
X

Materials
http://staff.uz.zgora.pl/ipajak

http://staff.uz.zgora.pl/gpajak

II
M



Visual Basic for Applications

Variables, procedures and functions

user procedures and functions

arithmetic operations, variables and constants

exception handling

V
is

u
a
l
B

a
s
ic

 f
o

r
A

p
p
lic

a
ti
o
n

s

II
M



❑ Application is a set of objects, each contains certain properties and methods.

❑ The most important Excel objects: Application, Workbook, Worksheet, Range.

❑ Each cell, selection, column, row, etc. is a Range object.

❑ Reference to property and method:

object_name.property_name

object_name.method_name

❑ Application object active Workbook and active Worksheet are default objects,

and they can be omitted in references to object properties.

❑ Application contains collection of workbooks (object property Workbooks), each

Workbook contains collection of its worksheets (object property Worksheets).

❑ Reference to collection:

collection_name(index)

❑ Each property has a type determining the range of values that it can store.

❑ To set a value of any element (e.g. property) assignment statement „=” can be used:

element = value

Summary of the Lecture01
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/2

II
M



❑ VB is case insensitive (additionally, text editor automatically corrects source code).

❑ The names defined by user must start with a letter, it can not contain special chars

(space , * ; . = etc.).

❑ A single instruction should be placed on one program line.

❑ In order to split instruction into several program lines continuation symbol „ _” (space

followed by underscore) should be used.

❑ If several instructions are placed in one program line they should be separated by „:”

(reduces the readability of the code, it should be used only in special cases).

❑ Empty lines are omitted, they can be used to divide the code into smaller blocks

(improves program readability).

❑ Language keywords (name of instructions, elements of macro headers, etc.) are

reserved and cannot be used as names of elements defined by user.

❑ Text that begins with an apostrophe is a comment, it does not affect the execution of

the program.

Basic principles of programming in VBA
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/3

II
M



❑ Keywords (e.g. name of statement) – roman font, bold,

❑ Predefined elements (e.g. name of standard functions) – roman font,

❑ [optional elements] – square brackets,

❑ element1|element2 – alternative elements (exactly one has to be chosen),

❑ <name> (e.g. name of macro) – text inside angle brackets, italic,

❑ description – italic.

Example

[Private|Public] Sub <name>

▪ Private, Public and Sub are keywords (bold)

▪ The first word is Private or Public (vertical bar), but it is optional (square brackets)

▪ The word Sub is obligatory

▪ After Sub there is a name created by the user (angle brackets)

Notation
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/4

II
M



[Private|Public] Sub <name>([arg1, arg2, … , argN])

 code of procedure

End Sub

❑ Sub is a keyword, it specifies the header of procedure.

❑ Private stands for private procedure, accessible only in one module.

❑ Public stands for public procedure, accessible in the whole program.

❑ Private and Public are optional, default procedure is public.

❑ <name> is a name defined by user (see point 2., s.3).

❑ arg1, arg2, … argN is an optional list of arguments, defined as follows:

[Optional] <argument_name> As type [=default_value]

❑ Optional means optional argument, which can be omitted when procedure is called

(in such case it takes default_value).

❑ Procedure executes subsequent instructions until End Sub

❑ Execution of procedure can be broken before its end using Exit Sub

Procedures (subroutines) in VBA
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/5

II
M



<procedure_name> [arg1, arg2, … , argN]

❑ There are no parentheses in the procedure call (arguments should be written after a

space).

❑ <procedure_name> describes standard or user defined procedure accessible in

active excel document (workbook).

❑ arg1, … argN is an argument list corresponding to argument list defined in header

of procedure (see s.5).

❑ Optional argument can be omitted, in such a case free space separated by comma

should be remained.

