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Śniadeckich 8
00–950 Warszawa, Poland

e-mail: zabczyk@impan.gov.pl

Abstract

The paper provides necessary and sufficient conditions under which stochas-
tic heat and wave equations on R

d have function-valued solutions. The results
extend, to all dimensions d and to all spatially homogeneous perturbations, recent
characterizations by Dalang and Frangos [DaFr]. The paper proposes a natural
framework for a study of nonlinear stochastic equations. It is based on the har-
monic analysis technique and on the stochastic integration theory in functional
spaces. Generalizations to the d-dimensional torus and to nonlinear equations
are discussed as well.

1 Introduction

The paper is concerned with the stochastic heat and wave equations:
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{
∂u
∂t

(t, θ) = ∆u(t, θ) + ∂WΓ

∂t
(t, θ), t > 0, θ ∈ Rd

u(0, θ) = 0, θ ∈ Rd (1.1)

and

{
∂2u
∂t2

(t, θ) = ∆u(t, θ) + ∂WΓ

∂t
(t, θ), t > 0, θ ∈ Rd

u(0, θ) = 0, ∂u
∂t

(0, θ) = 0, θ ∈ Rd (1.2)

where WΓ is a spatially homogeneous Wiener process with the space correlation Γ.
The correlation Γ can be any positive definite distribution. It defines the covariance
operator of the Wiener process by the formula Qϕ = Γ ∗ ϕ, ϕ ∈ S(Rd).

It is well-known, see [Wa], that if ∂WΓ

∂t
is a space-time white noise, or equivalently

if Γ = δ{o}, then the equations (1.1), (1.2) have function-valued solutions if and only if
the space dimension d = 1. It is therefore of interest to find out in dimensions d > 1 for
what space-correlated noise, equations (1.1) and (1.2), have function-valued solutions.
This problem has been recently investigated, for stochastic wave equation, by Dalang
and Frangos [DaFr], see also Mueller [Mu], when d = 2. Let WΓ(t, θ), t > 0, θ ∈ R2,
be a Wiener process with a space correlation function Γ:

EWΓ(t, θ)WΓ(s, η) = t ∧ sΓ(θ − η), θ, η ∈ R
2,

where Γ(θ) = f(|θ|), θ ∈ R2, and f is non-negative function, continuous outside 0. It
has been shown in [DaFr] that the stochastic wave equation (1.2) has a function-valued
solution if and only if

∫

|θ|61

f(|θ|) ln
1

|θ|dθ < +∞. (1.3)

The proof in [DaFr] is based on explicit representation of the fundamental solution
of the deterministic wave equation in dimension d = 2 and can not be extended to
higher dimensions.

In the present note we treat the general case of arbitrary dimension d and of
arbitrary spatially homogeneous noise for both stochastic heat and wave equations.
Spatially homogeneous noise processes were introduced by Holley and Stroock [HoSt]
and Dawson and Salehi [DaSa] in connection with particle systems, see also Nobel
[No], Da Prato and Zabczyk [DaPrZa1] and Peszat and Zabczyk [PeZa] for more
recent investigations. We consider also equations (1.1) and (1.2) on the d-dimensional
torus T d. It is interesting that for both equations, (1.1) and (1.2) on Rd and on T d, the
necessary and sufficient conditions are exactly the same. Obtained characterizations
form a natural framework in which nonlinear heat and wave equations can be studied.
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Similar results can be formulated for linear parts of Navier-Stokes equations and
other equations of fluid dynamics. Techniques developed in the paper apply also to
equations (1.1) and (1.2) with ∆ replaced by fractional Laplacien −(−∆)α, α ∈ (0, 2].
However, those generalizations are not studied here.

To formulate our main theorems let us recall, see [GeVi], that positive definite,
tempered distrubutions Γ are precisely Fourier transforms of tempered measures µ.
The measure µ will be called the spectral measure of Γ and of the process WΓ.

Theorem 1. Let Γ be a positive definite, tempered distribution on Rd, with the
spectral measure µ. Then the equations (1.1) and (1.2) have function-valued solutions
if and only if ∫

Rd

1

1 + |λ|2 µ(dλ) < +∞. (1.4)

Theorem 2. Assume that Γ is not only a positive definite distribution but also a
non-negative measure. The equations (1.1) and (1.2) have function-valued solutions:

i) for all Γ if d = 1 ;
ii) for exactly those Γ for which

∫
|θ|61

ln |θ|Γ(dθ) < +∞ if d = 2;

iii) for exactly those Γ for which
∫
|θ|61

1
|θ|d−2 Γ(dθ) < +∞ if d > 3 .

Note that condition (1.3) is a special case of ii).

Similar theorems hold for stochastic heat and ware equations on the d-dimensional
torus, see Theorem 3 and Theorem 4 in §5.

The paper is organized as follows. Preliminaries and formulation of the problem
will be given in section 2. Section 3 contains proofs of the results for the case of
Rd. Applications are discussed in section 4. Extensions to d-dimensional torus are
contained in section 5. We finish the paper with two conjectures in section 6.

