(7]
j
S
N~
®©
kS]
—
Q
Q
<
P
S
Q
[77)
©
Q
—
®©
S
2
>

Visual Basic for Applications

Variables, procedures and functions

, A user procedures and functions

arithmetic operations, variables and constants

exception handling

Materials
http://staff.uz.zgora.pl/ipajak
http://staff.uz.zgora.pl/gpajak

Visual Basic for Aplications

1/2

4

ke
gz 1IM
o

Summary of the Lecture01

o O 0O O

Application is a set of objects, each contains certain properties and methods.
The most important Excel objects: Application, Workbook, Worksheet, Range.
Each cell, selection, column, row, etc. is a Range object.
Reference to property and method:
object name.property name
object name.method name

Application object active Workbook and active Worksheet are default objects,
and they can be omitted in references to object properties.

Application contains collection of workbooks (object property Workbooks), each
Workbook contains collection of its worksheets (object property Worksheets).

Reference to collection:
collection name (index)
Each property has a type determining the range of values that it can store.
To set a value of any element (e.g. property) assignment statement ,=" can be used:

element = wvalue

Visual Basic for Aplications

1/3

4

ple
A 1IM

Basic principles of programming in VBA

0 VB is case insensitive (additionally, text editor automatically corrects source code).

0 The names defined by user must start with a letter, it can not contain special chars
(space, *; . =etc.).

O A single instruction should be placed on one program line.

0 In order to split instruction into several program lines continuation symbol , " (space
followed by underscore) should be used.

a If several instructions are placed in one program line they should be separated by ,:”
(reduces the readability of the code, it should be used only in special cases).

O Empty lines are omitted, they can be used to divide the code into smaller blocks
(improves program readability).

0 Language keywords (name of instructions, elements of macro headers, etc.) are
reserved and cannot be used as names of elements defined by user.

0 Text that begins with an apostrophe is a comment, it does not affect the execution of
the program.

Visual Basic for Aplications

1/4

&
£

sk
a7 1M
1}"‘7@

o
He

4

Notation

0O Keywords (e.g. name of statement) — roman font, bold,

O Predefined elements (e.g. name of standard functions) — roman font,

O [optional elements] — square brackets,

0O elementl|element2 — alternative elements (exactly one has to be chosen),
O <name> (e.g. name of macro) — text inside angle brackets, italic,

O description — italic.

Example

[Private |Public] Sub <name>

Private, Public and Sub are keywords (bold)

The first word is Private or Public (vertical bar), but it is optional (square brackets)

The word Sub is obligatory

After Sub there is a name created by the user (angle brackets)

Visual Basic for Aplications

1/56

Procedures (subroutines) in VBA

[Private|Public] Sub <name>([largl, argZ2, .. , argNh])
code of procedure
End Sub
O Sub is a keyword, it specifies the header of procedure.
O Private stands for private procedure, accessible only in one module.
0 Public stands for public procedure, accessible in the whole program.
0 Private and Public are optional, default procedure is public.
O <name> is a name defined by user (see point 2., s.3).
Q argl, arg2, .. argN is an optional list of arguments, defined as follows:
[Optional] <argument name> As type [=default value]

O Optional means optional argument, which can be omitted when procedure is called
(in such case it takes default value).

O Procedure executes subsequent instructions until End Sub

0 Execution of procedure can be broken before its end using Exit Sub

Visual Basic for Aplications

Calling a procedure

<procedure name> [argl, arg2, .. , argNi]
0 There are no parentheses in the procedure call (arguments should be written after a
space).

O <procedure name> describes standard or user defined procedure accessible in
active excel document (workbook).

QO argl, .. argN is an argument list corresponding to argument list defined in header
of procedure (see s.5).