❑ Arguments can be specified in any order, in such a case the name of argument should

be given according to syntax:

<argument_name> := value

Calling a procedure
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/6

II
M



Header

MsgBox(prompt As String, _

 Optional buttons As VbMsgBoxStyle = vbOKOnly, _

 Optional title As String = "Microsoft Excel")

▪ prompt – message displayed in the window

▪ buttons – sets of buttons visible in the window (default vbOKOnly – only OK button)

and kind of window (displayed icon). Accessible values: vbCritical, vbQuestion,

vbExclamation, vbInformation

▪ title – title of window (default „Microsoft Excel”)

Examples

MsgBox "Procedure MsgBox test"

MsgBox "Procedure MsgBox test", vbCritical

MsgBox "Procedure MsgBox test", vbQuestion, "My message"

MsgBox "Procedure MsgBox test", , "My message"

MsgBox buttons:=vbExclamation, title:=" My message", _

 prompt:="Procedure MsgBox test"

Source codes are available on the website

Example – MsgBox
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/7

II
M



Assignment statement

 <element> = expression

Assignment statement allows to modify any element of program that has not been defined

with the read-only attribute.

Note: the expression to the right side of the assignment statement is always executed first, and the

result of the expression is assigned to the element on the left side.

Arithmetic operators

 + addition \ integer division

 - subtraction mod modulo (remainder of a division)

 * multiplication ^ exponentiation

 / division () grouping of operations

Arithmetic operations are performed from the left to the right with priority (first

exponentiation, next multiplication and division, then addition and subtraction). Operator

symbol cannot be omitted, parentheses change the order of operations.

Note: x + 5/3*y = 𝑥 +
5

3
𝑦, (x + 5)/(3*y) =

𝑥+5

3𝑦

Assignment statement, arithmetic operators
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/8

II
M



Task: The procedure gets the value from the currently selected cell, increments it by two,

puts the result to the cell on the right (same row, next column) and selects it.

References

▪ Currently selected cell:

▪ Reference to the value of active cell:

▪ Reference to the value of cell on the right:

▪ Selection of cell on the right:

Public Sub IncrementToTheRight()

 With ActiveCell

 .Offset(0, 1).Value = .Value + 2

 .Offset(0, 1).Activate

 End With

End Sub

Source codes are available on the website

Example

25

1

1

2

25+2
2

27

3

3

4

4

ActiveCell

ActiveCell.Value

ActiveCell.Offset(0,1).Value

ActiveCell.Offset(0,1).Activate

V
is

u
a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/9

II
M



Run-time error is an error that takes place while executing a program (in contrast to

compilation errors that occur during compilation before running the program)

Example: arithmetic operations are defined only for numerical values, so the statement:

ActiveCell.Offset(0, 1).Value = ActiveCell.Value + 2

reports an error (raises exception), when active cell contains text (String value).

Run-time errors (exceptions)
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/1

0

II
M



Exception handling

On Error GoTo <label>

If an error occurs the program stops current statement and goes to the location indicated

by the label.

On Error Resume Next

If an error occurs the program skips current statement and executes the next one.

On Error GoTo 0

Cancels current On Error settings, and restores standard error handling.

<label> is an character sequence ended by ”:” (colon), indicating the location in which

program starts execution when an error occurs.

Resuming the program after error handling

Resume

The program resumes execution at the line where the error occurred.

Resume Next

The program resumes execution at the next line after the error occurred.

Exception handling
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/1

1

II
M



Supplementing the IncrementToTheRight procedure with exception handling – ver.1.

When error occurs procedure displays message box and stops.

Public Sub IncrementToTheRight1()

 On Error GoTo BadValue

 With ActiveCell

 .Offset(0, 1).Value = .Value + 2

 .Offset(0, 1).Select

 End With

 Exit Sub

BadValue:

 MsgBox "Select a numeric value", vbCritical, "Error"

End Sub

Note: The procedure executes subsequent statements to an End Sub instance. An Exit Sub

statement, before the label, prevents displaying the message when an error has not occurred.

Source codes are available on the website

Example I
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/1

2

II
M



Supplementing the IncrementToTheRight procedure with exception handling – ver.2.

When error occurs procedure skips current statement and executes the next one.

Public Sub IncrementToTheRight2()

 On Error Resume Next

 With ActiveCell

 .Offset(0, 1).Value = .Value + 2

 .Offset(0, 1).Select

 End With

End Sub Source codes are available on the website

In the case of cells containing text (String) the add operation causes an error, which will be

ignored, so procedure executes next statement and selects next cell.