2 Preliminaries

2.1 Heat and wave semigroups

Let Sc(R
d) denote the space of all infinitely differentiable functions ψ on Rd taking

complex values, for which the seminorms

‖ ψ ‖ α,β = sup
x∈Rd

|xαDβψ(x)|
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are finite. The adjoint space S ′
c(R

d) is then the space of tempered distributions. By
S(Rd) and S ′(Rd) we denote the spaces of real functions from Sc(R

d) and the space
of real functionals on S(Rd).

For ψ ∈ Sc(R
d) define ψ(s)(x) = ψ(−x), x ∈ Rd. By S(s)(R

d) and S ′
(s)(R

d) denote

the spaces of ψ ∈ Sc(R
d) such that ψ(x) = ψ(s)(x) and the space of all ξ ∈ S ′

c(R
d)

such that (ξ, ψ) = (ξ, ψ(s)) for all ψ ∈ S(Rd).
If F is the Fourier transform on Sc(R

d):

F(ψ)(λ) =

∫

Rd

et〈x,λ〉ψ(x)dx, λ ∈ R
d, ψ ∈ Sc(R

d),

then its inverse F−1 is given by the formula

F−1ψ(x) =
1

(2π)d

∫

Rd

e−t〈x,λ〉ψ(λ)dλ, λ ∈ R
d, ψ ∈ Sc(R

d).

We use the same notation for the Fourier transforms acting on S ′
c(R

d).
Note that the operators F and F−1 transform S ′(Rd) onto S ′

(s)(R
d) and S ′

(s)(R
d) onto

S ′(Rd), respectively. The Fourier transforms of ϕ ∈ Sc(R
d) and ξ ∈ S ′

c(R
d) will be

denoted by ϕ̂ and ξ̂.
Consider first the heat equation

∂u

∂t
= ∆u, t > 0 u(0) = ξ (2.1)

where ξ ∈ S ′
c(R

d). If û denotes the Fourier transform of u then

∂û

∂t
= −|λ|2û and û(0) = ξ̂,

and therefore

û(t) = e−|λ|2tξ̂.

Consequently, for arbitrary ξ ∈ S ′
c(R

d), equation (2.1) has a unique solution in S ′
c(R

d)
and the solution is given by the formula

u(t, x) = p(t) ∗ ξ(x) = (ξ, p(t, x− ·)) (2.2)

where p̂(t)(λ) = e−t|λ|
2
, p(t, x) = 1√

(4πt)d
e

−|x|2

4t , t > 0, λ, x ∈ Rd.

The family

S(t)ξ = p(t) ∗ ξ, t > 0, ξ ∈ S ′
c(R

d) (2.3)
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forms a semigroup of operators, continuous in the topology of S ′
c(R

d). The formula
(2.2) shows that the semigroup S(t), t > 0 has a smoothing property: for all ξ ∈
S ′
c(R

d), S(t)ξ is represented by C∞ function.

Similarly, for the wave equation,

∂u
∂t

= v, u(0) = ξ

∂v
∂t

= ∆u, v(0) = ζ,

one gets, passing again to the Fourier transforms û and v̂, that:

∂û

∂t
= v̂,

∂v̂

∂t
= −|λ|2û.

By direct computation we have

d

dt

(
û
v̂

)
=

(
cos (|λ|t) , sin (|λ|t)

|λ|

−|λ| sin (|λ|t), cos (|λ|t)

)(
ξ̂

ζ̂

)
.

Therefore,

û(t) = [cos (|λ|t)]û(0) +

[
sin (|λ|t)

|λ|

]
v̂(0), (2.4)

v̂(t) = −[|λ| sin (|λ|t)]û(0) + [cos (|λ|t)]v̂(0). (2.5)

Note that for each t ∈ R1 functions cos (|λ|t), sin (|λ|t)
|λ|

and |λ| sin (|λ|t), λ ∈ Rd,
are smooth and polynomially bounded together with all their partial derivatives.
Therefore the formulae (2.4), (2.5) define distributions belonging to S ′

c(R
d).

Let p1,1(t), p1,2(t), p2,1(t), p2,2(t) t ∈ R
1, be elements from S ′(Rd) such that,

cos (|λ|t) = F (p1,1(t)) (λ),
sin (|λ|t)

|λ| = F (p1,2(t)) (λ)

−|λ| sin (|λ|t) = F (p2,1(t)) (λ), cos(|λ|t) = F (p2,2(t)) (λ), λ ∈ R
d.

Then

u(t) = p1,1(t) ∗ u(0) + p1,2(t) ∗ v(0),

v(t) = p2,1(t) ∗ u(0) + p2,2(t) ∗ v(0), t ∈ R.
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As for the heat equation, explicit formulae for the distributions pi,j(t), i, j = 1, 2
are known, see [Mi, pp. 280–282]. In particular, they have bounded supports.