0 Optional argument can be omitted, in such a case free space separated by comma
should be remained.

O Arguments can be specified in any order, in such a case the name of argument should
be given according to syntax:

<argument name> := value

Visual Basic for Aplications

Example — MsgBox

Header
MsgBox (prompt As String,
Optional buttons As VbMsgBoxStyle = vbOKOnly,
Optional title As String = "Microsoft Excel")
" prompt — message displayed in the window

" buttons — sets of buttons visible in the window (default vbOKOnly — only OK button)
and kind of window (displayed icon). Accessible values: vbCritical, vbQuestion,

vbExclamation, vbInformation

» title — title of window (default ,Microsoft Excel”) My message X
Exam ples o Procedure MsgBox test (information, modified title)
MsgBox "Procedure MsgBox test"
B 7

MsgBox "Procedure MsgBox test", vbCritical

MsgBox "Procedure MsgBox test", vbQuestion, "My message"

MsgBox "Procedure MsgBox test", , "My message"
MsgBox buttons:=vbExclamation, title:=" My message",
prompt:="Procedure MsgBox test"

Source codes are available on the website

17}
=
S
N
©
L
=
Q.
<
o
L
9
1%}
©
@
T
S
2
>

Assignment statement, arithmetic operators

Assignment statement
<element> = expression

Assignment statement allows to modify any element of program that has not been defined
with the read-only attribute.

Note: the expression to the right side of the assignment statement is always executed first, and the
result of the expression is assigned to the element on the left side.

Arithmetic operators

+ addition \ integer division

- subtraction mod modulo (remainder of a division)
* multiplication ~ exponentiation

/ division () grouping of operations

Arithmetic operations are performed from the left to the right with priority (first
exponentiation, next multiplication and division, then addition and subtraction). Operator
symbol cannot be omitted, parentheses change the order of operations.

Note: x+53%y=x+2y, (x+35/3%)= 3"

Example

Task: The procedure gets the value from the currently selected cell, increments it by two,
puts the result to the cell on the right (same row, next column) and selects it.

References
= Currently selected cell: ActiveCell
= Reference to the value of active cell: ActiveCell.Value

Reference to the value of cell on the right: ActiveCell.Offset (0,1) .Value

= Selection of cell on the right: ActiveCell.Offset (0,1) .Activate

% Public Sub IncrementToTheRight ()
<
8 With ActiveCell 7]
8 [B].0ffset (0, 1).Value|=||.vaTue|+ 2
g . —[2] —
Z [4].0ffset (0, 1).Activate 2542
o End With SN S AL S A
N | |

End Swb | i

pd Swb 251

4]

& Source codes are available on the website

B %;% IIM 1/10 Visual Basic for Aplications

Run-time errors (exceptions)

Run-time error is an error that takes place while executing a program (in contrast to
compilation errors that occur during compilation before running the program)

Example: arithmetic operations are defined only for numerical values, so the statement:
ActiveCell.Offset (0, 1) .Value = ActiveCell.Value + 2

reports an error (raises exception), when active cell contains text (String value).

[WElrdlerd Wstawia | Uktad st | Formuty Dane | Recenzj:| Widok | Dewelo| | Pomoc Q Powiedz Cg_ Udostepnij

"D &% A = o [FZ, Formatowanie warunkowe - & Jo)
EE 7 Formatuj jako tabelg -
Wklej 2 Czcionka = Wyrownanie = Liczba o TEITEL LD s Komérki | Edytowanie
~ . S [style komérki - - °

Schowek ra Style N

BS - I abc v
A B C D E F G H J -

1
2 Microsoft Visual Basic

3
4 Run-time error '13':

&) abc) Type mismatch

6

7

8

9
10
11 Continue End Help
12
13 -

| Procedury | Funkcje = Arkusz1 @] »

Gotowy ¥ FH Il 1 + 100%

Visual Basic for Aplications

1/11

i 1M

HES

Exception handling

Exception handling
On Error GoTo <label>

If an error occurs the program stops current statement and goes to the location indicated
by the I1abel.

On Error Resume Next

If an error occurs the program skips current statement and executes the next one.
On Error GoTo 0

Cancels current On Error settings, and restores standard error handling.

<label> is an character sequence ended by ”:” (colon), indicating the location in which
program starts execution when an error occurs.

