\mathbb{R}^{d}\right)$ and the solution is given by the formula

$$
\begin{equation*}
u(t, x)=p(t) * \xi(x)=(\xi, p(t, x-\cdot)) \tag{2.2}
\end{equation*}
$$

where $\hat{p}(t)(\lambda)=e^{-t|\lambda|^{2}}, \quad p(t, x)=\frac{1}{\sqrt{(4 \pi t)^{d}}} e^{\frac{-|x|^{2}}{4 t}}, \quad t>0, \quad \lambda, x \in \mathbb{R}^{d}$.
The family

$$
\begin{equation*}
S(t) \xi=p(t) * \xi, \quad t \geqslant 0, \quad \xi \in S_{c}^{\prime}\left(\mathbb{R}^{d}\right) \tag{2.3}
\end{equation*}
$$

forms a semigroup of operators, continuous in the topology of $S_{c}^{\prime}\left(\mathbb{R}^{d}\right)$. The formula (2.2) shows that the semigroup $S(t), t \geqslant 0$ has a smoothing property: for all $\xi \in$ $S_{c}^{\prime}\left(\mathbb{R}^{d}\right), S(t) \xi$ is represented by C^{∞} function.

Similarly, for the wave equation,

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=v, & u(0)=\xi \\
\frac{\partial v}{\partial t}=\Delta u, & v(0)=\zeta
\end{array}
$$

one gets, passing again to the Fourier transforms \hat{u} and \hat{v}, that:

$$
\frac{\partial \hat{u}}{\partial t}=\hat{v}, \quad \frac{\partial \hat{v}}{\partial t}=-|\lambda|^{2} \hat{u}
$$

By direct computation we have

$$
\frac{d}{d t}\binom{\hat{u}}{\hat{v}}=\left(\begin{array}{ll}
\cos (|\lambda| t), & \frac{\sin (|\lambda| t)}{|\lambda|} \\
-|\lambda| \sin (|\lambda| t), & \cos (|\lambda| t)
\end{array}\right)\binom{\hat{\xi}}{\hat{\zeta}} .
$$

Therefore,

$$
\begin{gather*}
\hat{u}(t)=[\cos (|\lambda| t)] \hat{u}(0)+\left[\frac{\sin (|\lambda| t)}{|\lambda|}\right] \hat{v}(0) \tag{2.4}\\
\hat{v}(t)=-[|\lambda| \sin (|\lambda| t)] \hat{u}(0)+[\cos (|\lambda| t)] \hat{v}(0) \tag{2.5}
\end{gather*}
$$

Note that for each $t \in \mathbb{R}^{1}$ functions $\cos (|\lambda| t), \frac{\sin (|\lambda| t)}{|\lambda|}$ and $|\lambda| \sin (|\lambda| t), \lambda \in \mathbb{R}^{d}$, are smooth and polynomially bounded together with all their partial derivatives. Therefore the formulae $(2.4),(2.5)$ define distributions belonging to $S_{c}^{\prime}\left(\mathbb{R}^{d}\right)$.

Let $p_{1,1}(t), p_{1,2}(t), p_{2,1}(t), p_{2,2}(t) t \in \mathbb{R}^{1}$, be elements from $S^{\prime}\left(\mathbb{R}^{d}\right)$ such that,

$$
\begin{gathered}
\cos (|\lambda| t)=\mathcal{F}\left(p_{1,1}(t)\right)(\lambda), \quad \frac{\sin (|\lambda| t)}{|\lambda|}=\mathcal{F}\left(p_{1,2}(t)\right)(\lambda) \\
-|\lambda| \sin (|\lambda| t)=\mathcal{F}\left(p_{2,1}(t)\right)(\lambda), \quad \cos (|\lambda| t)=\mathcal{F}\left(p_{2,2}(t)\right)(\lambda), \quad \lambda \in \mathbb{R}^{d} .
\end{gathered}
$$

Then

$$
\begin{gathered}
u(t)=p_{1,1}(t) * u(0)+p_{1,2}(t) * v(0), \\
v(t)=p_{2,1}(t) * u(0)+p_{2,2}(t) * v(0), \quad t \in \mathbb{R} .
\end{gathered}
$$

As for the heat equation, explicit formulae for the distributions $p_{i, j}(t), i, j=1,2$ are known, see [Mi, pp. 280-282]. In particular, they have bounded supports.

We shall use the following notation

$$
\begin{equation*}
R(t) \xi=p_{1,2}(t) * \xi, \quad t \geqslant 0, \xi \in S_{c}^{\prime}\left(\mathbb{R}^{d}\right) \tag{2.6}
\end{equation*}
$$

2.2 Spatially homogeneous Wiener process

Let Γ be a positive definite, tempered distribution. By W_{Γ} we denote an $S^{\prime}\left(\mathbb{R}^{d}\right)$-valued Wiener process defined on a probability space (Ω, F, \mathbb{P}) such that

$$
\mathbb{E}(W(t), \varphi)(W(s), \psi)=t \wedge s\left(\Gamma, \varphi * \psi_{(s)}\right),
$$

where $\psi_{(s)}(x)=\overline{\psi(-x)}, x \in \mathbb{R}^{d}$, see [PeZa]. It is well-known that this way one can describe all space homogeneous $S^{\prime}\left(\mathbb{R}^{d}\right)$-valued Wiener processes, see e.g. [PeZa].

The crucial role for stochastic integration with respect to W_{Γ} is played by the Hilbert space $S_{\Gamma}^{\prime} \subset S^{\prime}\left(\mathbb{R}^{d}\right)$ consisting of all distributions $\xi \in S^{\prime}\left(\mathbb{R}^{d}\right)$ for which there exists a constant C such that,

$$
|(\xi, \psi)| \leqslant C \sqrt{\left(\Gamma, \psi * \psi_{(s)}\right)}, \quad \psi \in S
$$

The norm in S_{Γ}^{\prime} is given by the formula:

$$
|\xi|_{S_{\Gamma}^{\prime}}=\sup _{\psi \in S} \frac{|(\xi, \psi)|}{\sqrt{\left(\Gamma, \psi * \psi_{(s)}\right)}}
$$