We shall use the following notation

R(t)ξ = p1,2(t) ∗ ξ, t > 0, ξ ∈ S ′
c(R

d). (2.6)

2.2 Spatially homogeneous Wiener process

Let Γ be a positive definite, tempered distribution. ByWΓ we denote an S ′(Rd)-valued
Wiener process defined on a probability space (Ω, F,P) such that

E(W (t), ϕ)(W (s), ψ) = t ∧ s(Γ, ϕ ∗ ψ(s)),

where ψ(s)(x) = ψ(−x), x ∈ Rd, see [PeZa]. It is well-known that this way one can
describe all space homogeneous S ′(Rd)-valued Wiener processes, see e.g. [PeZa].

The crucial role for stochastic integration with respect to WΓ is played by the
Hilbert space S ′

Γ ⊂ S ′(Rd) consisting of all distributions ξ ∈ S ′(Rd) for which there
exists a constant C such that,

|(ξ, ψ)| 6 C
√

(Γ, ψ ∗ ψ(s)), ψ ∈ S.

The norm in S ′
Γ is given by the formula:

|ξ|S′
Γ

= sup
ψ∈S

|(ξ, ψ)|√
(Γ, ψ ∗ ψ(s))

.

The space S ′
Γ is called the kernel of WΓ, see [PeZa].

Let H be a Hilbert space and let LHS(S ′
Γ, H) be the space of Hilbert-Schmidt

operators from S ′
Γ into H . Assume that Ψ is a predictable LHS(S ′

Γ, H)-valued process
such that

E

(∫ t

0

‖ Ψ(s) ‖ 2
LHS(S′

Γ,H)ds

)
< +∞ for all t > 0.

Then the stochastic integral ∫ t

0

Ψ(s)dWΓ(s), t > 0

can be defined in a standard way, see [Itô], [DaPrZa], [PeZa]. It is an H–valued
martingale for which

E

(∫ t

0

Ψ(s)dWΓ(s)

)
= 0, t > 0

and
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E|
∫ t

0

Ψ(s)dWΓ(s)|2H = E

(∫ t

0

‖ Ψ(s) ‖ 2
LHS(S′

Γ,H)ds

)
, t > 0.

We will need a characterization of the space S ′
Γ from [PeZa, Proposition 1.2]. In

the proposition below L2
(s)(R

d, µ) denotes the subspace of L2(Rd, µ; C) consisting of
all functions u such that u(s) = u, see §2.1.

Proposition 1. A distribution ξ belongs to S ′
Γ if and only if ξ = ûµ for some

u ∈ L2
(s)(R

d, µ). Moreover, if ξ = ûµ and η = v̂µ, then

〈ξ, η〉S′
Γ

= 〈u, v〉L2
(s)

(Rd,µ).

2.3 Questions

By a solution X to the stochastic heat equation we understand the process

X(t) =

∫ t

0

S(t− s)dWΓ(ds), t > 0, (2.7)

where S(·) is given by (2.3). Similarly, solution Y to the stochastic wave equation is
of the form

Y (t) =

∫ t

0

R(t− s)dWΓ(ds), t > 0, (2.8)

with R(·) defined by (2.6). It is not difficult to show that the processes X(t), t > 0,
and Y (t), t ≥ 0, are weak solutions of the corresponding equations and take values
in S ′(Rd), see [Itô].

Let us recall that a family Z(x), x ∈ Rd, of real random variables is called a
stationary, Gaussian, random field if and only if, Z is a measurable transformation
from Rd × Ω into R and for arbitrary h, x1, . . . , xm ∈ Rd, random vectors (Z(x1 +
h), . . . , Z(xm + h)) are Gaussian with the law independent of h.

The main questions considered in the paper can be stated as follows.

Question 1. Under what conditions on Γ, for each t > 0, X(t) is a stationary,
Gaussian random field?

Question 2. Under what conditions on Γ, for each t > 0, Y (t) is a stationary,
Gaussian random field?

Note that if Z is a stationary, Gaussian random field then, for all positive,
integrable functions ρ(x), x ∈ Rd
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E

(∫

Rd

Z2(x)ρ(x)dx

)
=

∫

Rd

(EZ2(x))ρ(x)dx =

(∫

Rd

ρ(x)dx

)
E(Z2(o)) < +∞.

Consequently, P(Z ∈ L2
ρ(R

d)) = 1, where L2
ρ(R

d) = L2(Rd, ρ(x)dx) and the questions
can be reformulated as follows.

Question 1. Under what conditions on Γ the process X takes values in L2
ρ(R

d)
for some (any) positive integrable weight ρ ?

Question 2. Under what conditions on Γ the process Y takes values in L2
ρ(R

d)
for some (any) positive integrable weight ρ ?

Answers to these questions have been formulated in the Introduction as Theorem
1 and Theorem 2. The case of d-dimensional forms T d is treated in §5.

3 Proofs of Theorem 1 and Theorem 2

3.1 Proof of Theorem 1.

(a) Stochastic heat equation

Let us recall that we denote by S ′
Γ the kernel of the Wiener process WΓ and that

S(t)ξ = p(t) ∗ ξ, t > 0.

It follows from §2.2 that the stochastic integral

∫ t

0

S(t− s)dWΓ(s), t > 0

takes values in L2
ρ(R

d) if and only if

∫ t

0

‖ S(σ) ‖ 2
LHS(S′

Γ,L
2
ρ)dσ < +∞.