Resuming the program after error handling

Resume

The program resumes execution at the line where the error occurred.

Resume Next

The program resumes execution at the next line after the error occurred.

Example |

Supplementing the IncrementToTheRight procedure with exception handling — ver.1.
When error occurs procedure displays message box and stops.

Public Sub IncrementToTheRightl ()

On Error GoTo BadValue

With ActiveCell
.Offset (0, 1) .Value = .Value + 2
.Offset (0, 1) .Select

End With

Exit Sub

RadValue:

MsgBox "Select a numeric value", vbCritical, "Error"

B %& IIM 1/12 Visual Basic for Aplications

End Sub

Note: The procedure executes subsequent statements to an End Sub instance. An Exit Sub
statement, before the label, prevents displaying the message when an error has not occurred.

Source codes are available on the website

B 3{;} IIM 1/13 Visual Basic for Aplications

Example Il

Supplementing the IncrementToTheRight procedure with exception handling — ver.2.
When error occurs procedure skips current statement and executes the next one.

Public Sub IncrementToTheRight2 ()

[On Error Resume Next]

With ActiveCell
.Offset (0, 1) .Value = .Value + 2
.Offset (0, 1) .Select

End With

End Sub Source codes are available on the website

In the case of cells containing text (String) the add operation causes an error, which will be
ignored, so procedure executes next statement and selects next cell.

AL B | C i
Worksheet row before first procedure execution 1 a
The same row after first procedure execution (value has not ! e
been changed, selection has been moved i 77777777777777777 a I L
The same row after next procedure execution (value has 1 a 5 7
been changed and selection has beenmoved) ' . <. S\ ‘&

Example lll version 1

Procedure copies a row in which cursor is placed to worksheet named "Copy". Successive
copied rows are placed below the last one. Worksheet "Copy" should exist.

Public Sub CopyRowl ()
On Error GoTo LostWorksheet
With Worksheets ("Copy") .UsedRange
ActiveCell.EntireRow.Copy .Rows(.Rows.Count + 1).EntireRow
End With
Worksheets ("Copy") .Columns ("A:E") .AutoFit
Exit Sub
LostWorksheet:
MsgBox "The worksheet ""Copy""" is lost, vbCritical

1/14 Visual Basic for Aplications

End Sub N ; . b :
1 |No Name Amount Invoice date Payment date
2 1 A-Z Elementy dekoracyjne 2 300,00 zt 16.02.2022 22.03.2022
3 2 Hydrostal Sp. z 0.0. ZP 980,20 zt 04.02.2022 16.06.2022
4 | 3 Kaiser Schody Sp. z 0.0. 15.02.2022 12.04.3 A B C D E F G
5 | 4 RECTOR Polska Sp. z 0.0. 227,50 zt 28.07 19.06.7 1 |No Name Amount Inveoice date Payment date
6 5 ComfortHouse sp. z 0.0. 1232,80 # 05.02.2022 B0 E!Kaisar Schody Sp. z 0.0. 3575,00zt 15.02.2022 12.04.2022
7 6 AB KLIMA Chigo.pl 2 500,00 zt 06.02.2022 =03=7=® | 7 AS Instrument Polska 128,75zt 19.02.2022 06.04.2022
E 8 7 AS Instrument Polska 128,75 ll. 07,2022 06.04.7 4
— 9 8 Bikrol-Stal s.c. 3 750,00 zt 18.02.2022 23.05.3 5
- Invoices [Copy | @ 7 — K
7
8
9 [
H .. i)
Source codes are available on the website invoices | Copy | @ I

Example lll version 2

Modification of the example from s.14. If worksheet "Copy" does not exist it is created.
Public Sub CopyRowZ ()
On Error GoTo AddWorksheet
— With Worksheets ("Copy") .UsedRange

ActiveCell.EntireRow.Copy .Rows (.Rows.Count + 1) .EntireRow

L_ Resume /D)
End Sub 4

End With
Worksheets ("Copy") .Columns ("A:E") .AutoFit
2 Exit Sub
é rAddWorksheet: \
§ Worksheets.Add (After:=Worksheets ("Invoices")) .Name = "Copy"
% Worksheets ("Invoices") .Activate
% ActiveSheet.Rows (1) .Copy Worksheets ("Copy") .Rows (1)
§
S

Note: Resume statement returns to the program line in which the error occurs.