The space S_{Γ}^{\prime} is called the kernel of W_{Γ}, see [PeZa].
Let H be a Hilbert space and let $L_{H S}\left(S_{\Gamma}^{\prime}, H\right)$ be the space of Hilbert-Schmidt operators from S_{Γ}^{\prime} into H. Assume that Ψ is a predictable $L_{H S}\left(S_{\Gamma}^{\prime}, H\right)$-valued process such that

$$
\mathbb{E}\left(\int_{0}^{t}\|\Psi(s)\|_{L_{H S}\left(S_{\Gamma}^{\prime}, H\right)}^{2} d s\right)<+\infty \quad \text { for all } t \geqslant 0
$$

Then the stochastic integral

$$
\int_{0}^{t} \Psi(s) d W_{\Gamma}(s), \quad t \geqslant 0
$$

can be defined in a standard way, see [Itô], [DaPrZa], [PeZa]. It is an H-valued martingale for which

$$
\mathbb{E}\left(\int_{0}^{t} \Psi(s) d W_{\Gamma}(s)\right)=0, \quad t \geqslant 0
$$

and

$$
\mathbb{E}\left|\int_{0}^{t} \Psi(s) d W_{\Gamma}(s)\right|_{H}^{2}=\mathbb{E}\left(\int_{0}^{t}\|\Psi(s)\|_{L_{H S}\left(S_{\Gamma}^{\prime}, H\right)}^{2} d s\right), \quad t \geqslant 0 .
$$

We will need a characterization of the space S_{Γ}^{\prime} from [PeZa, Proposition 1.2]. In the proposition below $L_{(s)}^{2}\left(\mathbb{R}^{d}, \mu\right)$ denotes the subspace of $L^{2}\left(\mathbb{R}^{d}, \mu ; \mathbb{C}\right)$ consisting of all functions u such that $u_{(s)}=u$, see $\S 2.1$.

Proposition 1. A distribution ξ belongs to S_{Γ}^{\prime} if and only if $\xi=\widehat{u \mu}$ for some $u \in L_{(s)}^{2}\left(\mathbb{R}^{d}, \mu\right)$. Moreover, if $\xi=\widehat{u \mu}$ and $\eta=\widehat{v \mu}$, then

$$
\langle\xi, \eta\rangle_{S_{\Gamma}^{\prime}}=\langle u, v\rangle_{L_{(s)}^{2}\left(\mathbb{R}^{d}, \mu\right)} .
$$

2.3 Questions

By a solution X to the stochastic heat equation we understand the process

$$
\begin{equation*}
X(t)=\int_{0}^{t} S(t-s) d W_{\Gamma}(d s), \quad t>0 \tag{2.7}
\end{equation*}
$$

where $S(\cdot)$ is given by (2.3). Similarly, solution Y to the stochastic wave equation is of the form

$$
\begin{equation*}
Y(t)=\int_{0}^{t} R(t-s) d W_{\Gamma}(d s), \quad t \geqslant 0 \tag{2.8}
\end{equation*}
$$

with $R(\cdot)$ defined by (2.6). It is not difficult to show that the processes $X(t), t \geqslant 0$, and $Y(t), t \geq 0$, are weak solutions of the corresponding equations and take values in $S^{\prime}\left(\mathbb{R}^{d}\right)$, see [Itô].

Let us recall that a family $Z(x), x \in \mathbb{R}^{d}$, of real random variables is called a stationary, Gaussian, random field if and only if, Z is a measurable transformation from $\mathbb{R}^{d} \times \Omega$ into \mathbb{R} and for arbitrary $h, x_{1}, \ldots, x_{m} \in \mathbb{R}^{d}$, random vectors ($Z\left(x_{1}+\right.$ $\left.h), \ldots, Z\left(x_{m}+h\right)\right)$ are Gaussian with the law independent of h.

The main questions considered in the paper can be stated as follows.
Question 1. Under what conditions on Γ, for each $t \geqslant 0, X(t)$ is a stationary, Gaussian random field?

Question 2. Under what conditions on Γ, for each $t \geqslant 0, Y(t)$ is a stationary, Gaussian random field?

Note that if Z is a stationary, Gaussian random field then, for all positive, integrable functions $\rho(x), x \in \mathbb{R}^{d}$

$$
\mathbb{E}\left(\int_{\mathbb{R}^{d}} Z^{2}(x) \rho(x) d x\right)=\int_{\mathbb{R}^{d}}\left(\mathbb{E} Z^{2}(x)\right) \rho(x) d x=\left(\int_{\mathbb{R}^{d}} \rho(x) d x\right) \mathbb{E}\left(Z^{2}(o)\right)<+\infty .
$$

Consequently, $\mathbb{P}\left(Z \in L_{\rho}^{2}\left(\mathbb{R}^{d}\right)\right)=1$, where $L_{\rho}^{2}\left(\mathbb{R}^{d}\right)=L^{2}\left(\mathbb{R}^{d}, \rho(x) d x\right)$ and the questions can be reformulated as follows.

Question 1. Under what conditions on Γ the process X takes values in $L_{\rho}^{2}\left(\mathbb{R}^{d}\right)$ for some (any) positive integrable weight ρ ?

Question 2. Under what conditions on Γ the process Y takes values in $L_{\rho}^{2}\left(\mathbb{R}^{d}\right)$ for some (any) positive integrable weight ρ ?

Answers to these questions have been formulated in the Introduction as Theorem 1 and Theorem 2. The case of d-dimensional forms T^{d} is treated in $\S 5$.

3 Proofs of Theorem 1 and Theorem 2

3.1 Proof of Theorem 1.

(a) Stochastic heat equation

Let us recall that we denote by S_{Γ}^{\prime} the kernel of the Wiener process W_{Γ} and that

$$
S(t) \xi=p(t) * \xi, \quad t \geqslant 0 .
$$

It follows from $\S 2.2$ that the stochastic integral

$$
\int_{0}^{t} S(t-s) d W_{\Gamma}(s), \quad t>0
$$

takes values in $L_{\rho}^{2}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\int_{0}^{t}\|S(\sigma)\|_{L_{H S}\left(S_{\Gamma}^{\prime}, L_{\rho}^{2}\right)}^{2} d \sigma<+\infty
$$