Let {uk} be an orthonormal basis in L2
(s)(R

d, µ). Then by Proposition 1.2 of [PeZa],

ek = ûkµ, k ∈ N, is an orthonormal basis in S ′
Γ.

Thus we have

‖ S(σ) ‖ 2
LHS(S′

Γ,L
2
ρ) =

∞∑

k=1

|S(σ)ûkµ|2L2
ρ

=
∞∑

k=1

∫

Rd

|p(σ) ∗ ûkµ(x)|2ρ(x)dx, σ > 0.
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However, p(σ) ∈ S(Rd) and therefore

p(σ) ∗ ûkµ(x) = (p(σ, x− ·), ûkµ) = (ukµ, p̂(σ, x− ·)) .
The last identity follows from the definition of the Fourier transform of the

distribution ukµ. However,

p̂(σ, x− ·)(λ) = ei〈x,λ〉e−σ|λ|
2

and therefore

(ukµ, p̂(σ, x− ·)) = (ukµ, e
i〈x,·〉e−σ|·|

2

).

Consequently

‖ S(σ) ‖ 2
LHS(S′

ΓL
2
ρ) =

∑

k

∫

Rd

∣∣∣(ukµ, ei〈x,·〉e−σ|·|
2

)
∣∣∣
2

ρ(x)dx

=
∑

k

∫

Rd

∣∣∣∣
∫

Rd

uk(λ)ei〈x,λ〉e−σ|λ|
2

µ(dλ)

∣∣∣∣
2

ρ(x)dx

=

∫

Rd

[∑

k

∣∣∣〈uk, e−i〈x,·〉e−σ|·|
2〉L2

(s)
(Rd,µ)

∣∣∣
2
]
ρ(x)dx.

By the Parseval identity in L2
(s)(R

d, µ),

∑

k

∣∣∣〈uk, e−i〈x,·〉e−σ|·|
2〉L2

(s)
(Rd,µ)

∣∣∣
2

=

∫

Rd

∣∣∣e−i〈x,λ〉e−σ|λ|2
∣∣∣
2

µ(dλ) =

∫

Rd

e−2σ|λ|2µ(dλ).

Finally,

∫ t

0

‖ S(σ) ‖ 2
LHS(S′

Γ,L
2
ρ)dσ =

[∫

Rd

ρ(x)dx

] ∫ t

0

∫

Rd

e2σ|λ|
2

µ(dλ)dσ =

=

[∫

Rd

ρ(x)dx

] ∫

Rd

1 − e−2t|λ|2

|λ|2 µ(dλ).

Therefore

∫ t

0

‖ S(σ) ‖ 2
LHS(S′

Γ,L
2
ρ)dσ < +∞

if and only if
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∫

Rd

1

1 + |λ|2µ(dλ) < +∞.

(b) Stochastic wave equation

Let us recall that R(σ)ξ = p1,2(σ) ∗ ξ, σ > 0, ξ ∈ S ′
c(R

d), see (2.6). The process
Y (t), t > 0, is well defined as an L2

ρ(R
d)-valued process if and only if

∫ t

0

‖ R(σ) ‖ 2
LHS(S′

Γ,L
2
ρ)dσ < +∞.

But

‖ R(σ) ‖ 2
LHS(S′

Γ,L
2
ρ) =

∑

k

∫

Rd

|p1,2(σ) ∗ ûkµ(x)|2ρ(x)dx.

However

p1,2(σ) ∗ ûkµ(x) = (p1,2(σ, x− ·), ûkµ) = (p̂1,2(σ)(x− ·), ukµ). (3.1)

To justify the identity (3.1) we need the following lemma, see [GeSh].

Lemma 1. Let ξ and η be distributions with bounded supports. Then the con-
volution ξ ∗ η̂ exists and is a function of class C∞. Moreover

ξ ∗ η̂(x) = (ξ̂(x− ·), η), x ∈ R
d.

Note that the distribution p1,2 has bounded support and one can assume also
that functions uk, k ∈ N, have bounded supports as well.
But

p̂1,2(σ)(x− ·)(λ) = ei〈x,λ〉
sin (|λ|σ)

|λ| .

Therefore

‖ R(σ) ‖ 2
LHS(S′

Γ,L
2
ρ) =

∑

k

∫

Rd

∣∣∣∣
(
ukµ, e

i〈x,·〉 sin (| · |σ)

| · |

)∣∣∣∣
2

ρ(x)dx =

=
∑

k

∫

Rd

∣∣∣∣〈uk, ei〈x,·〉
sin (| · |σ)

| · | 〉L2
(s)

(Rd,µ)

∣∣∣∣
2

ρ(x)dx.

Again, by the Parseval identity,
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‖ R(σ) ‖ 2
LHS(S′

Γ,L
2
ρ) =

[∫

Rd

ρ(x)dx

] ∫

Rd

(sin (|λ|σ))2

|λ|2 µ(dλ).