Example II
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/1

3

a

a 5

Worksheet row before first procedure execution

The same row after first procedure execution (value has not
been changed, selection has been moved

5

a 5 7The same row after next procedure execution (value has
been changed and selection has been moved)

A B C

1

1

1

II
M



Procedure copies a row in which cursor is placed to worksheet named "Copy". Successive

copied rows are placed below the last one. Worksheet "Copy" should exist.

Public Sub CopyRow1()

 On Error GoTo LostWorksheet

 With Worksheets("Copy").UsedRange

 ActiveCell.EntireRow.Copy .Rows(.Rows.Count + 1).EntireRow

 End With

 Worksheets("Copy").Columns("A:E").AutoFit

 Exit Sub

LostWorksheet:

 MsgBox "The worksheet ""Copy""" is lost, vbCritical

End Sub

Source codes are available on the website

Example III version 1
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/1

4

II
M



Modification of the example from s.14. If worksheet "Copy" does not exist it is created.

Public Sub CopyRow2()

 On Error GoTo AddWorksheet

 With Worksheets("Copy").UsedRange

 ActiveCell.EntireRow.Copy .Rows(.Rows.Count + 1).EntireRow

 End With

 Worksheets("Copy").Columns("A:E").AutoFit

 Exit Sub

AddWorksheet:

 Worksheets.Add(After:=Worksheets("Invoices")).Name = "Copy"

 Worksheets("Invoices").Activate

 ActiveSheet.Rows(1).Copy Worksheets("Copy").Rows(1)

 Resume

End Sub

Note: Resume statement returns to the program line in which the error occurs.

Source codes are available on the website

Example III version 2

!

V
is

u
a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/1

5

II
M



Variable – container for a data processed by program, identified by unique name. The

value assigned to variable can be changed during program execution.

Constant – unique symbol representing some value (number, text, etc.). Value assigned

to constant cannot be changed during program execution.

Variable declaration scheme

Dim <name> As type

Constant declaration scheme

Const <name> [As type] = value

<name> must be unique (there cannot be two items with the same name) and should fulfill

the conditions described on s.3, point 2.

Examples

Dim x As Integer

Dim cell As Range

Const VAT As Single = 0.23

Note: Declaration of non-object variables is not required. Each undeclared variable is given type

Variant. The declaration of variables can be forced using Option Explicit placed on the

beginning of the module (Tools -> Options -> Require variable declaration).

Variables and constants
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/1

6

II
M



Setting the value of a non-object variable

<name> = expression

Setting the value of an object variable

Set <name> = expression

<name> is name of variable

expression is any VBA expression (including name of variable, constant, etc.) with a

type compatible with the type of the variable.

Examples

Dim x As Integer

Dim y As Integer

Dim k As Range

x = 5

y = 29 + x ^ 2

Set k = Worksheets("Worksheet5").Range("C3:E5")

Setting the value of variable
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/1

7

II
M



The procedure swaps the value of two cells: the active cell and the cell to the right of it (the

same row, next column).

Algorithm

1. Take the value of the active cell and put it to the variable.

2. Take the value of the cell on the right and put it to the active cell.

3. Put the value stored in the variable to the cell on the right.

Public Sub SwapToTheRight1()

 Dim x As Integer

 x = ActiveCell.Value

 ActiveCell.Value = ActiveCell.Offset(0, 1).Value

 ActiveCell.Offset(0, 1).Value = x

End Sub Source codes are available on the website

Note: Above procedure works correctly only for Integer values.

A problem to think about (1): how to swap values of any type.

A problem to think about(2): how to swap given ranges.

Example

125

1

250

3

2

x

125

250 125

V
is

u
a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/1

8

II
M



Local variable – a variable declared inside VBA macro. It only exists when macro is

executing and is removed when macro is completed.

Module variable – a variable declared in module using Dim or Private (recommended).

It is available in all macros inside the module, exists for the entire duration of the program

execution.

Global variable – a variable declared in module using Public. It is available in all

modules, exists for the entire duration of the program execution.

Lifetime and scope of variables
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/1

9

II
M



[Private|Public] Function <name>([arg1,… , argN]) As type

 code of function

 <name> = value

End Function

❑ Function is a keyword, it specifies the header of function.