Let $\left\{u_{k}\right\}$ be an orthonormal basis in $L_{(s)}^{2}\left(\mathbb{R}^{d}, \mu\right)$. Then by Proposition 1.2 of $[\mathrm{PeZa}]$, $e_{k}=\widehat{u_{k} \mu}, k \in \mathbb{N}$, is an orthonormal basis in S_{Γ}^{\prime}.
Thus we have

$$
\|S(\sigma)\|{\underset{L}{H S}\left(S_{\Gamma}^{\prime}, L_{\rho}^{2}\right)}_{2}=\sum_{k=1}^{\infty}\left|S(\sigma) \widehat{u_{k} \mu}\right|_{L_{\rho}^{2}}^{2}=\sum_{k=1}^{\infty} \int_{\mathbb{R}^{d}}\left|p(\sigma) * \widehat{u_{k} \mu}(x)\right|^{2} \rho(x) d x, \quad \sigma>0 .
$$

However, $p(\sigma) \in S\left(\mathbb{R}^{d}\right)$ and therefore

$$
p(\sigma) * \widehat{u_{k} \mu}(x)=\left(p(\sigma, x-\cdot), \widehat{u_{k} \mu}\right)=\left(u_{k} \mu, \hat{p}(\sigma, x-\cdot)\right) .
$$

The last identity follows from the definition of the Fourier transform of the distribution $u_{k} \mu$. However,

$$
\hat{p}(\sigma, x-\cdot)(\lambda)=e^{i\langle x, \lambda\rangle} e^{-\sigma|\lambda|^{2}}
$$

and therefore

$$
\left(u_{k} \mu, \hat{p}(\sigma, x-\cdot)\right)=\left(u_{k} \mu, e^{i\langle x, \cdot\rangle} e^{-\sigma|\cdot|^{2}}\right)
$$

Consequently

$$
\begin{gathered}
\|S(\sigma)\|{\underset{L}{H S}\left(S_{\Gamma}^{\prime} L_{\rho}^{2}\right)}_{2}=\sum_{k} \int_{\mathbb{R}^{d}}\left|\left(u_{k} \mu, e^{i\langle x,\rangle} e^{-\sigma|\cdot|^{2}}\right)\right|^{2} \rho(x) d x \\
\quad=\sum_{k} \int_{\mathbb{R}^{d}}\left|\int_{\mathbb{R}^{d}} u_{k}(\lambda) e^{i\langle x, \lambda\rangle} e^{-\sigma|\lambda|^{2}} \mu(d \lambda)\right|^{2} \rho(x) d x \\
=\int_{\mathbb{R}^{d}}\left[\sum_{k}\left|\left\langle u_{k}, e^{-i\langle x, \cdot\rangle} e^{-\sigma|\cdot|^{2}}\right\rangle_{L_{(s)}^{2}}\left(\mathbb{R}^{d}, \mu\right)\right|^{2}\right] \rho(x) d x .
\end{gathered}
$$

By the Parseval identity in $L_{(s)}^{2}\left(\mathbb{R}^{d}, \mu\right)$,

$$
\sum_{k}\left|\left\langle u_{k}, e^{-i\langle x,\rangle} e^{-\sigma|\cdot|^{2}}\right\rangle_{L_{(s)}^{2}\left(\mathbb{R}^{d}, \mu\right)}\right|^{2}=\int_{\mathbb{R}^{d}}\left|e^{-i\langle x, \lambda\rangle} e^{-\sigma|\lambda|^{2}}\right|^{2} \mu(d \lambda)=\int_{\mathbb{R}^{d}} e^{-2 \sigma|\lambda|^{2}} \mu(d \lambda)
$$

Finally,

$$
\begin{gathered}
\int_{0}^{t}\|S(\sigma)\|_{L_{H S}\left(S_{\Gamma}^{\prime}, L_{\rho}^{2}\right)}^{2} d \sigma=\left[\int_{\mathbb{R}^{d}} \rho(x) d x\right] \int_{0}^{t} \int_{\mathbb{R}^{d}} e^{2 \sigma|\lambda|^{2}} \mu(d \lambda) d \sigma= \\
=\left[\int_{\mathbb{R}^{d}} \rho(x) d x\right] \int_{\mathbb{R}^{d}} \frac{1-e^{-2 t|\lambda|^{2}}}{|\lambda|^{2}} \mu(d \lambda)
\end{gathered}
$$

Therefore

$$
\int_{0}^{t}\|S(\sigma)\|_{L_{H S}\left(S_{\Gamma}^{\prime}, L_{\rho}^{2}\right)}^{2} d \sigma<+\infty
$$

if and only if

$$
\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \mu(d \lambda)<+\infty
$$

(b) Stochastic wave equation

Let us recall that $R(\sigma) \xi=p_{1,2}(\sigma) * \xi, \sigma \geqslant 0, \xi \in S_{c}^{\prime}\left(\mathbb{R}^{d}\right)$, see (2.6). The process $Y(t), t \geqslant 0$, is well defined as an $L_{\rho}^{2}\left(\mathbb{R}^{d}\right)$-valued process if and only if

$$
\int_{0}^{t}\|R(\sigma)\|_{L_{H S}\left(S_{\Gamma}^{\prime}, L_{\rho}^{2}\right)}^{2} d \sigma<+\infty
$$

But

$$
\|R(\sigma)\|_{L_{H S}\left(S_{\Gamma}^{\prime}, L_{\rho}^{2}\right)}^{2}=\sum_{k} \int_{\mathbb{R}^{d}}\left|p_{1,2}(\sigma) * \widehat{u_{k} \mu}(x)\right|^{2} \rho(x) d x
$$

However

$$
\begin{equation*}
p_{1,2}(\sigma) * \widehat{u_{k} \mu}(x)=\left(p_{1,2}(\sigma, x-\cdot), \widehat{u_{k} \mu}\right)=\left(\hat{p}_{1,2}(\sigma)(x-\cdot), u_{k} \mu\right) \tag{3.1}
\end{equation*}
$$

To justify the identity (3.1) we need the following lemma, see [GeSh].
Lemma 1. Let ξ and η be distributions with bounded supports. Then the convolution $\xi * \hat{\eta}$ exists and is a function of class C^{∞}. Moreover

$$
\xi * \hat{\eta}(x)=(\hat{\xi}(x-\cdot), \eta), \quad x \in \mathbb{R}^{d} .
$$

Note that the distribution $p_{1,2}$ has bounded support and one can assume also that functions $u_{k}, k \in \mathbb{N}$, have bounded supports as well.
But

$$
\hat{p}_{1,2}(\sigma)(x-\cdot)(\lambda)=e^{i\langle x, \lambda\rangle} \frac{\sin (|\lambda| \sigma)}{|\lambda|} .
$$