Source codes are available on the website

1/16 Visual Basic for Aplications

Variables and constants

Variable — container for a data processed by program, identified by unique name. The
value assigned to variable can be changed during program execution.

Constant — unique symbol representing some value (number, text, etc.). Value assigned
to constant cannot be changed during program execution.

Variable declaration scheme
Dim <name> As type
Constant declaration scheme
Const <name> [As type] = value
<name> must be unique (there cannot be two items with the same name) and should fulfill
the conditions described on s.3, point 2.

Examples
Dim x As Integer
Dim cell As Range
Const VAT As Single = 0.23

Note: Declaration of non-object variables is not required. Each undeclared variable is given type
Variant. The declaration of variables can be forced using Option Explicit placed on the
beginning of the module (Tools -> Options -> Require variable declaration).

Setting the value of variable

Setting the value of a non-object variable
<name> = expression
Setting the value of an object variable

Set <name> = expression

<name> is name of variable

expression is any VBA expression (including name of variable, constant, etc.) with a
type compatible with the type of the variable.

Examples
Dim x As Integer
Dim y As Integer
Dim k As Range

x =5

1/17 Visual Basic for Aplications

y =29 + x © 2

Set k = Worksheets ("Worksheet5") .Range ("C3:E5")

Example

The procedure swaps the value of two cells: the active cell and the cell to the right of it (the
same row, next column).

Algorithm
1. Take the value of the active cell and put it to the variable.

2. Take the value of the cell on the right and put it to the active cell.

X
3. Put the value stored in the variable to the cell on the right. 125
: 3 3
ootk
¢ | Public Sub SwapToTheRightl() ‘ R ..
T 125
8 Dim x As Inteqger | 2501 ———————
Q : :
< \ ! f m I !
S X = ActiveCell.Value S S A
§ ActiveCell.Value = ActiveCell.Offset (0, 1) .Value
@ >
7 ActiveCell.Offset (0, 1).Value = x]
2
>
End Sub Source codes are available on the website
[Ce}
AN

Note: Above procedure works correctly only for Integer values.

A problem to think about (1): how to swap values of any type.

A problem to think about(2): how to swap given ranges.

Lifetime and scope of variables

Local variable — a variable declared inside VBA macro. It only exists when macro is
executing and is removed when macro is completed.

Module variable — a variable declared in module using Dim or Private (recommended).
It is available in all macros inside the module, exists for the entire duration of the program

execution.

Global variable — a variable declared in module using Public. It is available in all
modules, exists for the entire duration of the program execution.

¥ lecture02.xIsm - Module4 (Code) =™
|:Generall v| |example v|
Option Explicit T‘

Public GlobalVariable As String

Private ModuleVariable As Integer

1/19 Visual Basic for Aplications

Public Sub example ()

Dim LocalVariable As Single

End Sub

1/20 Visual Basic for Aplications

% e IiM
EoE
;Aig'\%ct

Functions in VBA

[Private |Public] Function <name>([largl,.. , argN]) As type
code of function

<name> = value

End Function

0O Function is a keyword, it specifies the header of function.

0O Private|Public are optional, they determine the availability of the function, public
function can be used in all modules and as worksheet function.

O <name> is a name defined by user (see point 2., s.3).

O type specifies the type of the value returned as the result of the function.

0 Result of the function is specified by assigning value to <name>.

Q argl,.. argN is an optional list of arguments, defined as in procedure (s.5).
O Function executes subsequent instructions until End Function

0 Execution of function can be broken before its end using Exit Function

Q Error handling is implemented in the same way as in procedure.

Visual Basic for Aplications

1/21

4

S
i 1IM
1}"‘7@

ok
i

Calling of function

variable = <function name>[(argl, .. , argNh)]

The parentheses are required if arguments are passed. In the case of argument less
function the parentheses are optional.