Consequently,

∫ t

0

‖ R(σ) ‖ 2
LHS(S′

Γ,L
2
ρ)dσ =

[∫

Rd

ρ(x)dx

] ∫

Rd

[∫ t

0

(sin (|λ|σ))2

|λ|2 dσ

]
µ(dλ).

By an elementary argument one shows now that the integral is finite, for all t > 0, if
and only if

∫

Rd

1

1 + |λ|2µ(dλ) < +∞.

This completes the proof of Theorem 1.
�

3.2 Proof of Theorem 2.

Let

Gd(x) =

∫ +∞

0

e−tp(t, x)dt, x ∈ R
d

where

p(t, x) =
1√

(4πt)d
e−

|x|2

4t , t > 0, x ∈ R
d.

Thus Gd is the resolvent kernel of the d-dimensional Wiener process. It is easy
to see that

Gd(x) =
1

(2π)d

∫

Rd

e−i〈x,λ〉
1

1 + |λ|2dλ, x ∈ R
d.

The following properties of Gd are well-known, see [La], [GlJa], [GeSh]:

Proposition 2. One has that:

G1(x) =
1

2
e−|x|, x ∈ R

1; G3(x) =
1

4π|x|e
−|x|, x ∈ R

3

and, in general, for d > 2,
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Gd(x) = (2π)−
d
2

1

|x| d−2
2

K d−2
2

(|x|),

where Kγ, γ > 0, denotes the modified Bessel function of the third order.

We will need also a characterization of the behaviour of Gd near 0 and near ∞,
see [GlJa, Proposition 7.2.1].

Proposition 3. The function Gd has the following properties:
(a) for d > 1, for |x| bounded away from a neighbourhood of zero and for a constant
c > 0

Gd(x) 6
c

|x| d−1
2

e−|x|;

(b) for d > 3 and for a constant c > 0, in a neighbourhood of zero

Gd(x) ∼ c

|x|d−2
;

(c) for d = 2 and for a constant c > 0, in a neighbourhood of zero

G2(x) ∼ − c ln |x|.

We will need also the following lemma:
Lemma 2. Assume that the distribution Γ is not only positive definite but it is

also a non-negative measure. Then

(Γ, Gd) = (2π)d
∫

Rd

1

1 + |λ|2µ(dλ).

Proof of Lemma 2. Since µ = F−1(Γ) and e−t|·|
2 1

1+|·|2
∈ S(Rd), by the defini-

tion of the Fourier transform of a distribution,

∫

Rd

e−t|λ|
2

1 + |λ|2µ(dλ) =

(
e−t|·|

2

1 + | · |2 , µ
)

=

(
e−t|·|

2

1 + | · |2 ,F
−1(Γ)

)
=

=

(
F−1

(
e−t|·|

2

1 + | · |2

)
,Γ

)
=

1

(2π)d
(p(t) ∗Gd,Γ) .

Therefore

lim
t↓0

1

(2π)d
(p(t) ∗Gd,Γ) =

∫

Rd

1

1 + |λ|2µ(dλ).
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Moreover

p(s) ∗Gd =

∫ +∞

0

e−tp(t) ∗ p(s)dt =

= es
∫ +∞

0

e−(t+s)p(t+ s)dt = es
∫ +∞

s

e−σp(σ)dσ.

So

e−sp(s) ∗Gd =

∫ +∞

s

e−σp(σ)dσ

and then

e−sp(s) ∗Gd ↑ Gd as s ↓ 0.

Hence, if Γ is a non-negative distribution on Rd, then

∫

Rd

1

1 + |λ|2µ(dλ) = lim
t↓0

e−t
1

(2π)d
(p(t) ∗Gd,Γ) =

1

(2π)d
(Gd,Γ).

This completes the proof of Lemma 2.
�

We pass now to the proof of the theorem. It is well-known that a non-negative
measure Γ belongs to S ′(Rd) if and only if for some r > 0,

∫

Rd

1

1 + |x|rΓ(dx) < +∞. (3.2)

Moreover, for arbitrary d > 1,

∫

Rd

Gd(x)Γ(dx) =

∫

|x|61

Gd(x)Γ(dx) +

∫

|x|>1

Gd(x)Γ(dx).

But, by Proposition 3 (a),

∫

|x|>1

Gd(x)Γ(dx) 6 c

∫

|x|>1

e−|x|Γ(dx)

and from (3.2)

∫

|x|>1

Gd(x)Γ(dx) < +∞.
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Since the function G1 is continuous,

∫

|x|61

G1(x)Γ(dx) < +∞

and the theorem is true for d=1.

If d=2 then
∫

Rd G2(x)Γ(dx) < +∞ if and only if
∫
|x|61

G2(x)Γ(dx) < +∞. But

G2(x) ∼ c ln 1
|x|

for some c > 0 in the neighbourhood of 0, so

G2(x)/c ln
1

|x| → 1 as |x| → 0.

Therefore, for some c1 > 0, c2 > 0:

c2 ln
1

|x| 6 G2(x) 6 c1 ln
1

|x| , for |x| 6 1.