Therefore

$$
\begin{gathered}
\|R(\sigma)\|_{L_{H S}\left(S_{\Gamma}^{\prime}, L_{\rho}^{2}\right)}^{2}=\sum_{k} \int_{\mathbb{R}^{d}}\left|\left(u_{k} \mu, e^{i\langle x, \cdot\rangle} \frac{\sin (|\cdot| \sigma)}{|\cdot|}\right)\right|^{2} \rho(x) d x= \\
=\sum_{k} \int_{\mathbb{R}^{d}}\left|\left\langle u_{k}, e^{i\langle x, \cdot\rangle} \frac{\sin (|\cdot| \sigma)}{|\cdot|}\right\rangle_{L_{(s)}^{2}\left(\mathbb{R}^{d}, \mu\right)}\right|^{2} \rho(x) d x .
\end{gathered}
$$

Again, by the Parseval identity,

$$
\|R(\sigma)\|_{L_{H S}\left(S_{\Gamma}^{\prime}, L_{\rho}^{2}\right)}^{2}=\left[\int_{\mathbb{R}^{d}} \rho(x) d x\right] \int_{\mathbb{R}^{d}} \frac{(\sin (|\lambda| \sigma))^{2}}{|\lambda|^{2}} \mu(d \lambda) .
$$

Consequently,

$$
\int_{0}^{t}\|R(\sigma)\|_{L_{H S}\left(S_{\Gamma}^{\prime}, L_{\rho}^{2}\right)}^{2} d \sigma=\left[\int_{\mathbb{R}^{d}} \rho(x) d x\right] \int_{\mathbb{R}^{d}}\left[\int_{0}^{t} \frac{(\sin (|\lambda| \sigma))^{2}}{|\lambda|^{2}} d \sigma\right] \mu(d \lambda)
$$

By an elementary argument one shows now that the integral is finite, for all $t>0$, if and only if

$$
\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \mu(d \lambda)<+\infty
$$

This completes the proof of Theorem 1.

3.2 Proof of Theorem 2.

Let

$$
G_{d}(x)=\int_{0}^{+\infty} e^{-t} p(t, x) d t, \quad x \in \mathbb{R}^{d}
$$

where

$$
p(t, x)=\frac{1}{\sqrt{(4 \pi t)^{d}}} e^{-\frac{|x|^{2}}{4 t}}, \quad t>0, \quad x \in \mathbb{R}^{d}
$$

Thus G_{d} is the resolvent kernel of the d-dimensional Wiener process. It is easy to see that

$$
G_{d}(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{-i\langle x, \lambda\rangle} \frac{1}{1+|\lambda|^{2}} d \lambda, \quad x \in \mathbb{R}^{d}
$$

The following properties of G_{d} are well-known, see [La], [GlJa], [GeSh]:
Proposition 2. One has that:

$$
G_{1}(x)=\frac{1}{2} e^{-|x|}, \quad x \in \mathbb{R}^{1} ; \quad G_{3}(x)=\frac{1}{4 \pi|x|} e^{-|x|}, \quad x \in \mathbb{R}^{3}
$$

and, in general, for $d \geqslant 2$,

$$
G_{d}(x)=(2 \pi)^{-\frac{d}{2}} \frac{1}{|x|^{\frac{d-2}{2}}} K_{\frac{d-2}{2}}(|x|),
$$

where $K_{\gamma}, \gamma \geqslant 0$, denotes the modified Bessel function of the third order.
We will need also a characterization of the behaviour of G_{d} near 0 and near ∞, see [GlJa, Proposition 7.2.1].

Proposition 3. The function G_{d} has the following properties:
(a) for $d \geqslant 1$, for $|x|$ bounded away from a neighbourhood of zero and for a constant $c>0$

$$
G_{d}(x) \leqslant \frac{c}{|x|^{\frac{d-1}{2}}} e^{-|x|} ;
$$

(b) for $d \geqslant 3$ and for a constant $c>0$, in a neighbourhood of zero

$$
G_{d}(x) \sim \frac{c}{|x|^{d-2}}
$$

(c) for $d=2$ and for a constant $c>0$, in a neighbourhood of zero

$$
G_{2}(x) \sim-c \ln |x| .
$$

We will need also the following lemma:
Lemma 2. Assume that the distribution Γ is not only positive definite but it is also a non-negative measure. Then

$$
\left(\Gamma, G_{d}\right)=(2 \pi)^{d} \int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \mu(d \lambda) .
$$

Proof of Lemma 2. Since $\mu=\mathcal{F}^{-1}(\Gamma)$ and $e^{-t|\cdot|} \frac{1}{1+|\cdot|^{2}} \in S\left(\mathbb{R}^{d}\right)$, by the definition of the Fourier transform of a distribution,

$$
\begin{gathered}
\int_{\mathbb{R}^{d}} \frac{e^{-t|\lambda|^{2}}}{1+|\lambda|^{2}} \mu(d \lambda)=\left(\frac{e^{-t|\cdot|^{2}}}{1+|\cdot|^{2}}, \mu\right)=\left(\frac{e^{-t|\cdot|^{2}}}{1+|\cdot|^{2}}, \mathcal{F}^{-1}(\Gamma)\right)= \\
=\left(\mathcal{F}^{-1}\left(\frac{e^{-t|\cdot|^{2}}}{1+|\cdot|^{2}}\right), \Gamma\right)=\frac{1}{(2 \pi)^{d}}\left(p(t) * G_{d}, \Gamma\right)
\end{gathered}
$$

Therefore

$$
\lim _{t \downarrow 0} \frac{1}{(2 \pi)^{d}}\left(p(t) * G_{d}, \Gamma\right)=\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \mu(d \lambda) .
$$

Moreover

$$
\begin{gathered}
p(s) * G_{d}=\int_{0}^{+\infty} e^{-t} p(t) * p(s) d t= \\
=e^{s} \int_{0}^{+\infty} e^{-(t+s)} p(t+s) d t=e^{s} \int_{s}^{+\infty} e^{-\sigma} p(\sigma) d \sigma
\end{gathered}
$$

So

$$
e^{-s} p(s) * G_{d}=\int_{s}^{+\infty} e^{-\sigma} p(\sigma) d \sigma
$$

and then

$$
e^{-s} p(s) * G_{d} \uparrow G_{d} \quad \text { as } \quad s \downarrow 0
$$

Hence, if Γ is a non-negative distribution on \mathbb{R}^{d}, then

$$
\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \mu(d \lambda)=\lim _{t \downarrow 0} e^{-t} \frac{1}{(2 \pi)^{d}}\left(p(t) * G_{d}, \Gamma\right)=\frac{1}{(2 \pi)^{d}}\left(G_{d}, \Gamma\right) .
$$

This completes the proof of Lemma 2.