<function name> describes standard or user defined function accessible in active
excel document (workbook).

variable stands for the name of the variable where the value returned by the function
will be stored.

argl, .. argNis an argument list corresponding to argument list defined in header of
function (see s.20).

Optional argument can be omitted, in such a case free space separated by comma
should be remained.

Arguments can be specified in any order, in such a case the name of argument should
be given according to syntax:

<argument name> := value

Communication with the user — InputBox

Function InputBox

InputBox (prompt As String,
Optional title As String = "Microsoft Excel",
Optional default As String = "", ..) As String

Method InputBox (class Application)

InputBox (prompt As String,
Optional title As Variant = "Microsoft Excel",
Optional default As Variant = "",
Optional type As Variant) As Variant

prompt - text displayed inside the dialog window

title —title of the dialog window (default ,Microsoft Excel”)

default — default value

type — type of value to read (only method InputBox): 0 — formula, 1 — number,
2 — text (string), 4 — logical value, 8 — range of cell (object Range).

1/22 Visual Basic for Aplications

Note: Both function and method InputBox have four additional arguments, omitted in the above
description (position of window and references to help).

Example - InputBox

Procedure fills selected range using the value specified by user. To select the range
method InputBox and to determine the value function InputBox is used.
Public Sub FillRange ()

Dim rng As Range

Dim val As String

On Error Goto Cancel

Set rng = Application.InputBox ("Select range", type:=8)

(7]

=

S

g val = InputBox ("Enter value")
S

g rng.Value = val
Q

§ Exit Sub

% Cancel:

S

- End Sub

N

Note: Error handling ensures the correct reaction of the program in the case of pressing the Cancel
button in the InputBox window. In this case, the method returns a empty value that cannot be assigned
to the Range object variable.

& Source codes are available on the website

User function — examples

Const DefaultVAT As Single = 0.23

Public Function GrossPricel (net price As Currency,
vat As Single) As Currency
GrossPricel = net price + net price * vat

End Function

Public Function GrossPriceZ2 (net price As Currency,
Optional vat As Single = DefaultVAT) As Currency

GrossPriceZ = net price + net price * vat
¢ | End Function
< A B C D E F G H
P
ﬁ 1 Function GrossPricel Function GrossPrice2
7
Q 2 Net price VAT Gross price Net price Gross price
g 3 127,00zt 23% 156,21 zt 127,00 zt 156,21 zt =GrossPrice2(F3)
> 4 250,00zt 23% 307,50 zt 250,00 zt 307,50 zi
N 5 35,00zt 8% 37,80 zt 35,00 zt 37,80 zt [— =GrossPrice2(F5;0,08)
= 6 875,00zt 23% 1076,251z 875,00zt 1076,25 z
— /| 1230,00z 8% 1328407z 1 230,00 zt F 1328,40 zt
— 8 27,00zt 23% 33,21zt 27,00 zt 33,21

9

=GrossPrice1(A3;B3)
#r Source codes are available on the website

	Slajd 1
	Slajd 2: Summary of the Lecture01
	Slajd 3: Basic principles of programming in VBA
	Slajd 4: Notation
	Slajd 5: Procedures (subroutines) in VBA
	Slajd 6: Calling a procedure
	Slajd 7: Example – MsgBox
	Slajd 8: Assignment statement, arithmetic operators
	Slajd 9: Example
	Slajd 10: Run-time errors (exceptions)
	Slajd 11: Exception handling
	Slajd 12: Example I
	Slajd 13: Example II
	Slajd 14: Example III version 1
	Slajd 15: Example III version 2
	Slajd 16: Variables and constants
	Slajd 17: Setting the value of variable
	Slajd 18: Example
	Slajd 19: Lifetime and scope of variables
	Slajd 20: Functions in VBA
	Slajd 21: Calling of function
	Slajd 22: Communication with the user – InputBox
	Slajd 23: Example – InputBox
	Slajd 24: User function – examples