Consequently,

∫

Rd

G2(x)Γ(dx) < +∞ if and only if

∫

|x|61

ln
1

|x|Γ(dx) < +∞.

If d > 3, in the same way,

∫

Rd

Gd(x)Γ(dx) < +∞ if and only if

∫

Rd

1

|x|d−2
Γ(dx) < +∞.

This completes the proof of Theorem 2.
�

4 Applications

We illustrate the main results by several examples. We start with the case of bounded
functions Γ.

Proposition 4. If the positive definite distribution Γ is a bounded function then
the equations (1.1) and (1.2) have function-valued solutions in any dimension d.
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Proof: If the positive definite distribution Γ is a bounded function then Γ is
a continuous function and the corresponding spectral measure µ is finite. Since the
function 1

1+|λ|2
, λ ∈ Rd, is bounded therefore

∫

Rd

1

1 + |λ|2µ(dλ) < +∞

and by Theorem 1 the result follows.
�

Stochastic evolution equations with noise of such type have been introduced by
Dawson and Salahi [DaSa] with an extra requirement that µ is absolutely continuous
with respect to Lebesgue measure on R

d. In the case of d=2 they have appeared in
the recent paper by Mueller [Mu].

Example 1. It is well-known that functions Γ(x) = e−|x|α, x ∈ Rd, for α ∈ (0, 2]
are positive definite. In fact, they are Fourier transforms of the so called symmet-
ric stable distributions, see [La] or [Fe]. Consequently with such covariances Γ the
equations (1.1) and (1.2) have function-valued solutions.

We consider now some examples of unbounded covariances Γ.

Proposition 5. For arbitrary α ∈ (0, d) the function Γα(x) = 1
|x|α

, x ∈ Rd is a

positive definite distribution. Equations (1.1) and (1.2) with the covariance Γα have
function-valued solutions if and only if α ∈ (0, 2 ∧ d).

Proof. It is well-known, see [Mi], [GeSh] or [La], that Γα is the Fourier transform
of the function c1

1
|λ|d−α , λ ∈ Rd, where c1 is a positive constant. The condition (1.4)

is equivalent to

I :=

∫

Rd

1

1 + |λ|2
1

|λ|d−αdλ < +∞.

By standard calculation

I = c2

∫ +∞

0

1

(1 + r2)

1

rd−α
rd−1dr,

where c2 is a constant. One obtains, that I < +∞ if and only if

∫ 1

0

1

r1−α
dr < +∞ and

∫ ∞

1

1

r3−α
dr < +∞,
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or equivalently, α > 0 and α < 2. Since α ∈ (0, d), the result follows.
�

Remark: Note that Proposition 5 contains, as a special case, an application
from the paper [DaFr, see Examples].

We pass now to examples for which Γ are genuine distributions.
Example 2. If ∂WΓ

∂t
is the space-time white noise then Γ = δ{o} and the corre-

sponding spectral measure µ has a constant density, say c > 0. Since∫

Rd

1

1 + |λ|2dλ < +∞

if and only if d = 1, the equations (1.1) and (1.2), perturbed by such noise, have
function-valued solutions iff d = 1.

Example 3. Walsh [Wa], in his study of particle systems, arrived at the following
equation for fluctuations:

∂u

∂t
(t, ξ) =

∂2u

∂ξ2
(t, ξ) +

∂

∂t

[
∂

∂ξ
Wδ{o}

(t, ξ)

]
(4.1)

u(0, ξ) = 0, t > 0, ξ ∈ R
1.

It is easy to calculate that the covariance function corresponding to ∂
∂ξ
Wδ{o}

(t, ξ), t >

0, is Γ = −δ′′{0} and the appropriate spectral measure µ has the following density

dµ(λ) = λ2dλ.
Since ∫ +∞

−∞

1

1 + λ2
λ2dλ = +∞

the equation (4.1) does not have a function-valued solution. This fact has already
been noticed by Walsh [Wa].

5 Equations on d-dimensional torus

Many of the previous considerations can be extended from Rd to stochastic equations
on more general groups. As an illustration we discuss here the case of d-dimensional
torus T d, for more details we refer to [KaZa]. The d-dimensional torus T d can be
identified with the Cartesian product, (−π, π]d, regarded as a group with the addition
modulo 2π (coordinate-wise). We assume that WΓ is a D′(T d)-valued Wiener process
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spatially homogeneous with the space correlation Γ. Distribution Γ can be uniquelly
expanded into its Fourier series

Γ(θ) =
∑

n∈Zd

ei〈n,θ〉γn

with the non-negative coefficients such that γn = γ−n and
∑
n∈Zd

γn

1+|n|+∞ < r for some

r > 0.
Denote Z1

s = N and, by induction, Zd+1
s =

(
Z1
s × Zd

)
∪
{

(0, n); n ∈ Zd
s

}
. Then

Zd = Zd
s ∪
(
−Zd

s

)
∪ {0}.