We pass now to the proof of the theorem. It is well-known that a non-negative measure Γ belongs to $S^{\prime}\left(\mathbb{R}^{d}\right)$ if and only if for some $r>0$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \frac{1}{1+|x|^{r}} \Gamma(d x)<+\infty \tag{3.2}
\end{equation*}
$$

Moreover, for arbitrary $d \geqslant 1$,

$$
\int_{\mathbb{R}^{d}} G_{d}(x) \Gamma(d x)=\int_{|x| \leqslant 1} G_{d}(x) \Gamma(d x)+\int_{|x|>1} G_{d}(x) \Gamma(d x)
$$

But, by Proposition 3 (a),

$$
\int_{|x|>1} G_{d}(x) \Gamma(d x) \leqslant c \int_{|x|>1} e^{-|x|} \Gamma(d x)
$$

and from (3.2)

$$
\int_{|x|>1} G_{d}(x) \Gamma(d x)<+\infty
$$

Since the function G_{1} is continuous,

$$
\int_{|x| \leqslant 1} G_{1}(x) \Gamma(d x)<+\infty
$$

and the theorem is true for $d=1$.
If $d=2$ then $\int_{\mathbb{R}^{d}} G_{2}(x) \Gamma(d x)<+\infty$ if and only if $\int_{|x| \leqslant 1} G_{2}(x) \Gamma(d x)<+\infty$. But $G_{2}(x) \sim c \ln \frac{1}{|x|}$ for some $c>0$ in the neighbourhood of 0 , so

$$
G_{2}(x) / c \ln \frac{1}{|x|} \rightarrow 1 \text { as }|x| \rightarrow 0
$$

Therefore, for some $c_{1}>0, c_{2}>0$:

$$
c_{2} \ln \frac{1}{|x|} \leqslant G_{2}(x) \leqslant c_{1} \ln \frac{1}{|x|}, \text { for }|x| \leqslant 1 .
$$

Consequently,

$$
\int_{\mathbb{R}^{d}} G_{2}(x) \Gamma(d x)<+\infty \text { if and only if } \int_{|x| \leqslant 1} \ln \frac{1}{|x|} \Gamma(d x)<+\infty .
$$

If $d \geqslant 3$, in the same way,

$$
\int_{\mathbb{R}^{d}} G_{d}(x) \Gamma(d x)<+\infty \text { if and only if } \int_{\mathbb{R}^{d}} \frac{1}{|x|^{d-2}} \Gamma(d x)<+\infty
$$

This completes the proof of Theorem 2.

4 Applications

We illustrate the main results by several examples. We start with the case of bounded functions Γ.

Proposition 4. If the positive definite distribution Γ is a bounded function then the equations (1.1) and (1.2) have function-valued solutions in any dimension d.

Proof: If the positive definite distribution Γ is a bounded function then Γ is a continuous function and the corresponding spectral measure μ is finite. Since the function $\frac{1}{1+|\lambda|^{2}}, \lambda \in \mathbb{R}^{d}$, is bounded therefore

$$
\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \mu(d \lambda)<+\infty
$$

and by Theorem 1 the result follows.

Stochastic evolution equations with noise of such type have been introduced by Dawson and Salahi [DaSa] with an extra requirement that μ is absolutely continuous with respect to Lebesgue measure on \mathbb{R}^{d}. In the case of $d=2$ they have appeared in the recent paper by Mueller [Mu].

Example 1. It is well-known that functions $\Gamma(x)=e^{-|x|^{\alpha}}, x \in \mathbb{R}^{d}$, for $\alpha \in(0,2]$ are positive definite. In fact, they are Fourier transforms of the so called symmetric stable distributions, see [La] or [Fe]. Consequently with such covariances Γ the equations (1.1) and (1.2) have function-valued solutions.

We consider now some examples of unbounded covariances Γ.
Proposition 5. For arbitrary $\alpha \in(0, d)$ the function $\Gamma_{\alpha}(x)=\frac{1}{|x|^{\alpha}}, x \in \mathbb{R}^{d}$ is a positive definite distribution. Equations (1.1) and (1.2) with the covariance Γ_{α} have function-valued solutions if and only if $\alpha \in(0,2 \wedge d)$.

Proof. It is well-known, see [Mi], [GeSh] or [La], that Γ_{α} is the Fourier transform of the function $c_{1} \frac{1}{|\lambda|^{d-\alpha}}, \lambda \in \mathbb{R}^{d}$, where c_{1} is a positive constant. The condition (1.4) is equivalent to

$$
I:=\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \frac{1}{|\lambda|^{d-\alpha}} d \lambda<+\infty .
$$

By standard calculation

$$
I=c_{2} \int_{0}^{+\infty} \frac{1}{\left(1+r^{2}\right)} \frac{1}{r^{d-\alpha}} r^{d-1} d r
$$

where c_{2} is a constant. One obtains, that $I<+\infty$ if and only if

$$
\int_{0}^{1} \frac{1}{r^{1-\alpha}} d r<+\infty \quad \text { and } \quad \int_{1}^{\infty} \frac{1}{r^{3-\alpha}} d r<+\infty
$$

or equivalently, $\alpha>0$ and $\alpha<2$. Since $\alpha \in(0, d)$, the result follows.

Remark: Note that Proposition 5 contains, as a special case, an application from the paper [DaFr, see Examples].

We pass now to examples for which Γ are genuine distributions.
Example 2. If $\frac{\partial W_{\Gamma}}{\partial t}$ is the space-time white noise then $\Gamma=\delta_{\{o\}}$ and the corresponding spectral measure μ has a constant density, say $c>0$. Since

$$
\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} d \lambda<+\infty
$$

if and only if $d=1$, the equations (1.1) and (1.2), perturbed by such noise, have function-valued solutions iff $d=1$.