❑ Private|Public are optional, they determine the availability of the function, public

function can be used in all modules and as worksheet function.

❑ <name> is a name defined by user (see point 2., s.3).

❑ type specifies the type of the value returned as the result of the function.

❑ Result of the function is specified by assigning value to <name>.

❑ arg1,… argN is an optional list of arguments, defined as in procedure (s.5).

❑ Function executes subsequent instructions until End Function

❑ Execution of function can be broken before its end using Exit Function

❑ Error handling is implemented in the same way as in procedure.

Functions in VBA
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/2

0

II
M



variable = <function_name>[(arg1, … , argN)]

❑ The parentheses are required if arguments are passed. In the case of argument less

function the parentheses are optional.

❑ <function_name> describes standard or user defined function accessible in active

excel document (workbook).

❑ variable stands for the name of the variable where the value returned by the function

will be stored.

❑ arg1, … argN is an argument list corresponding to argument list defined in header of

function (see s.20).

❑ Optional argument can be omitted, in such a case free space separated by comma

should be remained.

❑ Arguments can be specified in any order, in such a case the name of argument should

be given according to syntax:

<argument_name> := value

Calling of function
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/2

1

II
M



Function InputBox

InputBox(prompt As String,

 Optional title As String = "Microsoft Excel",

 Optional default As String = "", …) As String

Method InputBox (class Application)

InputBox(prompt As String,

 Optional title As Variant = "Microsoft Excel",

 Optional default As Variant = "", …

 Optional type As Variant) As Variant

▪ prompt – text displayed inside the dialog window

▪ title – title of the dialog window (default „Microsoft Excel”)

▪ default – default value

▪ type – type of value to read (only method InputBox): 0 – formula, 1 – number,

2 – text (string), 4 – logical value, 8 – range of cell (object Range).

Note: Both function and method InputBox have four additional arguments, omitted in the above

description (position of window and references to help).

Communication with the user – InputBox
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/2

2

II
M



Procedure fills selected range using the value specified by user. To select the range

method InputBox and to determine the value function InputBox is used.

Public Sub FillRange()

 Dim rng As Range

 Dim val As String

 On Error Goto Cancel

 Set rng = Application.InputBox("Select range", type:=8)

 val = InputBox("Enter value")

 rng.Value = val

 Exit Sub

Cancel:

End Sub

Note: Error handling ensures the correct reaction of the program in the case of pressing the Cancel

button in the InputBox window. In this case, the method returns a empty value that cannot be assigned

to the Range object variable.

 Source codes are available on the website

Example – InputBox
V

is
u

a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/2

3

II
M



Const DefaultVAT As Single = 0.23

Public Function GrossPrice1(net_price As Currency,

 vat As Single) As Currency

 GrossPrice1 = net_price + net_price * vat

End Function

Public Function GrossPrice2(net_price As Currency,

 Optional vat As Single = DefaultVAT) As Currency

 GrossPrice2 = net_price + net_price * vat

End Function

Source codes are available on the website

User function – examples

=GrossPrice1(A3;B3)

=GrossPrice2(F3)

=GrossPrice2(F5;0,08)

V
is

u
a
l
B

a
s
ic

 f
o

r
A

p
lic

a
ti
o
n

s
1
/2

4

	Slajd 1
	Slajd 2: Summary of the Lecture01
	Slajd 3: Basic principles of programming in VBA
	Slajd 4: Notation
	Slajd 5: Procedures (subroutines) in VBA
	Slajd 6: Calling a procedure
	Slajd 7: Example – MsgBox
	Slajd 8: Assignment statement, arithmetic operators
	Slajd 9: Example
	Slajd 10: Run-time errors (exceptions)
	Slajd 11: Exception handling
	Slajd 12: Example I
	Slajd 13: Example II
	Slajd 14: Example III version 1
	Slajd 15: Example III version 2
	Slajd 16: Variables and constants
	Slajd 17: Setting the value of variable
	Slajd 18: Example
	Slajd 19: Lifetime and scope of variables
	Slajd 20: Functions in VBA
	Slajd 21: Calling of function
	Slajd 22: Communication with the user – InputBox
	Slajd 23: Example – InputBox
	Slajd 24: User function – examples