The corresponding spatially homogeneous Wiener process W (t), t > 0 can be
represented in the form:

W (t, θ) =
√
γ0β0(t) +

∑

n∈Zd
s

√
2γn

(
(cos〈n, θ〉)β1

n(t) + (sin〈n, θ〉)β2
n(t)
)
,

θ ∈ T d, t > 0 (5.1)

where β0, β
1
n, β

2
n, n ∈ Zd

s are independent, real Brownian motions and the convergence
is in the sense of D′(Td).

Denote H = H0 = L2(T d), Hα = Hα(T d) and H−α = H−α(T d), α ∈ R+, the real
Sobolev spaces of order α and −α, respectively. The norms are expressed in terms of
the Fourier coefficients, see [Ad]

‖ ξ ‖ H−α
=

(∑

n∈Zd

(1 + |n|2)α|ξn|2
) 1

2

=


|ξ0|2 + 2

∑

n∈Zd
s

(1 + |n|2)α
(
(ξ1
n)2 + (ξ2

n)2
)



1
2

,

and

‖ ξ ‖ H−α =

(∑

n∈Zd

(1 + |n|2)−α|ξn|2
) 1

2

=


|ξ0|2 + 2

∑

n∈Zd
s

(1 + |n|2)−α
(
(ξ1
n)2 + (ξ2

n)2
)



1
2

,

where ξn = ξ1
n + iξ2

n, ξn = ξ−n, n ∈ Zd.

We have the following result

Theorem 3. Equations (1.1) and (1.2) on the torus T d have Hα+1(T d)-valued
solution if and only if the Fourier coefficients (γn) of the kernel Γ satisfy :
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∑

n∈Zd

γn
(1 + |n|2)α < +∞. (5.2)

Remark: Recently, the problem of existence of solution to stochastic wave equa-
tion in S ′(Rd) has been recently considered by Gaveau [Ga].

As in the case of Rd, condition (5.1) can be written in a more explicit way.

Theorem 4. Assume that Γ is not only a positive definite distribution but is
also a non-negative measure. Then equations (1.1) and (1.2) have function-valued
solutions :

i) for all Γ if d = 1;
ii) for exactly those Γ for which

∫
|θ|61

ln |θ|Γ(dθ) < +∞ if d = 2;

iii) for exactly those Γ for which
∫
|θ|61

1
|θ|d−2 Γ(dθ) < +∞ if d > 3 .

The proofs of both theorems are similar to those for Rd. For details we refer to
our preprint [KaZa].

In fact the proof of Theorem 3 can be done in a different way by taking into
account the expansion (5.1) of the Wiener process W , with respect to the basis
1, cos〈n, θ〉, sin〈n, θ〉, n ∈ Zd

s, θ ∈ T d. Equations (1.1) and (1.2) can be solved
coordinatwise with the following explicit formulae for the solutions:

X(t, θ) =
√
γ0β0(t) +

∑

n∈Zd
s

√
2γn

[
cos〈n, θ〉

∫ t

0

e−|n|2(t−s)dβ1
n(s)

+ sin〈n, θ〉
∫ t

0

e−|n|2(t−s)dβ2
n(s)

]
, (5.3)

Y (t, θ) =
√
γ0β0(s)ds+

∑

n∈Zd
s

√
2γn

[
cos〈n, θ〉

∫ t

0

sin(|n|(t− s)

|n| dβ1
n(s)

+ sin〈n, θ〉
∫ t

0

sin |n|(t− s)

|n| dβ2
n(s)

]
. (5.4)
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Therefore

E|X(t)|2H = (2π)d


γ0t+

∑

n∈Zd
s

2γn

∫ t

0

e−2|n|2sds


 ,

E|Y (t)|2H = (2π)d


γ0

t3

3
+
∑

n∈Zd
s

2γn
|n|2

∫ t

0

sin2(|n|s)ds


 , t > 0.

Since, for arbitrary t > 0,

|n|2
∫ t

0

e−2|n|2sds→ 1

2
, as |n| → +∞,

∫ t

0

sin2(|n|s)ds→
∫ t

0

sin2 σdσ, as |n| → +∞,

therefore E|X(t)|2H < +∞, E|Y (t)|2H < +∞ if and only if
∑

n∈Z
d
(s)

γn

|n|2
< +∞, as re-

quired, (α = 0).

Expansions (5.1), (5.2) lead also to more refined results.

Theorem 5. Assume that
∑

n∈Zd

γn
1 + |n|α < +∞,

for some α ∈ (0, 2). Then solutions X(t), Y (t), t > 0 are Hölder continuous with
respect to t > 0 and θ ∈ T d with any exponent smaller than 1

2
− α

4
.

The theorem is a consequence of Theorem 5.20 and Theorem 5.22 from [DaPrZa].
For the case of R2 and the stochastic wave equation a similar result was obtained in
[DaFr].

We finish the section with some applications of Theorems 3 and 4.

Corollary 1. Assume that Γ ∈ L2(T d) and d = 1, 2, 3. Then the stochastic heat
and wave equations (1.1) and (1.2) have solutions with values in L2(T d).

Corollary 2. Assume that for some 1 6 p 6 2, Γ̂ ∈ lp(Zd). If d < 2p
p−1

, then the

stochastic heat and wave equations (1.1) and (1.2) have solutions in L2(T d).
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6 Conjectures

Taking into account Theorem 1 it is natural to expect that the following conjecture
is true.