Example 3. Walsh [Wa], in his study of particle systems, arrived at the following equation for fluctuations:

$$
\begin{gather*}
\frac{\partial u}{\partial t}(t, \xi)=\frac{\partial^{2} u}{\partial \xi^{2}}(t, \xi)+\frac{\partial}{\partial t}\left[\frac{\partial}{\partial \xi} W_{\delta_{\{0\}}}(t, \xi)\right] \tag{4.1}\\
u(0, \xi)=0, \quad t>0, \quad \xi \in \mathbb{R}^{1}
\end{gather*}
$$

It is easy to calculate that the covariance function corresponding to $\frac{\partial}{\partial \xi} W_{\delta_{\{0\}}}(t, \xi), t \geqslant$ 0 , is $\Gamma=-\delta_{\{0\}}^{\prime \prime}$ and the appropriate spectral measure μ has the following density $d_{\mu}(\lambda)=\lambda^{2} d \lambda$.
Since

$$
\int_{-\infty}^{+\infty} \frac{1}{1+\lambda^{2}} \lambda^{2} d \lambda=+\infty
$$

the equation (4.1) does not have a function-valued solution. This fact has already been noticed by Walsh [Wa].

5 Equations on d-dimensional torus

Many of the previous considerations can be extended from \mathbb{R}^{d} to stochastic equations on more general groups. As an illustration we discuss here the case of d-dimensional torus T^{d}, for more details we refer to [KaZa]. The d-dimensional torus T^{d} can be identified with the Cartesian product, $(-\pi, \pi]^{d}$, regarded as a group with the addition modulo 2π (coordinate-wise). We assume that W_{Γ} is a $D^{\prime}\left(T^{d}\right)$-valued Wiener process
spatially homogeneous with the space correlation Γ. Distribution Γ can be uniquelly expanded into its Fourier series

$$
\Gamma(\theta)=\sum_{n \in \mathbb{Z}^{d}} e^{i\langle n, \theta\rangle} \gamma_{n}
$$

with the non-negative coefficients such that $\gamma_{n}=\gamma_{-n}$ and $\sum_{n \in \mathbb{Z}^{d}} \frac{\gamma_{n}}{1+|n|^{+\infty}}<r$ for some $r>0$.

Denote $\mathbb{Z}_{s}^{1}=\mathbb{N}$ and, by induction, $\mathbb{Z}_{s}^{d+1}=\left(\mathbb{Z}_{s}^{1} \times \mathbb{Z}^{d}\right) \cup\left\{(0, n) ; n \in \mathbb{Z}_{s}^{d}\right\}$. Then $\mathbb{Z}^{d}=\mathbb{Z}_{s}^{d} \cup\left(-\mathbb{Z}_{s}^{d}\right) \cup\{0\}$.

The corresponding spatially homogeneous Wiener process $W(t), t \geqslant 0$ can be represented in the form:

$$
\begin{align*}
W(t, \theta)=\sqrt{\gamma_{0}} \beta_{0}(t)+ & \sum_{n \in \mathbb{Z}_{s}^{d}} \sqrt{2 \gamma_{n}}\left((\cos \langle n, \theta\rangle) \beta_{n}^{1}(t)+(\sin \langle n, \theta\rangle) \beta_{n}^{2}(t)\right), \\
& \theta \in T^{d}, \quad t \geqslant 0 \tag{5.1}
\end{align*}
$$

where $\beta_{0}, \beta_{n}^{1}, \beta_{n}^{2}, n \in \mathbb{Z}_{s}^{d}$ are independent, real Brownian motions and the convergence is in the sense of $D^{\prime}\left(T_{d}\right)$.

Denote $H=H^{0}=L^{2}\left(T^{d}\right), H^{\alpha}=H^{\alpha}\left(T^{d}\right)$ and $H^{-\alpha}=H^{-\alpha}\left(T^{d}\right), \alpha \in \mathbb{R}_{+}$, the real Sobolev spaces of order α and $-\alpha$, respectively. The norms are expressed in terms of the Fourier coefficients, see [Ad]

$$
\|\xi\|_{H_{-\alpha}}=\left(\sum_{n \in \mathbb{Z}^{d}}\left(1+|n|^{2}\right)^{\alpha}\left|\xi_{n}\right|^{2}\right)^{\frac{1}{2}}=\left(\left|\xi_{0}\right|^{2}+2 \sum_{n \in \mathbb{Z}_{s}^{d}}\left(1+|n|^{2}\right)^{\alpha}\left(\left(\xi_{n}^{1}\right)^{2}+\left(\xi_{n}^{2}\right)^{2}\right)\right)^{\frac{1}{2}}
$$

and

$$
\|\xi\|_{H^{-\alpha}}=\left(\sum_{n \in \mathbb{Z}^{d}}\left(1+|n|^{2}\right)^{-\alpha}\left|\xi_{n}\right|^{2}\right)^{\frac{1}{2}}=\left(\left|\xi_{0}\right|^{2}+2 \sum_{n \in \mathbb{Z}_{s}^{d}}\left(1+|n|^{2}\right)^{-\alpha}\left(\left(\xi_{n}^{1}\right)^{2}+\left(\xi_{n}^{2}\right)^{2}\right)\right)^{\frac{1}{2}}
$$

where $\xi_{n}=\xi_{n}^{1}+i \xi_{n}^{2}, \xi_{n}=\bar{\xi}_{-n}, n \in \mathbb{Z}^{d}$.
We have the following result
Theorem 3. Equations (1.1) and (1.2) on the torus T^{d} have $H^{\alpha+1}\left(T^{d}\right)$-valued solution if and only if the Fourier coefficients $\left(\gamma_{n}\right)$ of the kernel Γ satisfy:

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}^{d}} \frac{\gamma_{n}}{\left(1+|n|^{2}\right)^{\alpha}}<+\infty \tag{5.2}
\end{equation*}
$$

Remark: Recently, the problem of existence of solution to stochastic wave equation in $S^{\prime}\left(\mathbb{R}^{d}\right)$ has been recently considered by Gaveau [Ga].

As in the case of \mathbb{R}^{d}, condition (5.1) can be written in a more explicit way.
Theorem 4. Assume that Γ is not only a positive definite distribution but is also a non-negative measure. Then equations (1.1) and (1.2) have function-valued solutions:
i) for all Γ if $d=1$;
ii) for exactly those Γ for which $\int_{|\theta| \leqslant 1} \ln |\theta| \Gamma(d \theta)<+\infty$ if $d=2$;
iii) for exactly those Γ for which $\int_{|\theta| \leqslant 1} \frac{1}{|\theta|^{d-2}} \Gamma(d \theta)<+\infty$ if $d \geqslant 3$.

The proofs of both theorems are similar to those for \mathbb{R}^{d}. For details we refer to our preprint [KaZa].

In fact the proof of Theorem 3 can be done in a different way by taking into account the expansion (5.1) of the Wiener process W, with respect to the basis $1, \cos \langle n, \theta\rangle, \sin \langle n, \theta\rangle, n \in \mathbb{Z}_{s}^{d}, \theta \in T^{d}$. Equations (1.1) and (1.2) can be solved coordinatwise with the following explicit formulae for the solutions:

$$
\begin{align*}
X(t, \theta)= & \sqrt{\gamma_{0}} \beta_{0}(t)+\sum_{n \in \mathbb{Z}_{s}^{d}} \sqrt{2 \gamma_{n}}\left[\cos \langle n, \theta\rangle \int_{0}^{t} e^{-|n|^{2}(t-s)} d \beta_{n}^{1}(s)\right. \\
& \left.+\sin \langle n, \theta\rangle \int_{0}^{t} e^{-|n|^{2}(t-s)} d \beta_{n}^{2}(s)\right] \tag{5.3}\\
Y(t, \theta)= & \sqrt{\gamma_{0}} \beta_{0}(s) d s+\sum_{n \in \mathbb{Z}_{s}^{d}} \sqrt{2 \gamma_{n}}\left[\cos \langle n, \theta\rangle \int_{0}^{t} \frac{\sin (|n|(t-s)}{|n|} d \beta_{n}^{1}(s)\right. \\
+ & \left.\sin \langle n, \theta\rangle \int_{0}^{t} \frac{\sin |n|(t-s)}{|n|} d \beta_{n}^{2}(s)\right] . \tag{5.4}
\end{align*}
$$

Therefore

$$
\begin{aligned}
& \mathbb{E}|X(t)|_{H}^{2}=(2 \pi)^{d}\left[\gamma_{0} t+\sum_{n \in \mathbb{Z}_{s}^{d}} 2 \gamma_{n} \int_{0}^{t} e^{-2|n|^{2} s} d s\right], \\
& \mathbb{E}|Y(t)|_{H}^{2}=(2 \pi)^{d}\left[\gamma_{0} \frac{t^{3}}{3}+\sum_{n \in \mathbb{Z}_{s}^{d}} \frac{2 \gamma_{n}}{|n|^{2}} \int_{0}^{t} \sin ^{2}(|n| s) d s\right], t \geqslant 0 .
\end{aligned}
$$

Since, for arbitrary $t>0$,

$$
\begin{gathered}
|n|^{2} \int_{0}^{t} e^{-2|n|^{2} s} d s \rightarrow \frac{1}{2}, \text { as }|n| \rightarrow+\infty \\
\int_{0}^{t} \sin ^{2}(|n| s) d s \rightarrow \int_{0}^{t} \sin ^{2} \sigma d \sigma, \text { as }|n| \rightarrow+\infty
\end{gathered}
$$

therefore $\mathbb{E}|X(t)|_{H}^{2}<+\infty, \mathbb{E}|Y(t)|_{H}^{2}<+\infty$ if and only if $\sum_{n \in \mathbb{Z}_{(s)}^{d}} \frac{\gamma_{n}}{|n|^{2}}<+\infty$, as required, $(\alpha=0)$.

Expansions (5.1), (5.2) lead also to more refined results.
Theorem 5. Assume that

$$
\sum_{n \in \mathbb{Z}^{d}} \frac{\gamma_{n}}{1+|n|^{\alpha}}<+\infty
$$

for some $\alpha \in(0,2)$. Then solutions $X(t), Y(t), t \geqslant 0$ are Hölder continuous with respect to $t>0$ and $\theta \in T^{d}$ with any exponent smaller than $\frac{1}{2}-\frac{\alpha}{4}$.

The theorem is a consequence of Theorem 5.20 and Theorem 5.22 from [DaPrZa]. For the case of R^{2} and the stochastic wave equation a similar result was obtained in [DaFr].

We finish the section with some applications of Theorems 3 and 4.
Corollary 1. Assume that $\Gamma \in L^{2}\left(T^{d}\right)$ and $d=1,2,3$. Then the stochastic heat and wave equations (1.1) and (1.2) have solutions with values in $L^{2}\left(T^{d}\right)$.

Corollary 2. Assume that for some $1 \leqslant p \leqslant 2, \hat{\Gamma} \in l^{p}\left(\mathbb{Z}^{d}\right)$. If $d<\frac{2 p}{p-1}$, then the stochastic heat and wave equations (1.1) and (1.2) have solutions in $L^{2}\left(T^{d}\right)$.

6 Conjectures

Taking into account Theorem 1 it is natural to expect that the following conjecture is true.

Conjecture 1. If $\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \mu(d \lambda)<+\infty$ and functions $g: \mathbb{R} \rightarrow \mathbb{R}, b: \mathbb{R} \rightarrow \mathbb{R}$ are Lipschitz then nonlinear heat equation

$$
\left\{\begin{array}{l}
\frac{\partial u(t, \theta)}{\partial t}=\Delta u(t, \theta)+g(u(t, \theta))+b(u(t, \theta)) \frac{\partial W_{\Gamma}}{\partial t}(t, \theta), \quad t>0, \quad \theta \in \mathbb{R}^{d} \tag{6.1}\\
u(0, \theta)=0, \quad \theta \in \mathbb{R}^{d}
\end{array}\right.
$$

and nonlinear wave equation

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(t, \theta)}{\partial t^{2}}=\Delta u(t, \theta)+g(u(t, \theta))+b(u(t, \theta)) \frac{\partial W_{\Gamma}}{\partial t}(t, \theta), \quad t>0, \quad \theta \in \mathbb{R}^{d} \tag{6.2}\\
u(0, \theta)=0, \quad \frac{\partial u}{\partial t}(0, \theta)=0, \quad \theta \in \mathbb{R}^{d}
\end{array}\right.
$$

have solutions.
At the moment there are only partial confirmations of the conjectures. Namely, the following result concerned with nonlinear heat equation (6.1) is contained in the paper [PeZa].