Conjecture 1. If
∫

Rd
1

1+|λ|2
µ(dλ) < +∞ and functions g : R → R, b : R → R

are Lipschitz then nonlinear heat equation

{
∂u(t,θ)
∂t

= ∆u(t, θ) + g(u(t, θ)) + b(u(t, θ))∂WΓ

∂t
(t, θ), t > 0, θ ∈ Rd

u(0, θ) = 0, θ ∈ R
d (6.1)

and nonlinear wave equation

{
∂2u(t,θ)
∂t2

= ∆u(t, θ) + g(u(t, θ)) + b(u(t, θ))∂WΓ

∂t
(t, θ), t > 0, θ ∈ Rd

u(0, θ) = 0, ∂u
∂t

(0, θ) = 0, θ ∈ Rd
(6.2)

have solutions.

At the moment there are only partial confirmations of the conjectures. Namely,
the following result concerned with nonlinear heat equation (6.1) is contained in the
paper [PeZa].

Theorem 6. Assume that g and b are Lipschitz. Nonlinear heat equation (6.1)
has a unique Markovian solution in L2

ρκ
, where κ > 0, ρκ(θ) = e−κ|θ|, θ ∈ Rd, if either

the spectral measure µ of WΓ is finite or µ is infinite and has a density dµ

dθ
such that :

i) if d = 1, dµ

dθ
∈ Lp for some p ∈ [1,+∞];

ii) if d = 2, dµ

dθ
∈ Lp for some p ∈ [1,+∞);

iii) if d > 3, dµ

dθ
∈ Lp for some p ∈ [1, d

d−2
).

A general existence result for nonlinear stochastic wave equations was proved in
the paper [DaFr] by Dalang and Frangos. They showed the following result.

Theorem 7. If correlation Γ is a function of the form Γ(θ) = f(|θ|), with f
positive and continuous outside 0, and if the dimension d = 2 and the condition (1.3)
is satisfied then the equation (6.2) has a local solution.

It is interesting to note that conditions of Theorem 5 imply that the reproduc-
ing kernel space S ′

Γ consists only of functions, namely, S ′
Γ ⊂ L2(Rd) + Cb(R

d), see
[PeZa]. This seems to be essential for the definition of the stochastic integral with the
integrands being multiplication operators. We therefore pose the following conjecture.
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Conjecture 2. If
∫

Rd
1

1+|λ|2
µ(dλ) < +∞ then elements of S ′

Γ are represented by
locally integrable functions.

The following proposition is a partial confirmation of Conjecture 2.

Proposition 6. If
∫

Rd
1

1+|λ|2
µ(dλ) < +∞ then δ{o} 6∈ S ′

Γ.

Proof: Assume, to the contrary, that for some u ∈ L2
(s)(R

d, µ), ûµ = δ{o}.

Then, for a constant c > 0, u(x)µ(dx) = c dx and u(x) > 0 for almost all x ∈ Rd and
measure µ can be identified with its density γ(x) = c

u(x)
, x ∈ Rd.

We also have ∫

Rd

1

1 + |λ|2γ(x)dx < +∞

and

∫

Rd

u2(x)µ(dx) =

∫

Rd

c2

γ2(x)
γ(x)dx =

∫

Rd

c2

γ(x)
dx < +∞.

Consequently

∫

Rd

1√
1 + |λ|2

γ(x)√
1 + |λ|2

dx < +∞,

∫

Rd

1√
1 + |λ|2

√
1 + |λ|2
γ(x)

dx < +∞.

Adding both inequalities and taking into account that a + 1
a

> 2 for all a > 0, one
arrives at

∫
Rd

1√
1+|λ|2

d < +∞, a contradiction.

�
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[Itô] Itô, K., Foundations of Stochastic Differential Equations in Infinite Di-
mensional Spaces, SIAM, Philadelphia, 1984.

[KaZa] Karczewska, A. and Zabczyk, J., A note on stochastic wave equations,
Preprint 574, Institute of Math., Polish Acad. Sc., Warsaw (1997).

[La] Landkof, N.S., Foundations of Modern Potential Theory, Springer-Verlag,
Berlin, 1972.

[Mi] Mizohata, S., The Theory of Partial Differential Equations, Cambridge
University Press, Cambridge, 1973.

[Mu] Mueller, C., Long time existence for the wave equations with a noise term,
The Annals of Probability No. 1, 25 (1997), 133–151.

[No] Nobel, J., Evolution equation with Gaussian potential, Nonlinear Analysis:
Theory, Methods and Applications 28 (1997), 103–135.

[PeZa] Peszat, S. and Zabczyk, J., Stochastic evolution equations with a spatially
homogeneous Wiener process, to appear in Stochastic Processes and Ap-
plications.

[St] Stroock, D., Probability Theory, An Analytic View, Cambridge University
Press, Cambridge, 1993.

[Wa] Walsh, J., An introduction to stochastic partial differential equations,
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