Theorem 6. Assume that g and b are Lipschitz. Nonlinear heat equation (6.1) has a unique Markovian solution in $L_{\rho_{\kappa}}^{2}$, where $\kappa>0, \rho_{\kappa}(\theta)=e^{-\kappa|\theta|}, \theta \in \mathbb{R}^{d}$, if either the spectral measure μ of W_{Γ} is finite or μ is infinite and has a density $\frac{d \mu}{d \theta}$ such that:
i) if $d=1, \frac{d \mu}{d \theta} \in L^{p}$ for some $p \in[1,+\infty]$;
ii) if $d=2, \frac{d \mu}{d \theta} \in L^{p}$ for some $p \in[1,+\infty)$;
iii) if $d \geqslant 3, \frac{d \mu}{d \theta} \in L^{p}$ for some $p \in\left[1, \frac{d}{d-2}\right)$.

A general existence result for nonlinear stochastic wave equations was proved in the paper [DaFr by Dalang and Frangos. They showed the following result.

Theorem 7. If correlation Γ is a function of the form $\Gamma(\theta)=f(|\theta|)$, with f positive and continuous outside 0 , and if the dimension $d=2$ and the condition (1.3) is satisfied then the equation (6.2) has a local solution.

It is interesting to note that conditions of Theorem 5 imply that the reproducing kernel space S_{Γ}^{\prime} consists only of functions, namely, $S_{\Gamma}^{\prime} \subset L^{2}\left(\mathbb{R}^{d}\right)+C_{b}\left(\mathbb{R}^{d}\right)$, see [PeZa]. This seems to be essential for the definition of the stochastic integral with the integrands being multiplication operators. We therefore pose the following conjecture.

Conjecture 2. If $\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \mu(d \lambda)<+\infty$ then elements of S_{Γ}^{\prime} are represented by locally integrable functions.

The following proposition is a partial confirmation of Conjecture 2.
Proposition 6. If $\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \mu(d \lambda)<+\infty$ then $\delta_{\{o\}} \notin S_{\Gamma}^{\prime}$.
Proof: Assume, to the contrary, that for some $u \in L_{(s)}^{2}\left(\mathbb{R}^{d}, \mu\right), \widehat{u \mu}=\delta_{\{o\}}$.
Then, for a constant $c>0, u(x) \mu(d x)=c d x$ and $u(x)>0$ for almost all $x \in \mathbb{R}^{d}$ and measure μ can be identified with its density $\gamma(x)=\frac{c}{u(x)}, x \in \mathbb{R}^{d}$.
We also have

$$
\int_{\mathbb{R}^{d}} \frac{1}{1+|\lambda|^{2}} \gamma(x) d x<+\infty
$$

and

$$
\int_{\mathbb{R}^{d}} u^{2}(x) \mu(d x)=\int_{\mathbb{R}^{d}} \frac{c^{2}}{\gamma^{2}(x)} \gamma(x) d x=\int_{\mathbb{R}^{d}} \frac{c^{2}}{\gamma(x)} d x<+\infty .
$$

Consequently

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \frac{1}{\sqrt{1+|\lambda|^{2}}} \frac{\gamma(x)}{\sqrt{1+|\lambda|^{2}}} d x<+\infty, \\
& \int_{\mathbb{R}^{d}} \frac{1}{\sqrt{1+|\lambda|^{2}}} \frac{\sqrt{1+|\lambda|^{2}}}{\gamma(x)} d x<+\infty .
\end{aligned}
$$

Adding both inequalities and taking into account that $a+\frac{1}{a} \geqslant 2$ for all $a>0$, one arrives at $\int_{\mathbb{R}^{d}} \frac{1}{\sqrt{1+|\lambda|^{2}}} d<+\infty$, a contradiction.

References

References

[Ad] Adams, R., Sobolev Spaces, Academic Press, New York, 1975.
[DaFr] Dalang, R. and Frangos, N., The stochastic wave equation in two spatial dimensions, to appear in The Annals of Probability.
[DaPrZa] DaPrato, G. and Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
[DaPrZa1] DaPrato, G. and Zabczyk, J., Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.
[DaSa] Dawson, D. and Salehi, H., Spatially homogeneous random evolutions, J. Mult. Anal. 10 (1980), 141-180.
[Fe] Feller, W., An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York, 1966.
[Ga] Gaveau, B., The Cauchy problem for the stochastic wave equation, Bull. Sci. Math. 119 (1995), 381-407.
[GeSh] Gel'fand, M. and Shilov, G., Generalized Functions 1. Properties and Operations, Academic Press, New York, 1964.
[GeVi] Gel'fand, M. and Vilenkin, N., Generalized functions 4. Applications of Harmonic Analysis, Academic Press, New York, 1964.
[GlJa] Glimm, J. and Jaffe, A., Quantum Physics, A Functional Integral Point of View, Springer-Verlag, New Yprk, 1981.
[HoSt] Holley, R. and Stroock, D., Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motion, Publ. RIMS, Kyoto Univ. 14 (1978), 741-788.
[Itô] Itô, K., Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, SIAM, Philadelphia, 1984.
[KaZa] Karczewska, A. and Zabczyk, J., A note on stochastic wave equations, Preprint 574, Institute of Math., Polish Acad. Sc., Warsaw (1997).
[La] Landkof, N.S., Foundations of Modern Potential Theory, Springer-Verlag, Berlin, 1972.
[Mi] Mizohata, S., The Theory of Partial Differential Equations, Cambridge University Press, Cambridge, 1973.
[Mu] Mueller, C., Long time existence for the wave equations with a noise term, The Annals of Probability No. 1, 25 (1997), 133-151.
[No] Nobel, J., Evolution equation with Gaussian potential, Nonlinear Analysis: Theory, Methods and Applications 28 (1997), 103-135.
[PeZa] Peszat, S. and Zabczyk, J., Stochastic evolution equations with a spatially homogeneous Wiener process, to appear in Stochastic Processes and Applications.
[St] Stroock, D., Probability Theory, An Analytic View, Cambridge University Press, Cambridge, 1993.
[Wa] Walsh, J., An introduction to stochastic partial differential equations, Ècole d'Ètè de Probabilitès de Saint-Flour XIV-1984, Lecture Notes in Math., Springer-Verlag, New York-Berlin 1180 (1986), 265-439.

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification. Primary: 60H15; Secondary: 30R60, 60H30.
 Key words and phrases. Stochastic heat and wave equations, function-valued solutions, equations on a torus.
 *) Research supported by KBN Grant No. 2PO3A 08208
 2) The first draft of the paper was prepared when the author was visiting Scuola Normale Superiore in Pisa, in Spring 1997.

